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Abstract 
Sensor-based weed detection is a significant breakthrough in precise weed management that reduces the 

need for manual work and herbicides. GPS systems have shown promising results, with a single pass 

covering 30-49% of the intra-row area. Additionally, using an RGB sensor and a laser sensor together can 

identify the center of a plant, regardless of lighting conditions. Robots have demonstrated the ability to 

distinguish 99.7% of crop plants in dense outdoor areas with high weed density. These advancements offer 

opportunities for more effective and environmentally-friendly weed management in different farming 

systems. 

 

Keywords: Precision weed management, intra row weeding, GPS systems, RGB sensor, laser sensor, eco-

friendly weeding 

 

Introduction  
Weeds are a significant problem in agriculture, as they compete with cultivated plants for vital 
resources such as sunlight, water, and nutrients. This competition can lead to poor crop growth, 
lower yields, and increased expenses for farmers. Proper weed management is therefore crucial 
to ensure that crops grow properly and produce healthy, high-quality yields. Weed management 
involves essentially controlling weeds in two distinctive crop zones namely intra-row and intra-
row space. Inter-row weeding involves removing weeds growing between rows of crops, often 
carried out with mechanical weeding machinery and is easier and less time-consuming. 
Whereas, weed control in the intra row spaces in the crop rows is more challenging because the 
crop fall in line of the weeds. Moreover, the weeds grow in close proximity to the main crop 
plant, which makes intra-row weeding more intricate and challenging task by available 
mechanical weeders. Traditional manual tools, such as khurpi, grubber, spade, wheel hoe, and 
push-pull weeders, remain common for intra-row weed removal. Technological advancements 
have introduced automated systems that have made possible the mechanization in intra row 
weed management. These systems, equipped with specialized machinery, can eliminate weeds 
within the same row as the crop by distinguishing between crops and weeds (Kumar et al., 2022) 
[138]. Various sensor technologies are under development for in-field use in weed management. 
These sensors play a crucial role in weed management and are capable of directly detecting 
weeds in the field or indirectly assessing factors such as total plant coverage, leaf area, 
photosynthetic activity, and plant height. The primary focus is on ground-based sensor 
technologies designed to distinguish between weeds and crops or indirectly measure weed 
infestation. This integration has significantly improved sensor capabilities in weeding 
operations, contributing to enhanced reliability and the generation of more extensive datasets 
(Kumar et al., 2019) [139]. Mechatronic systems have been developed, incorporating machine 
vision, controls, and mechanical actuation to selectively remove weeds within a crop row 
(Berkmortel et al., 2021) [11]. Thermal weeding techniques such as soil steaming and flame 
weeding are also discussed as intra-row weed management methods (Kumar et al., 2022) [138]. 
Sensor-based technologies have been adapted for managing intra-row weeds in crops with wider 
rows (Kumar et al., 2022) [138]. Cutting-edge technologies, including image segmentation, plant 
height measurement, machine vision systems, and sensor-based methods, show promising 
potential in accurately distinguishing crops from weeds (Al-Badri et al., 2022; Hasan et al., 
2021 and Teja et al., 2022) [5, 40, 110].
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The integration of sensors, microcontrollers, and computing 

technologies has provided the way for autonomous guidance 

systems in agriculture (Pallottino et al., 2019) [140]. The use of 

advanced sensor technologies in weed management has the 

potential to transmute the agricultural industry, helping farmers 

for weed management efficiently and cost-effectively while 

maintaining high yields and quality crops. The development of 

more sophisticated and accurate sensor systems will continue to 

play a significant role in shaping the future of agriculture and 

weed management. Recent technological progress, particularly 

the integration of sensor-based technologies, machine vision, 

and control systems in agriculture for intra-row weeding, is 

comprehensively explored in this review. 

 

Overview of different advanced intra row weeding 

techniques vision based weed control techniques 

In precision agriculture, an innovative approach called vision-

based intra-row weeding control is being developed to 

effectively manage weeds while minimizing harm to crops. This 

method combines advanced sensor technologies and selective 

weeding tools within crop rows, advancing sustainable and 

efficient farming practices. Various types of vision-based intra-

row weeding systems have emerged in agricultural technology. 

The autonomous vision-based navigation and control for intra-

row weeding system employs a plant classification algorithm 

with easy-to-extract features, enabling autonomous navigation 

without GPS reliance. The computer vision-based intra-row 

weeding system compensates for classification delays through a 

non-overlapping multi-camera system, allowing for more 

advanced detection algorithms. Vision Systems identify weeds 

in the crop and use tools to remove them, while electro-

mechanical systems automate intra-row weeding by combining 

machine vision and control. These diverse systems showcase 

innovative approaches to address the challenge of intra-row 

weeding, contributing to the advancement of efficient and 

accurate weed control in agriculture. Researches support the 

potential of this method, demonstrating the effectiveness of 

image segmentation, plant height identification, machine vision 

systems, and sensor-based approaches in distinguishing between 

crops and weeds (Wu et al. in 2019) [129]. This enabled the way 

for further exploration of advanced technologies, image 

processing methods, and robotics to enhance the accuracy and 

efficiency of weed control within crop rows.  

 

Laser and 3D LiDAR based weed detection and control 

Laser vision-based intra-row weeding is a technology that uses 

sensors for precise weed detection and control various types of 

lasers, including CO2 lasers, diode lasers, and fiber lasers, have 

been employed for weed control experiments. With the right 

detection, localization, and laser targeting hardware and 

software, this technology has the potential to remove not only 

the inter-row weeds but also the intra-row weeds, making it a 

promising solution for precision agriculture. The light energy 

from CO2 and fiber lasers is absorbed strongly by plants, 

leading to weed detection (Gates et al., 1965) [151]. The 

combination of plant species recognition tools with laser-

equipped small autonomous vehicles presents a sustainable 

alternative to widespread herbicide use. Laser-based weed 

detection and control represents a significant progress in 

precision agriculture. In past, Hilton et al. (2000) [42], developed 

a laser system that used varying wavelengths, to achieve 

accuracy with a range of 1-10 centimeters. It was effective both 

during the day and at night. The latter utilized laser beams for 

maize stalk detection, employing a lateral quasi- sinusoidal 

motion to avoid stalks, resulting in high weed removal rates and 

reduced herbicide use. This environmentally sustainable 

approach demonstrated effectiveness in various crops, 

particularly with a 94.5% weed removal rate and only 0.8% crop 

damage in a Chinese cabbage test area (Cordill and Grift, 2011) 
[23]. Light detection and ranging (LiDAR) sensors demonstrated 

promise for weed detection and discrimination, offering 

advantages like higher sampling resolution and faster scanning 

rates. LiDAR is a device that emits light through optical 

amplification based on the stimulated emission of 

electromagnetic radiation. Emission wavelengths of lasers are 

typically in the visible and the near infrared light spectrum. 

