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Abstract 
Soilborne plant pathogens cause significant crop losses worldwide. The use of biological control agents 

(BCAs) to suppress plant diseases has gained much interest as an alternative to chemical pesticides. Single-

strain BCAs have demonstrated efficacy against some soilborne pathogens, but multiple-strain mixtures 

may provide greater and more consistent disease control. This review examines current research on 

Multiple-BCA strain mixtures, including their mechanisms of action, compatibility, field efficacy, and 

potential risks. Numerous studies indicate mixtures can provide broad-spectrum suppression through 

complementary and synergistic interactions among strains. Compatibility testing protocols have enabled 

the development of effective multi-strain products. Field trials demonstrate these products often perform 

comparably or better than single strains or chemical fumigants. However further research optimizing 

formulation, delivery, and environmental fit of mixtures is needed. Ultimately, multi-strain BCAs offer an 

promising sustainable tool for integrated management of soilborne crop diseases. 
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Introduction  

Soilborne fungal, oomycete, bacterial, and nematode phytopathogens are responsible for major 

economic crop losses worldwide. Diseases caused by soilborne pathogens are difficult to control 

due to the pathogens’ persistence in soil and other environmental reservoirs [1]. Fumigation with 

broad-spectrum biocides has traditionally been an effective method to reduce inoculum potential 

of pathogen propagules in soil. However regulatory restrictions, rising costs, public health 

concerns, and negative environmental impacts have greatly limited fumigant use [2, 3]. This has 

driven investigation of alternative non-chemical approaches for soilborne disease management, 

including cultural practices, resistant cultivars, and biological control. 

Biological control through introduction of antagonistic microorganisms has shown particular 

promise as a sustainable, eco-friendly means to protect plants from soilborne diseases [4]. 

Numerous bacterial and fungal biological control agents (BCAs) have been identified that can 

suppress various soilborne pathogens via competition, antibiosis, parasitism, induced resistance, 

and other mechanisms [5]. Commercial microbial pesticides based on single antagonistic strains, 

such as species of Bacillus, Streptomyces, Trichoderma, and Gliocladium, have demonstrated 

efficacy in controlling certain soilborne diseases under field conditions [6–9]. However, biological 

control efficacy using single antagonists can be inconsistent due to variability in environmental 

conditions, pathogen pressure, and crop cultivar [10–12]. As soilborne plant pathogens often have 

broad host ranges, utilize multiple infection strategies, and produce resilient resting structures, 

targeting them with single antagonist strains poses challenges [1, 13]. 

One proposed method to overcome such limitations is through use of mixtures of multiple 

complementary BCAs. Evidence from interactions of pathogens and native soil microbiota 

suggests multi-species communities play an integral role in disease-suppression [14–16]. 

Introducing combinations of selected antagonists may more closely mimic native suppressive 

microbiomes. Theoretically, mixtures of BCAs with different mechanisms of action, 

environmental fitness, and/or target pathogens could provide more consistent, broader spectrum 

control [17–21].  
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Most commercial BCAs consist of single isolates, but interest in 

developing multi-strain mixtures has grown recently. Several 

mixed inoculant products have shown promising results in 

suppressing soilborne crop diseases under field conditions [22–25]. 

This review synthesizes current knowledge on multi-strain 

BCAs for managing soilborne pathogens, examining 

mechanisms of disease suppression, compatibility among 

strains, field efficacy results, and potential risks associated with 

their use. 

 

 
 

Fig 1: Increased disease-suppressive efficacy (B) and enhanced biocontrol effects (A) of multiple-strain biological control agents (MSBCA) against 

soil-borne pathogens. The following effects have been observed: (i) increased biofilm formation; (ii) encouragement of syntrophic microbial growth; 

(iii) facilitated migration; (iv) increased competition for resources; (v) encouraged the manufacture of antimicrobial substances; and (vi) heightened 

activation of plant defense response [66] 
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Mechanisms of disease suppression 

Introducing combinations of microbial antagonists may enable 

greater pathogen control through additive, synergistic 

interactions or complementary mechanisms of action targeting 

different pathogens or disease stages. Proposed benefits include 

(i) increasing taxonomic and functional diversity, (ii) resource 

partitioning and efficiency, (iii) stabilizing antagonistic 

populations over time and space; and (iv) providing general and 

specific suppression abilities [26]. Mixed inoculants may also 

allow for lower application rates of individual strains needed to 

achieve disease control. Table 1 summarizes known biocontrol 

mechanisms employed among common BCA groups used in 

multi-strain approaches against soilborne pathogens. 

 
Table 1: Mechanisms of biological control among major microbial antagonists used in multi-strain mixtures for suppression of soilborne crop 

diseases 
 

Microbial Group Bacteria Fungi Protozoa 

Taxa Examples 
Bacillus spp., Pseudomonas spp., 

Streptomyces spp. 

Trichoderma spp., Metarhizium spp., 

Beauveria spp. 

Myxamoeba spp., Acanthamoeba spp., 

Naegleria spp. 

Mechanisms 
Antibiosis, Competition, Enzyme 

secretion, Induced resistance 

Mycoparasitism, Antibiosis, Competition, 

Enzyme secretion 

Predation, Competition, Induced 

resistance 

Target Pathogens 
Broad spectrum of bacterial & fungal 

pathogens 
Broad spectrum of fungal pathogens Nematodes, fungi, oomycetes 

Commercial Products Serenade, Double Nickel, Actinovate Soil Gard, Root Shield, Actinovate Nemout, Nemaseek 

 

Introducing diverse bacteria, fungi, nematodes, or other 

microbes may lead to niche partitioning where strains utilize 

different carbon sources or colonize different ecological zones 

(e.g rhizosphere vs endorhiza), enabling more efficient use of 

resources [27, 28]. Varying survival and activity of strains over 

time can also stabilize population densities to exert continual 

pathogen pressure. Additionally, general suppression from 

heightened microbial activity can complement targeted 

inhibition of key pathogens [29]. Broadly, three models describe 

potential interactions of multi-strain mixtures: additive, 

synergistic, or antagonistic [30]. 

 

Additive/complementary interactions 

In an additive interaction, disease control is equal to the sum of 

activities from the individual strains applied separately. This 

occurs when mixtures target different pathogens, niches, or 

stages of the disease cycle without directly interacting. Mixtures 

of bacteria or fungi strains having distinct inhibition 

mechanisms can provide broad, complementary control across 

multiple diseases [31]. 

 

Synergistic interactions 

Synergy refers to mixtures giving greater control than the 

additive effects of its components [32]. Positive microbial 

interactions enhancing biocontrol include co-metabolism of 

substrates, stress resistance, or detoxification of pathogen 

metabolites [33]. Signal molecules among strains may stimulate 

antibiotic production or trigger induced systemic resistance 

pathways [34]. Specific combinations have shown synergistic 

mycoparasitism, where enzymes from one antagonist facilitate 

penetration and attack of pathogens targeted by another [35]. 

 

Antagonistic interactions 

Detrimental inhibitory interactions can also occur between co-

inoculated microbes competing for limited nutrients and space, 

leading to impaired biocontrol [36]. Production of volatile organic 

compounds, antibiotics, or pH altering metabolites may directly 

inhibit other BCA strains [37]. The net effect of mixed 

inoculation depends on relative synergistic, additive and 

antagonistic interactions. Compatibility testing helps avoid 

major antagonism among strains. 

Several studies demonstrate multi-strain mixtures suppressing 

soilborne pathogens through presumed synergistic or 

complementary effects in greenhouses, growth chambers, and 

field tests. Yang et al. [38] found combinations of Bacillus 

subtilis, B. amyloliquefaciens, B. cereus, and B. pumilus led to 

significantly greater inhibition of Fusarium oxysporum f. sp. 

niveum and Ralstonia solanacearum on watermelon over single 

applications. They observed increased production of antifungal 

lipopeptides and siderophores among certain paired 

combinations, suggesting synergistic interactions. Cross 

protection and degradation of toxins may also occur, as Kelley 

and Gilbert [39] reported mixtures of Bacillus strains provided 

greater control of Pythium damping off than individuals possibly 

by removing metabolites inhibiting growth. In radish root 

microbiome studies, Streptomyces-Bacillus combinations gave 

broad-spectrum disease suppression against F. oxysporum, 

Rhizoctonia solani, and R. solani AG-2-1 not achieved with 

singles [40]. The diverse inhibitory metabolites among these taxa 

likely contributed to complementary activity. 

Combinations of fungi have also shown multifunctional control, 

as Trichoderma-Gliocladium mixtures reduced pathogens 

inciting damping-off, root, stem and fruit diseases on several 

hosts [41, 42]. Enhanced antibiotic production was noted between 

Trichderma harzianum and T. viride strains [43]. Specific 

mycoparasitic Trichoderma species combinations can attack 

different stages of pathogens’ life cycles [35]. Joint inoculation 

with Rhizobacteria and Trichoderma strains has provided 

consistent biocontrol and plant growth enhancement by 

stimulating systemic resistance pathways in both associates and 

the host plant [44–46]. Findings support the hypothesis mixtures 

enable greater disease suppression through synergistic 

population dynamics and mechanisms. However additive or 

antagonistic interactions may also predominate depending on the 

strains and environments. Further work is still needed to 

demonstrate disease reduction by multi-strain BCAs is due 

directly to additive, synergistic or complementary effects rather 

than chance through increased probability of one effective 

antagonist. 
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Fig 2: Mechanisms of action of microbial biocontrol agents against Botrytis cinerea 