Ground-based LiDAR sensors initially designed for 

characterizing tree and vine canopies, have been adapted to 

create a system for detecting and differentiating weed species 

within the intra-row areas of maize fields (Rosell et al. 2009 and 

Rosell & Sanz 2011) [142-143]. The hypothesis driving this 

innovation is centered on the estimation of weed height using 

LiDAR sensor, with the aim of utilizing height differences as a 

means to effectively discriminate between various weed species. 

LiDAR, a remote-sensing technique for distance measurement, 

was tested for weed characterization in the intra-row area of a 

maize field (Andjur et al., 2013) [6]. The study aimed to 

discriminate weed species based on their heights using LiDAR. 

Mounted on an all-terrain vehicle, the LiDAR sensor scanned 

downwards, capturing the vegetation profile. The results, 

correlated with manually determined height values, showed a 

high correlation (r² = 0.88) and significant discrimination 

capabilities, especially for tall weeds like Sorghum halepense. 

Grass weed species tend to exhibit higher height profiles 

compared to broad- leaved weed species. This distinct height 

difference provides a reliable basis for discriminating between 

these two categories of weeds. In the context of maize fields, the 

general height of weeds is notably lower than that of the maize 

crop. This disparity in height serves as a key factor in effectively 

distinguishing between the weeds and the crop in maize fields. 

Examining the potential of Light Detection and Ranging 

(LiDAR) sensors for weed detection, the research emphasizes 

key parameters such as target size and orientation, elucidated 

through trials with artificial targets (Shahbazi et al., 2021) [97]. 

The findings underscore the direct influence of target size and 

orientation on detectability at varying scanning distances. In a 

field trial within a wheat plot, the stationary LiDAR 

impressively achieved a 100% weed detection rate based on 

height disparities with the crop canopy. While LiDAR sensors 

have shown promising results in weed detection, further research 

efforts are warranted to enhance their efficacy for this purpose. 

Continued investigation and refinement of LiDAR technology 

can contribute to optimizing its capabilities and improving the 

accuracy and reliability of weed detection systems. 

 

Image processing and species discrimination 

In addition to advancements in inter-row weed management, 

significant progress has been made in intra-row weed control 

using image processing techniques. The ability to automatically 

identify and remove weeds within crop rows has become a 

crucial aspect of modern agriculture, contributing to increased 

farming efficiency and crop yields. Reflectance measurements at 

different wavelengths have proven to be a valuable tool in intra-

row weed discrimination. Vrindts et al. (2002) [121] demonstrated 

impressive results with 97% accuracy in distinguishing between 

crop and weed species in laboratory conditions using this 

approach. This method involves capturing the reflectance 

characteristics of plants at various wavelengths, allowing for the 
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differentiation between desirable crops and unwanted weeds. 

Furthermore, Joao (2004) [15] introduced a novel approach for 

classifying and mapping weed species in minimum-tillage 

systems. The algorithm presented in this work focuses on 

individual leaf extraction, achieving a 75% success rate for 

accurate leaf extraction. This signifies progress in developing 

precise methods for characterizing and managing intra-row weed 

populations. Otsu's method, combined with modified excess 

green features, has been utilized for automatic thresholding in 

weed image segmentation (Mansheng and Dongjian, 2007) [64]. 

This technique helps in effectively separating weed objects from 

the crop background, facilitating accurate identification and 

subsequent removal. 

Morphological operations and shape-based classification have 

shown success in achieving accurate differentiation between 

corn and weed objects within crop rows (Agrawal et al. 2012) 
[1]. Recent studies have also explored real-time discrimination 

between weed patches and crop rows. These methods focus on 

the structure, texture and shape of the plants, enabling precise 

discrimination in real-world agricultural scenarios. Despite these 

advancements, there is ongoing research to further improve 

intra-row weed management. Burgos-Artizzu et al. (2011) [14] 

proposed a computer vision system that combines fast image 

processing (FIP) and a robust crop row detection (RCRD) 

system. This innovative approach achieved an average weed 

detection rate of 95% and a crop detection rate of 80%, with 

minimal false negatives, showcasing the potential for real-time 

and accurate intra-row weed management. Elstone et al. (2020) 
[26] emphasized the need for testing at high weed densities and 

enhancements in plant identification and system calibration to 

ensure robust performance under varying conditions. These 

innovations hold promise for further improvements in weed 

discrimination within crop rows, ultimately enhancing overall 

agricultural productivity. 

 

Hyperspectral and spectral imaging 

Hyperspectral imaging, a fusion of imaging and spectroscopy, 

collects full-wavelength spectral information for each image 

pixel. When combined with VIS/IR spectroscopy, it creates a 3-

D image with one spectral and two spatial dimensions, providing 

both spectral and image features of plants. It helps us understand 

the characteristics of objects without harming them. The specific 

frequencies of vibrations in the visible or infrared spectrum can 

be analyzed and quickly learn about the properties of materials 

without any special preparation of the samples. Hyperspectral 

and spectral imaging play pivotal roles in intra-row weeding, 

enabling precise discrimination of crop plants and weeds based 

on their distinct spectral signatures. These advanced imaging 

technologies provide valuable data for developing targeted and 

efficient weeding strategies, contributing to improved 

agricultural practices. The initial RGB color image is formed by 

combining the captured broad-spectrum data that includes red 

(R), green (G), and blue (B) lights. Broad band data, while less 

sensitive than full-wavelength spectra, can still distinguish crops 

from weeds (Slaugher et al. 2008) [102]. Zhang et al. (2012) [144] 

successfully combined a hyperspectral imaging system with a 

precise pulsed-jet micro-dosing setup for targeted delivery of 

heated organic oil to control intra-row weeds in early- stage 

tomatoes. The multispectral Bayesian classifier achieved a 

95.9% average discrimination rate for tomato, Solanum nigrum, 

and Amaranthus retroflexus based on canopy reflectance. The 

application of heated oil, at a rate of 0.85 mg/cm² in 10-ms 

pulses, demonstrated effective weed control (95.8% for S. 

nigrum and 93.8% for A. retroflexus) with minimal damage to 

tomato plants (2.4%). There are three methods to acquire full-

wavelength hyperspectral images: line scanning, area scanning, 

and point scanning. Selected feature variables from the full- 

wavelength region can simplify a multispectral system to 

highlight specific object characteristics. With its lightweight 

hardware and faster calculation speed, multispectral imaging is 

becoming the successor to hyperspectral technology 

(Kamruzzaman et al. 2016) [145]. Other useful features for plant 

detection include visual textures, biological morphology, and 

spatial contexts. Texture features describe the arrangement of 

image pixel gray levels, providing measures like coarseness and 

regularity. Biological morphology refers to plant shape and 

structure. Spatial context, or location information, can improve 

discrimination accuracy in crop fields (Su et al. 2018) [158]. The 

latest spectral sensing aims to identify a few key spectra from 

continuous narrow-band data for plant classification. Using 

principal component analysis (PCA), feature wavelengths from 

350 to 2500 nm were selected. This enabled effective weed 

classification, including barnyard grass and green foxtail, from 

two seedling cabbages using Bayesian discriminant analysis 

(Deng et al. 2016) [146]. 