 

Compatibility among strains 

Introducing antagonistic microbes together risks potential 

antagonism detrimentally affecting biocontrol efficacy. Thus 

compatibility among candidate BCA strains should first be 

established to avoid selecting incompatible partners. Approaches 

to assess compatibility include: direct inhibitory assays on dual 

culture media, analysis of interactions effects on fungal/bacterial 

morphology and metabolism, plant inoculation assays, selective 

desirability functions, studying enzyme activities post-

interaction, and PCR community profiling [30, 47]. 

Plate assays offer an initial screen for strongly antagonistic or 

potentially synergistic interactions among strains [48]. Partners 

showing no growth inhibition are then further tested in 

greenhouse bioassays on plants. Additive or synergistic disease 

suppression effects in such trials indicates general compatibility 

of the mixture. Observing consistent control efficacy of mixtures 

applied over multiple field seasons provides the best validation 

of strain compatibility and stability [49]. 

Researchers utilize various statistical approaches to select 

optimal strain combinations from initially large pool of 

candidates, including desirability functions, mixture simplex 

lattice design modelling, and the ‘Bacterial Complementation’ 

(BACO) screening method [30, 50, 51]. Compatibility testing plays 

a key role in commercial development of multi-strain inoculants 

allowing manufacturers to formulate stable, reliable products. 

Most available mixed BCA products feature combinations of 

Bacillus spp., with some integrating Trichoderma or 

Streptomyces strains (see Table 2). Combining fungi and 

bacteria poses greater risks for antagonistic interactions due to 

differing nutritional needs and potential production of anti-

fungal or anti-bacterial compounds [52]. Yet examples of bio-

compatible mixed inoculants exist, such as Sentinel containing 

both Trichoderma and Bacillus strains. Identifying mutually 

supporting, ecologically suited combinations remains an active 

area of research. 

 
Table 2: Examples of commercially available multi-strain biological control products for suppression of soilborne crop diseases 

 

Product Strains Target Pathogens Crops 

Double Nickel 

LC/WDG 

Bacillus amyloliquefaciens strain D747 + 

other proprietary Bacillus spp. 

Fungal pathogens including Fusarium, 

Rhizoctonia, Phytophthora, Pythium, etc. 

Wide range of fruit, vegetable, 

grain and ornamental crops 

Serenade SOIL 
Bacillus subtilis strain QST713 + Bacillus 

pumilus strain INR7 
Seedling diseases, root rots, wilts Vegetables, fruits, row crops 

Bio-Nematon + 

Actinovate SP 

Steinernema feltiae nematode + Streptomyces 

lydicus WYEC108 

Root-knot nematodes, soilborne fungal 

pathogens 
Vegetables, fruits, ornamentals 

Sentinel 
Trichoderma harzianum strain KRLAG2 + 

Bacillus subtilis strain OSU142 
Fusarium, Rhizoctonia, Pythium diseases Soybeans 

 

Field efficacy 

Ultimately, the efficacy of potential BCA mixtures must be 

validated under field conditions over multiple sites and seasons. 

Environmental factors like soil type, temperature, moisture, 

nutrient levels, and indigenous microbiota can modulate 

biocontrol activity [53]. While mixtures often show disease 

suppression in controlled settings, performance consistency has 

been a key limitation during field deployment [10]. Multi-strain 

inoculants aim to provide more reliable broad-spectrum control 

via built-in functional redundancy among strains. 

A number of recent long-term studies have demonstrated certain 

mixtures adequately controlling targeted soilborne pathogens. 

Conn et al. [24] tested various bacterial combinations against 

cabbage yellow caused by F. oxysporum f. sp. conglutinans for 

five years in Alaska. Treatments with Bacillus subtilis paired 

with B. megaterium, B. simplex or B. cereus consistently 

provided disease suppression comparable to standard fungicide 

and fumigation benchmarks across all trial years. Mixture 

efficacy was additive or synergistic rather than through one 

strain dominating. Sarhan et al. [25] similarly found potato yield 
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enhancement from combining B. subtilis and B. megaterium 

strains to minimize Rhizoctonia canker and black scurf matched 

standard pesticide over three seasons. Greenhouse assays 

suggested biocontrol activity resulted from synergistic 

interactions between the two strains. 

Investigating multi-year onion white rot suppression by 

Pseudomonas and Bacillus combinations, McLean et al. [22] 

determined strain J636 (P. fluorescens) was the most efficacious 

single BCA. Yet alternating or mixing J636 with other bacteria 

gave optimal control and yield response. This was attributed to 

the mixtures conferring stronger, more consistent population 

levels in the rhizosphere to withstand environmental variability. 

The nematode-attacking fungus Hirsutella Rhossiliensis also 

shows greater reliability for controlling root-knot nematodes 

during field applications when integrated with Paecilomyces 

lilacinus over four seasons [54]. Though individual H. 

rhossiliensis applications could equal mixtures, its parasitism 

was less stable between years. These examples demonstrate key 

benefits of multi-strain inoculants in conferring predictable 

broad-spectrum protection. 

Yet other long-term trials show single antagonist isolines 

providing equivalent if not greater soilborne disease control than 

mixtures. In BCA tests against Phytophthora blight of bell 

pepper over seven years, individual strains of Bacillus, 

Streptomyces and chitosan outperformed commercial mixed 

inoculants [55]. This indicated compatibility issues may have 

reduced field efficacy of the mixtures. For suppressing lettuce 

drop caused by Sclerotinia minor, rotations of Streptomyces 

lydicus with fungicides proved a more consistent strategy than 

applying S. lydicus mixtures [56]. Synergistic interactions 

enhancing biocontrol likely depend on specific strain 

combinations as well as environmental conditions. 

While existing commercial products rely largely on 

combinations of Bacillus spp., mixtures integrating diverse 

bacteria, fungi, yeasts or other microbes may provide better 

occupation of soil niches for disease suppression. Future field 

investigations should further explore broad taxonomic 

combinations using isolates native to deployment regions. Multi-

strain inoculant research also requires greater attention to 

appropriate formulation, storage, delivery methods and 

application rates for maintaining stability [57]. As strains likely 

utilize different substrates, varied nutritional requirements must 

be met to retain viability and efficacy. 

 

Potential risks 

Despite demonstrated benefits for soilborne disease control, 

uncertainties around environmental and health risks associated 

with introducing non-native microbiota provide reasonable 

rationale for caution adopting multi-strain inoculants [58]. 

Potential concerns include altered soil ecology leading to loss of 

biodiversity or enrichment of new pathogens, production of 

harmful metabolites, gene transfer to native microbes, excessive 

nutrient competition with plants, or risks to human end users [23, 

59]. Realizing such negative impacts seems unlikely for most 

candidate BCA groups which originate from soil environments 

similar to deployment areas. Still, non-target effects must be 

considered, especially when applying combinations of 

genetically modified strains [60]. 

Few studies directly analyze ecological impacts from long-term 

use of multi-strain inoculants. Transitioning to organic methods 

with reduced pesticide inputs increased general soil health and 

biodiversity in certain farm systems while utilizing applications 

of composts, microbial amendments, and other alternative 

disease management products containing mixed microbes [61–63]. 

This suggests integrative biological approaches unlikely 

drastically disrupt soil ecology. Targeted community analysis 

via next generation sequencing could clarify effects of 

introducing persistent high levels of BCA inoculants on 

indigenous microbial populations [64]. Monitoring population 

dynamics of inoculant strains compared to the native 

microbiome would provide valuable information on 

environmental fate, gene transfer risks, and community impacts 

associated with long term usage of multi-strain BCA mixtures 
[65]. 

 

Conclusions and future outlook 

In conclusion, introducing combinations of microbial biological 

control agents holds promise as a more reliable sustainable 

approach for managing endemic soilborne crop diseases over 

single strain alternatives. Multi-strain inoculants provide broad-

spectrum suppression through increased taxonomic, genetic and 

functional diversity and varying modes of antagonistic action. 

Field investigations demonstrate certain mixtures effectively 

controlling fungal, bacterial, nematode and oomycete plant 

pathogens. Combining strains with complementary inhibition 

mechanisms can lead to additive or synergistic interactions 

improving biocontrol efficacy. Yet performance consistency 

depends on selecting mutually compatible BCAs through 

rigorous antagonism and bioassay testing to avoid 

counterproductive microbial interactions. Control efficacy also 

relies on proper product formulation and application methods 

tailored to constituent strains’ environmental requirements. 

Further research should explore novel combinations integrating 

diverse bacteria, fungi, nematodes or protozoa co-adapted from 

disease suppressive soils which may occupy distinct niches. 

Native isolates pre-selected for synergistic interactions could 

offer enhanced control once combined. Continued field testing 

over multiple locations and years will clarify most robust 

mixtures for commercialization. Multi-strain inoculants provide 

an additional tool for integrated pest management programs 

seeking to reduce conventional pesticide applications. Realizing 

the full potential of tailored microbial consortia to sustainably 

suppress soilborne crop diseases will require ongoing 

interdisciplinary investigation between microbial ecologists, 

plant pathologists and biological control researchers. 
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