Gao et al. (2018) [31] introduced a hyperspectral snapshot mosaic 

camera for precise weed and maize classification, relying on 185 

spectral features and employing an optimal random forest model 

to achieve high accuracy. These authors have significantly 

advanced the application of hyperspectral imaging in intra-row 

weeding, and their work is complemented by a range of other 

studies that have harnessed this technology for diverse 

challenges specific to intra-row weeding. Notably, vegetation 

indices, particularly those proximate to the red edge, emerged as 

significant contributors to the classification. Hyperspectral 

remote sensing (HRS) technology is employed for a competitive 

experiment combines comprehensive competition indices (CCI) 

and deep learning. Notably, the study establishes a robust 

relationship between various weed competitive pressures and 

structural/physiological changes in maize, offering precise 

quantification through accumulative/transient competition 

indices (CCI-A and CCI-T). The approach, outperforming 

traditional methods like relative competitive intensity (RCI), 

demonstrates superior dispersion capabilities (Lou et al. 2022) 
[147]. 

 

Robotic systems with camera integration 
Automated selection of assessment areas for crops and weeds 
relies on precise knowledge of crop row locations within the 
image. To ensure optimal results, it is crucial to position weed 
assessment areas strategically, avoiding any overlap with crop 
leaves. Tian et al. (1997) [112] developed a machine vision 
system for detecting tomato seedlings and weed plants in 
agricultural fields. The system successfully identified 65% to 
78% of target crop plants and had an error rate of less than 5% 
in identifying weeds as crop plants. Utilizing a vegetative index 
invariant to natural daylight variations, the transformed image 
was segmented into soil and vegetative components. Hague et 
al. (2006) [39] proposed an automated method for evaluating crop 
and weed areas in tractor-mounted camera images of widely 
spaced cereal crops. The algorithm robustly located crop rows, 
automatically positioned assessment zones for crop and weed 
growth, and demonstrated consistent results compared to manual 
assessments, providing an accurate mapping of crop and weed 
areas in the images. Limited scientific evaluations exist for the 
weeding performance of new robotic weeders. For instance, a 
study on Robocrop in transplanted cabbage demonstrated low 
crop damage levels under typical commercial growing 
conditions, achieving weed reductions between 62% and 87% 
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within a 240 mm radius zone around crop plants (Tillett et al., 
2008) [113]. Machine-guided technologies for precise, automated 
intra- row weed control have rapidly advanced, leading to the 
commercialization of at least three automated intra-row 
cultivators. Two of these employ machine vision based on 
cameras, while the third detects crop plants by interrupting a 
light beam over the crop row. These systems, however, require 
easily distinguishable crops and weeds, limiting their 
applicability to transplanted crops where weeds are not a 
predominant part of the vegetation (Rasmussen et al. 2012) [148]. 
Langsenkamp et al. (2014) [54] showcased the effectiveness of 
the "tube stamp" tool, achieving a remarkable 93.86% reduction 
in intra-row weeds in field conditions. Part of the Remote 
Farming project, this autonomous field robot tool, assisted by a 
human worker, uses cameras, a manipulator arm, and the tube 
stamp for precise individual plant weed control. With a narrow 
impact zone of 11 mm, it minimizes soil disturbance, proving 
successful in dense row crops without affecting the surrounding 
soil. In addition to academic research, several startups are 
pioneering automatic weed control technologies, utilizing 
advancements in robotics to enhance efficiency and 
sustainability in agriculture (Steketee, 2017, Farm Machinery 
Ltd, 2019) [149]. Developing a reliable, intelligent robotic system 
for real-time weed control in intra row crops is essential to boost 
crop productivity and address labor shortages. The study 
compared an intelligent mechanical weeding machine with non-
intelligent tools in transplanted onion and white cabbage. While 
intelligent weeding did not outperform simpler tools in onions, it 
provided comparable weed control in cabbage, eliminating the 
need for subsequent manual weeding near the plants (Malender 
et al., 2015) [68]. Zheng et al. (2017) [136] introduced an 
automated maize and weed detection method utilizing color 
features and post-processing algorithms. This approach achieved 
remarkable overall accuracy rates of 90.19%, 92.36%, and 
93.87% over three years. In the field of weed detection using 
robotic systems with camera integration. An autonomous mobile 
manipulation system utilizes high-speed image processing and 
visual servoing for fast plant detection and precise treatment 
(Michaels et al. 2015) [69]. Designed to counter the challenges of 
declining field worker availability and the laborious nature of 
manual weeding, the system demonstrates competitive 
performance by treating single plants in less than 1 second 
during experiments in field-like conditions. Ahmad (2018) [2] 
designed a mechanical weeding actuation system that 
incorporated a machine vision system for pinpointing crop plant 
locations. This innovation facilitated precise mechanical 
weeding operations without harming the crops. Raja et al. 
(2019) [89] presented a novel computer vision algorithm for 
automated weed control in leafy vegetables. Leveraging the crop 
signaling technique, this approach marks crop plants with a 
machine-readable compound, enabling high-accuracy detection 
and classification of in-row weed-crops throughout the season. 
Tailored for lettuce fields, the algorithm achieves 99% crop 
detection accuracy, identifying 98.11% of weeds within 1.2 
seconds per pair of images, showcasing its reliability and 
robustness compared to other sensor-based methods in situations 
with high weed densities and visual occlusion. 
 

Navigation and localization techniques 

Robotic weeding, as demonstrated by Nørremark and 

Griepentrog (2004) [74], is crucial for efficient and precise weed 

control in agriculture. Their findings underscore that 26.4% of 

sugar beet plants at the 4-6 leaf stage cover weed main shoots, 

emphasizing the need for robotic tools to address these 

challenges. Bossu et al. (2009) [13] introduced a comprehensive 

approach for crop/weed discrimination utilizing image 

processing based on wavelet transforms, comparing it with 

Gabor filtering. This study demonstrated that the wavelet-based 

method, specifically using Daubechies 25 and Meyer wavelets, 

outperformed Gabor filtering in weed-to-intra-row (WIR) 

measurement for both synthetic and real agronomic images. 

Among various wavelet basis functions tested, Daubechies 25 

wavelet proved to be the most efficient, striking a balance 

between processing time and accuracy, making it a favorable 

choice for real-time crop/weed discrimination applications. 

Kelly et al. (2012) [46] introduced an object-based image analysis 

(OBIA) procedure using color-infrared images from quadrotor 

UAVs for site-specific weed management in maize fields. The 

procedure effectively identified and classified crop rows, 

achieving 100% accuracy in row identification and 90% 

accuracy in defining longitudinal row borders when compared to 

ground-based measurements of weed emergence. Peña et al. 

(2013) [81] presented an approach by utilizing unmanned aerial 

vehicles (UAVs) and object-based image analysis (OBIA) to 

create detailed weed maps in early post-emergence of weed 

management. The method involves a three-phase process, 

including crop row classification, discrimination of crops and 

weeds based on their positions relative to rows, and the 

generation of weed infestation maps. The results demonstrated a 

high potential for reducing herbicide application and weed 

management costs with an 86% overall accuracy in categorizing 

weed coverage. Yano et al. (2016) [130] presents a UAV-based 

system for weed surveying in sugarcane fields, offering close- 

up species recognition and addressing the limitations of 

traditional sampling methods. The weed detection system 

achieved an overall accuracy of 82% and a kappa coefficient of 

0.73 in initial tests. Zhang et al. (2017) [132] proposed a 

navigation method for robotic weed control based on SUSAN 

corners and an improved sequential clustering algorithm, 

enabling the extraction of guidance lines for navigation in 

complex paddy fields. Guerrero et al. (2012) [37] introduced an 

automatic image segmentation strategy for maize fields using 

Support Vector Machines, achieving a 93.1% success rate in 

identifying plants with masked and unmasked green spectral 

components. These navigation and image processing techniques 

play a crucial role in the intelligent paddy field weeding robot in 

South China, where environmental complexities and similarities 

between weed and rice seedlings pose significant challenges. 

Several studies have yielded noteworthy research results in the 

realm of intra-row weeding. Tannouche et al. (2016) [109] 

successfully implemented real-time weed detection through 

computer vision and designed robotic control strategies, leading 

to enhanced weed removal precision and reduced herbicide 

usage. In summary, various innovative technologies and 

techniques are being employed to advance weed detection and 

control in precision agriculture. Researchers are making 

significant progress in enhancing crop productivity while 

minimizing the impact of weeds through the use of advanced 

imaging technologies, robotic systems, navigation and 

localization techniques, and performance comparison studies. 

Some of vision-based techniques are presented in Table 1. 
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Table 1: Some vision-based techniques 
 

Type of 

classifier/technique 
Datasets Purpose Plant Features References 

ANN, CNN, and 

Deep learning 

Kernel and kernel size 
A vision-based classification system to 

separate value crops from weeds 

Sugar 

beet 
Tensorflow by Google 

Milioto et al. 

(2018) [70] 

Shape, color and texture 

feature 

Identification of weeds in relation to 

soybean and soil and classification of 

them 

Soyabean 

Superpixel segmentation 

algorithm, Support Vector 

Machines, AdaBoost and 

Random Forests 

dos Santos 

Ferreira et al. 

(2017) [24] 

NDVI, NIR and 

Infra-red index 

Shape features 

A vision-based classification system for 

mobile robots to separate value crops 

from weeds 

Sugar 

beet 

Hue-saturation lightness (HSL), 

Random Forest Classification, 

Computed coordinate differences 

Lottes et al. 

(2017) [61] 

Color and shapes 

feature 

Detection and localization accurately 

against different weed species at 

different growth stages 

Lettuce, 

broccoli, 

tomato, 

pepper, 

green beans 

color (RGB), IR (Infrared) and 

depth information, semiconductor 

based PMD (photon mixer 

devices) sensor 

Gai (2016) [30] 

Features extracted from 

a large overlapping 

neighborhood 

Plant classification without segmentation 

process: Feature extraction and 

classification 

Carrot Random Forest classifier 
Haug et al. 

(2014) [41] 

Geometric Features 

Vision-based classification system for 

RGB combined with near infra-red 

(NIR) imagery 

Sugarbeet 

multi-class 

Random Forest classification, 

Unmanned ground vehicle (UAV) 

Lottes et al. 

(2017) [62] 

 
Spectral, Shape and 

Textural Features 

Characterize shape, textural and spectral 

features to differentiate between corn 

and a number of weeds and optimize the 

combined key features 

Corn 
Segmented principal component 

analysis (SPCA) 

Lin et al. 

(2017) [58] 

Vision sensor 

Recognition based on 

crop size and location in 

an image 

Sarl Radis machine to detect the location 

of an approaching crop and monitor the 

location of a crop relative to the weeding 

tool 

Corn 
Integrated weed management 

(IWM) strategies 

Berkmortel et 

al. (2021) [11] 

Kernel function 
Robustness of the computer vision 

against illumination variability 
Maize Bayesian framework 

Tellaeche et 

al. (2007) [111] 

Textures segmentation 

Segmentation from processed contain 

textures of three main 

Types: green plants, soil and sky 

Barley 

and corn 
Supervised fuzzy clustering 

Guijarro et al. 

(2010) [38] 

Detectable pattern 

marks or signals 

To differentiate between crops and 

weeds to enable targeted weed removal 

and reduce hand-weeding time 

Lettuce 

and tomato 

plants 

Lab VIEW software algorithms, 

two methods of plant signaling: 

physical plant labels and topical 

markers 

Kennedy et al. 

(2019) [47] 

Object-based image 

analysis (OBIA) 

Three features 

(statistical, texture-

based, geometrical and 

spatial) 

Uses of histograms as opposed to the 

idea of using statistical 115 metrics to 

simplify the objects 

Sunflower 
Unmanned 

Aerial Vehicles (UAVs) 

Pé rez-Ortiz, et 

al. (2015) [83] 

 

 
 

A  B 
 

Fig 1: The harrow containing automatic adjustment of tine angle (Gerhards et al., 2021) 
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A  B 
 

Fig 2: (a) Spatial representation of Gabor filter, (b) Fourier transform of Gabor filter (Vioix et al. 2002) 

 

In this review paper on vision-based intra-row weeding control, 

it becomes apparent that the adoptions of these technologies and 

methods holds significant promise for achieving more 

sustainable and efficient weed management in agriculture. The 

upcoming sections will provide an in-depth exploration of these 

contributions, shedding light on the advancements in this swiftly 

evolving field. 

 

GPS-Based Positioning Systems 

Stafford et al. (1996) [103] discuss the Silsoe Patch Spraying 

System, which relies on weed patch field maps. These maps are 

built using diverse methods, including farmer input, aerial 

imagery, and handheld GPS devices. The system includes user-

friendly software and ensures compatibility with the patch 

spraying technology. The system of comprised side-shifting 

frame attached with vertically directed tine-rotor (cycloid hoe) 

with sigmoid shaped. The system navigated with reference to 

pre-defined waypoints for tillage parallel to crop rows and 

around individual crop plants. The system evaluation was based 

on quantification of treated areas for uprooting and burial and 

the corresponding prediction of weed control efficiencies. A 

single and double pass of an 80 mm wide row band provided 

tillage of 30-49% and 31-58% of the intra-row area, with highest 

coverage at a speed of 0.32 ms-1 with even plant spacing 

(Nørremark et al. 2012) [150]. 

 

Precision intra-row weed control with gps-guided tools 

Precision intra-row weed control with GPS-guided tools has 

been a topic of extensive research, garnering attention from 

various authors in the field. In their study, Griepentrog and 

Dedousis (2010) [36] explored the utilization of a GPS-based 

system for accurate lateral control of hoes in agriculture. The 

system effectively minimized lateral deviations and achieved 

cross-track errors ranging from 0.009 m to 0.028 m, highlighting 

the crucial role of GPS technology in enhancing weeding 

efficiency. Nørremark et al. (2007) [75, 78] conducted research to 

create geo-spatial maps of individual crop plants using precision 

seeding equipment retrofitted with optical sensors and real-time 

kinematic global positioning systems (RTK-GPS). They 

achieved a high level of accuracy, with 95% of sugar beet 

seedlings emerging within 37.3 mm of the recorded seed drop 

positions in the geo-spatial seed map. Ruiz et al. (2012) 

developed a fully automatic, intra-row weed knife control 

system utilizing RTK-GPS, achieving a mean error of 0.8 cm in 

centering the close-to-crop zone. Van Evert et al. (2010) 

introduced a pioneering robot for organic farming, leveraging 

centimeter-precision GPS for autonomous navigation in 

pastures. The system achieved a remarkable 93% success rate in 

detecting broad-leaved dock weeds during on-farm field tests, 

and 73% of weed removals were within 

0.1 meters of the taproot, thanks to GPS-guided precision. 

Mattivi et al. (2021) [66] employ low-cost UASs and open- 

source software to map weed distribution, significantly reducing 

herbicide treatments to just 3.47% of the field. This approach 

offers a cost-effective, sustainable solution for weed 

management in small to medium-sized farms within the 

framework of Agriculture 4.0. Samseemoung et al. (2012) [94] 

utilized low altitude remote sensing (LARS) images from crane-

mounted and helicopter-mounted platforms to monitor crop 

growth and weed infestation in a soybean field. Crane-mounted 

platforms provided better image quality at altitudes below 10 

meters, making them cost- effective for low altitude 

applications. They found that NDVI values at 28 days after 

germination (DAG) had a strong correlation with image capture 

altitudes, with R-squared values of 0.75 for crane-mounted and 

0.79 for helicopter- mounted systems. Additionally, the study 

showed high R-squared values (>0.75) when correlating 

chlorophyll content with indices from these images at different 

stages of crop growth. Sun et al. (2010) [107] achieved impressive 

numerical results, with a mean error of just 2 cm between 

predicted and surveyed plant locations, and 95% of predictions 

within 5.1 cm of actual locations. This underscores the 

significance of GPS technology in accurately mapping 

transplanted row crops, facilitating precision tasks like intra-row 

weed control and enhancing agricultural efficiency. 

 

Automated intra-row weed control with gps and machine 

vision 

Bak and Jakobsen (2004) [7] introduced an autonomous vehicle 

with improved field maneuverability based on four-wheel 

steering (4WS) and a distributed control system. The 4WS 

concept enhanced path tracking, maintaining a fixed orientation 

relative to the path, with a standard deviation of 1.0 for moderate 

turns at low speeds. However, the error increased to 7.9-10.7 in 

sharp turns at higher speeds. Nørremark et al. (2008) [76-77] 

developed an autonomous intra-row weed control system using 

RTK-GPS navigation. Their field tests demonstrated effective 

weed control without collisions, even at speeds of up to 0.52 

m/s. The system maintained transverse position accuracy within 

±16 mm at 0.31 m/s and ±22 mm at 0.52 m/s, with minimal tine 

intrusion into the uncultivated zone (max. 9 mm out of 1224 

observations). Ahmed et al. (2011) [3] introduced an automated 
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machine vision system using local binary pattern (LBP) for 

distinguishing between broadleaf and grass weeds in digital 

images. Their method, utilizing template matching and support 

vector machine classification, achieved high accuracy when 

classifying 200 field images, with 100 samples from each 

category. Ahmed et al. (2014) [4] introduced a texture-based 

weed classification method with LBP, LTP, and LDP operators. 

In experiments with 400 field images, the approach 

outperformed existing methods, providing efficient classification 

of broadleaf and grass weeds. Lease et al. (2020) [56] developed a 

high-precision weed classification model for autonomous field 

robots, achieving a classification accuracy of 87.9%. This 

innovative approach, based on rotation-invariant uniform local 

binary pattern (LBP) features and ensemble optimization with 

CMA-ES, enhances weed management in early crop growth 

stages, increasing agricultural efficiency and reducing resource 

competition. 

In the study by Berge et al. (2012) [10], the authors highlight the 

potential for herbicide savings through patch spraying (PS) in 

arable fields. They introduced Weedcer, a machine vision 

algorithm, to estimate relative weed cover (RWC) and relative 

may weed cover (RMC) based on high-resolution images. Field 

trials demonstrated that mean RWC and RMC per management 

unit (12.0 × 12.5-m) were generally adequate. Bengochea-

Guevara et al. (2016) [9] focused on developing a small 

autonomous field inspection vehicle for precision agriculture. 

The system integrated a camera with a GPS receiver to enable 

efficient and low-impact scouting of crop fields. The GPS 

played a crucial role in route planning, ensuring the robot could 

cover the entire field without damaging crops. Kanagasingham 

et al. (2019) [45] aimed to create an autonomous weeding robot 

for rice fields, integrating GNSS, compass, and machine vision. 

Their system achieved an average deviation from the ideal path 

of 45.9 mm, with heading compensation accuracy of less than 

2.5°. Wang et al. (2019) [122] employed GPS and machine vision 

for weed recognition, achieving precise weed removal and 

improved grapevine health. Lopez et al. (2020) [151] applied GPS 

and machine vision to target weeds, leading to a remarkable 

increase in crop yield and quality. Chang et al. (2012) [18] 

developed three algorithms for spot- specific agrochemical 

application in wild blueberry fields using co-occurrence matrix-

based textural features. Forty- four features were extracted from 

NTSC luminance (L), hue, saturation, and intensity (HSI) 

images. The DF_ALL model achieved 98.1% overall 

classification accuracy in 83 ms. For practicality, the 

DF_HSISD, DF_SISD, and HSILD algorithms are preferred, 

with overall accuracies of 94.9%, 92.7%, and 91.4%, and 

processing times of 55, 27, and 29 ms, respectively. Zhou et al. 

(2021) [137] developed a visual navigation system for outdoor 

orchards, achieving high accuracy with path extraction accuracy 

between 90.36% and 96.81%. The program executed within 0.55 

seconds under various sunlight conditions, offering real-time 

capabilities. Their method outperformed traditional Hough 

transforms, offering an effective approach for UGV navigation 

in orchards with minimal lateral errors (maximum 0.118 

meters). Nikolić et al. (2021b) [73] integrated site-specific and 

time-specific weed control strategies using a weed emergence 

prediction model. They employed a UAV for weed detection 

with an orthophoto resolution of 3 cm and used artificial neural 

network (ANN) and the visible atmospherically resistant index 

(VARI) for classification. Results showed high overall accuracy 

(98.6% for ANN and 98.1% for VARI) with significant 

reductions in the area to be sprayed, ranging from 65.29% to 

93.35% for VARI and 42.43% to 87.82% for ANN. 

Non-image sensor systems 

Intra-row weed control utilizes various methods and 

mechanisms, including weeding harrows, torsion weeders, rotary 

hoes, finger weeders, and vertical brush hoes (Mohler, 2001; 

Bond and Grundy, 2001; Upadhyaya and Blackshaw, 2007; van 

der Weide et al., 2008) [67, 152-154]. While these mechanical 

approaches are commonly employed, only a limited number of 

studies have explored the development of selective mechanical 

methods. Non-image sensor systems have become essential tools 

in the field of intra-row weeding, providing innovative solutions 

for precise and efficient weed management. These systems 

utilize various technologies, including UV-induced fluorescence, 

laser- based optical sensors, phototransistors, ultrasonic plant 

detection, and mechatronic mechanisms. Notably, Huzaifah et 

al. (2021) [155] employed UV-induced fluorescence alongside 

unmanned aerial vehicles (UAVs) for large-scale weed 

monitoring in maize fields. Their work signifies a significant 

advancement in precision agriculture. In a different context, 

Korresa et al. (2019) [156] explored a shift in weed science 

towards integrated management strategies, including "many little 

hammers" and technology-driven solutions, to combat herbicide 

resistance and enhance weed control in modern agriculture. For 

organic farming practices, Monteiro and Santos (2022) [71] 

introduced phototransistor-equipped weeding machinery, 

offering selective weed control without chemical herbicides. In 

variable terrains, Khan et al. (2020) [157] introduced the CED-

Net, a compact cascaded encoder-decoder network for precise 

weed and crop detection in farmland via semantic segmentation. 

CED-Net's efficiency with fewer parameters results in shorter 

training and inference times, and it outperforms or matches other 

state-of-the-art networks across multiple evaluation metrics, 

while requiring only 1/3 to 1/5 fewer parameters than 

comparable models like U-Net and SegNet. Lastly, Coleman et 

al. (2022) [22] integrated mechatronic systems with AI-driven 

algorithms, leading to more effective and environmentally 

friendly herbicide applications in maize fields. These 

developments collectively underscore the dynamic and evolving 

landscape of non-image sensor systems for intra-row weeding. 

 

UV-induced fluorescence for corn-weed discrimination 

Keränen et al. (2003) [48] further extended the UV-induced 

fluorescence technique, achieving a classification accuracy of 

93% in distinguishing between crop plants and various weed 

species, significantly reducing manual weeding efforts. 

Longchamps et al. (2010) [60] explored UV-induced fluorescence 

for discriminating between corn and various weed species. Their 

method, involving principal component analysis and linear 

discriminant analysis, achieved a success rate of 91.8%, 

demonstrating effective weed discrimination. Tyystjärvi et al. 

(2010) [115] explored the use of chlorophyll fluorescence 

fingerprinting for identifying maize and barley amidst six weed 

species in outdoor pot-grown plants. Their measurements, taken 

under variable natural conditions, showed promising results. A 

neural network classifier, utilizing 17 features from each 

fluorescence induction curve, correctly classified 86.7% to 

96.1% of the curves as either crop (maize or barley) or weed. 

For individual species classification, success rates ranged from 

50.2% to 80.8%. 

 

Laser-based optical sensor for precision depth measurement 

Van der Linden et al. (2008) introduced a laser-based optical 

sensor known for its remarkable precision in depth 

measurements. This sensor is now poised to revolutionize weed 

management, offering depth measurements accurate to at least 1 
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mm and an average measurement speed of 35 ms. Marx et al. 

(2012) [65] explored environmentally and energetically 

sustainable weed control methods, focusing on CO2 laser 

technology.  

They assessed the impact of laser radiation (10,600 nm) with 

varying spot diameters, positions, and intensities on two weed 

species at different growth stages. The study resulted in the 

development and validation of weed-specific laser damage 

models, pinpointing the probabilities of successful laser 

application (psuccess = 0.95). Paap (2014) [80] have further 

improved this technology by enhancing real-time data 

processing capabilities, reducing measurement error to just 0.5 

mm. Li et al. (2017) [57] addressed the issue of imprecise weed 

control practices due to a lack of weed identification and 

positioning equipment. They presented a spectral sensor 

designed for accurate weed identification, utilizing characteristic 

wavelengths (595, 710, 755, and 950 nm) selected based on 

weed investigations in winter rape fields. The sensor, featuring 

active LED light sources and a well-structured optical system, 

was successfully calibrated and verified, achieving 

determination coefficients ranging from 0.799 to 0.892. In actual 

weed identification experiments, the sensor demonstrated a 

notable average recognition rate of 90.7%. 

 

Phototransistor-based maize crop weed control 

Shearer et al. (1991) [99] created and tested a selective applicator 

for post-emergence herbicides in row crops. Using NIR light and 

a phototransistor receiver to sense weed competition, their 

system activated a solenoid valve at the spray nozzle. Initial 

findings showed a promising herbicide savings of 15% with no 

detrimental impact on weed control. Wang et al. (2000) [123] 

implemented phototransistor-based weed control in soybean 

cultivation, enhancing precision and achieving an 87% reduction 

in herbicide application. Cordill and Grift (2011) [23] introduced 

an innovative approach for weed control in maize crops, 

utilizing phototransistors to measure stalk diameters and 

selectively target weeds based on size relative to maize stalks. 

The laser beams for maize stalk detection, employing a lateral 

quasi- sinusoidal motion to avoid stalks, resulting in high weed 

removal rates and reduced herbicide use. This environmentally 

sustainable approach demonstrated effectiveness in various 

crops, particularly with a 94.5% weed removal rate and only 

0.8% crop damage in a Chinese cabbage test area. 

 

Co-robot system for intra-row weed control 

Pe ŕ ez-Rui ź et al. (2016) introduced a co-robot system for 

intra-row weed control in row crops, significantly reducing 

manual labor requirements for weeding compared to traditional 

methods. The co-robot uses a single odometry sensor for cost 

minimization and has been evaluated in an experimental trial, 

demonstrating its effectiveness. Ge et al. (2013) [34] introduced a 

mechanical arm design for a laser weeding robot aimed at 

replacing chemical weeding. The design incorporates a 

mechanical arm, a laser generator, and a control center with 

impressive precision, effectively dividing the laser's working 

area into a 10×10 grid. The analysis demonstrated the arm's 

small error in targeting the laser beam toward the weeds, along 

with an optimized execution area sequence resulting in a shorter 

arm moving path. Mechanical inter-row weed treatment offers 

several viable options, but the choices become more constrained 

for intra-row treatment. Particularly, for densely planted row 

crops like carrots, there is currently no method available for 

individual plant weed control, primarily due to the heightened 

risk of causing damage to the cultivated plants. 

Automated intra-row weed control with ultrasonic plant 

detection 

Saber et al. (2015) [92] introduced an automated intra-row weed 

control system with an ultrasonic plant detection system. This 

system demonstrated a strong correlation (R2 = 0.94) between 

sensor-estimated and manual height measurements of crop 

plants, achieving varying weed control efficacy for different 

species. Reiser et al. (2017) [90] investigated the use of a low-

cost sonar sensor for autonomous selective spraying of 

individual plants, aiming to reduce costs, resource consumption, 

and environmental impact in agriculture. Their autonomous 

robot accurately detected plant positions with 2.7 cm precision, 

reducing liquid usage by 72% compared to conventional 

spraying methods, thus showing potential for efficient and 

sustainable weed control. Jakasania et al. (2019) [44] evaluated an 

automated intra-row weeder equipped with an ultrasonic sensor, 

finding that a minimum plant-to-plant distance of 35 cm allowed 

operation without damaging crops, with the most effective 

forward speed identified as 1.0 km/h. W. Zhang et al. (2022) [133] 

have implemented an automated weeder with improved 

ultrasonic sensors in cotton fields, achieving more precise weed 

removal and a 70% reduction in manual labor requirements. 

 

Mechatronic system for precise electronic weed control 

Kurstjens and Perdok (2000) [52] investigated the effectiveness of 

intra-row mechanical weed control using soil cover. They 

examine how a plant's resistance to soil cover relates to its 

height, flexibility, and leaf shape. The research highlights the 

importance of soil conditions and implement settings in the 

relationship between weed control and crop covering, with 

limited burial depth primarily causing growth reduction rather 

than complete weed elimination. Pötsch and Griesebner (2007) 
[86] emphasized the importance of visualizing and addressing 

broad-leaved dock issues on a farm level. They introduced the 

Mini-WUZI, an Austrian innovation for mechanical dock 

control, capable of removing up to 400 dock plants per hour. 

Sujaritha et al. (2017) [105] developed a weed-detecting robotic 

model for sugarcane fields, achieving a 92.9% accuracy in 

detecting different weed species. Their approach, based on fuzzy 

real-time classification of leaf textures, holds promise for 

enhancing the efficiency and cost-effectiveness of weed 

management in Indian sugarcane cultivation. Kumar et al. 

(2020) [50] introduced a mechatronic system incorporating a four-

bar linkage mechanism and inductive sensing, guided by a fuzzy 

logic algorithm for precise electronic weed control. Preliminary 

field evaluations demonstrated effective weed control with 

minimal crop damage. 

 

Integration of machine learning 

The integration of machine learning for intra-row weeding 

represents a transformative development in modern agriculture, 

providing intelligent solutions for the precise identification and 

removal of weeds. By harnessing the power of advanced 

algorithms and sensor technologies, these systems offer the 

potential to greatly enhance the efficiency and effectiveness of 

weed control practices in farming. 

 

Advancements in Machine Learning for Weed Detection 

The integration of machine learning into intra-row weeding 

systems marks a significant shift in precision agriculture, 

offering advanced tools for precise weed identification and 

removal. Leveraging sophisticated algorithms and sensor 

technologies, these systems hold the potential to greatly improve 

weed control efficiency. Cho et al. (2002) [21] developed a 
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machine vision system that achieved a high recognition rate for 

radish and weeds. Bosilj et al. (2020) [12], further utilized the 

knowledge transfer in deep learning for crop-weed classification 

reduced retraining time by up to 80%, demonstrating its 

efficiency. Even with imperfectly annotated data, their approach 

achieved classification performance within 2% of networks 

trained with pixel-precision data, emphasizing its potential for 

cost-effective and precise agriculture. Sánchez and Gallandt 

(2020) [95] examined Franklin Robotics' Tertill, an autonomous 

weeding robot designed for home gardeners, and found it to be 

highly effective in controlling both broadleaf and grass weeds. 

The study emphasized the significance of its simple yet efficient 

design, which could provide insights for developing larger-scale 

farm weeding robots, highlighting key design criteria such as 

weed density, emergence patterns, working rate, and weeding 

mechanisms, regardless of the technology used for plant 

detection. 

With innovative machine learning s for weed detection, Tang et 

al. (2017) [108] applied feature engineering along with a Naïve 

Bayes classifier to recognize seedlings, resulting in an approach 

with a 90% accuracy in seedling detection. Liu and Bruch 

(2020) [59} utilized deep learning methods for seedling detection, 

achieving a high accuracy rate of 96% for precise weeding 

operations. Chen et al. (2021) [20] employed multi-feature fusion 

with K-means clustering and Support Vector Machine (SVM) to 

extract images and identify seedling positions, allowing for 

accurate weeding. Fawakherji et al. (2021) [28] further advanced 

this field by using a conditional Generative Adversarial Network 

(cGAN) for crop/weed segmentation, creating a multi-spectral 

dataset with Near-Infrared (NIR) information. 

Torres-Sospedra and Nebot (2014) [114] advanced the machine 

learning method by appling a noisy learning procedure to weed 

detection. This approach addressed challenges associated with 

varying weather and light conditions. The system demonstrated 

a significant improvement, with an average Precision Error Rate 

(PER) increase of approximately 5% compared to traditional 

training and other noisy ensembles. The most effective classifier 

with traditional training had an average PER of 32.4%, while the 

top-performing noisy classifier, trained with 

CVCv3Conserboost, achieved an average PER of 37.9%. In 

field tests involving 130 images from orange groves, the 

CVCv3Conserboost trained with noisy learning yielded an 

average performance of 95.0% in the first stage and 92.28% in 

the second stage. These results underscore the efficacy of this 

approach for weed detection and reducing chemical inputs. 

Furthermore, an improved Convolutional Neural Network 

(CNN) model for weed identification was proposed to address 

issues with the traditional Alex Net model (Sun et al. 2018) [106]. 

This enhanced model integrates dilated convolution, multi-scale 

fusion, and global pooling to optimize training time and achieve 

high precision. Through extensive parameter exploration, the 

optimal model demonstrated over 90% recognition accuracy 

after just four training epochs, with a memory requirement 

significantly lower than traditional models. The improved 

model’s recognition capability, enhanced by a wider network 

structure and global pooling, achieves an average test accuracy 

of 98.80%. This makes it a promising tool for intelligent weed 

and seedling identification devices. 

Su (2020) [104] discusses the importance of early weed control in 

crop production, highlighting the use of smart agriculture and 

advanced sensing technology like spectroscopy, color imaging, 

and hyperspectral imaging combined with machine learning 

algorithms (CNN, ANN, SVM) to accurately differentiate 

between crops and weeds. Olsen (2019) [79] addressed the need 

for robotic weed control in rangelands, introducing the 

DeepWeeds dataset of 17,509 labeled images from Australian 

rangelands. Using Inception-v3 and ResNet-50 models, they 

achieved high average classification accuracies of 95.1% and 

95.7%, respectively, demonstrating the potential for real-time 

robotic weed control implementation in the complex rangeland 

environment. Additionally, Shirzadifar (2018) [100] investigated 

visible and near-infrared spectroscopy's potential in 

discriminating three weed species in a greenhouse experiment. 

Using the Soft independent modeling of class analogy (SIMCA) 

method with second derivative preprocessing on NIR spectra, 

they achieved a remarkable 100% accuracy in classifying water-

hemp, kochia, and lamb's-quarters with 63 test samples. Specific 

wavelengths, like 640, 676, 730 nm in the red region, and 1078, 

1435, 1490, and 1615 nm in the NIR region, were identified as 

most effective for weed discrimination. Quan et al. (2022b) [87] 

highlighted the significance of mechanical weed control in 

organic agriculture. They developed an intelligent intra-row 

robotic weeding system based on deep learning, consisting of a 

mobile robot platform and weeding units. Through field trials, 

they identified the most effective weeding knife for different 

field conditions, achieving an impressive 85.91% weed removal 

rate and a minimal 1.17% crop injury rate. Zhang et al. (2023) 
[131, 134] introduce an improved Swin-Unet model for precise 

weed recognition in maize fields, achieving remarkable results 

with a mean intersection over union of 92.75% and a mean pixel 

accuracy of 95.57%. The model's high inference speed of 15.1 

FPS further enhances its significance for real-time, accurate crop 

and weed segmentation, aiding the development of intelligent 

agricultural equipment. More recently, Visentin et al. (2023) [120] 

combined remote human-controlled rover motion with a pre-

trained Deep Neural Network (DNN) for autonomous weed 

identification and removal. These advancements contribute to 

the development of intra-row weeders, enhancing their precision 

and efficiency, and paving the way for more sustainable weed 

management strategies in agriculture. 

 

Multi-Sensor Fusion: The Future of Weed Detection 

In the progress of comprehensive weed detection, Wang et al. 

(2019) [122] integrated multi-sensor data, including LiDAR and 

RGB images, with machine learning algorithms. Their system 

achieved a 96% accuracy in identifying weeds, highlighting the 

potential of multi-sensor fusion for precise and comprehensive 

weed management in diverse environmental conditions. 

 

Challenges And Future Prospects 

In agriculture, sensor-based systems that detect weeds have the 

potential to revolutionize farming practices. However, these 

systems face significant challenges. They must be able to 

distinguish between weeds and crops, navigate complex and 

unpredictable field environments, and integrate data from 

multiple sensors. To fully realize the potential of these 

techniques, the system needs to improve the accuracy and speed 

of detection algorithms using advanced machine learning 

techniques such as deep learning and reinforcement learning. 

We also need extensive and diverse datasets that include various 

weed and crop species, growth stages, and environmental 

conditions to develop the discrimination capabilities required to 

solve the weed-crop identification problem. 

In agriculture, sensor systems that detect weeds need to be 

adaptable and resilient. By combining data from cameras, 

LIDAR, hyperspectral sensors, and more, we can create a 

comprehensive vision to identify weeds among crops. This will 

help farmers manage weeds precisely and in a timely manner. It 
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is also important to process sensor data in real-time to enable 

quick analysis of high-resolution data. This will help optimize 

agricultural efficiency while conserving resources. In the future, 

we need to integrate sensor-based technologies with automated 

weeding systems to create autonomous robots that can 

accurately map and identify weed infestations. These robots will 

reduce reliance on human intervention and harmful herbicides, 

leading to a sustainable future where humanity and nature thrive 

together. 

 

Conclusion 
Sensor-based weed detection systems are emerging as cutting-

edge solutions in intra-row weeding practices. These systems 

leverage the prowess of vision-based cameras, the precision of 

GPS-based positioning, and the versatility of non-image sensors 

to open new avenues for accurate and targeted weed control. The 

seamless integration of machine learning algorithms empowers 

these sensor-driven solutions with data-driven insights, elevating 

weed detection capabilities to unprecedented levels of 

sophistication and precision. Despite the challenges, the search 

for a sustainable and resource-efficient agricultural future is 

fueled by confronting complexities related to robust weed- crop 

discrimination, mastering navigation through intricate field 

environments, and optimizing the fusion of multi- sensor data. 

The convergence of advanced technology and agricultural 

practices sets the stage for an empowered agricultural landscape, 

where each stride towards optimized weed management 

reverberates with the cadence of progress. Sowing the seeds of 

change in sensor-based weed detection systems holds the 

promise of a harvest teaming with prosperity - a future where 

precision agriculture and environmental sustainability unite in 

harmony. 
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