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Abstract 
In this study, we utilized AVIRIS-NG hyperspectral data captured during the Rabi season in February 2018 

in a region of Guntur District, Andhra Pradesh, where Maize and Sorghum crops are extensively cultivated. 

Despite having parallel crop calendars and spectral similarities, distinguishing between Maize and 

Sorghum crops during similar vegetative growth stages poses a challenge. The high spectral resolution of 

AVIRIS-NG data allows for precise identification of subtle changes in the objects under study. 

The key finding of our research is the identification of sensitive spectral bands within specific wavelength 

regions that facilitate the differentiation of these two visually similar crops. Our results indicate that the 

spectral range from 1553 nm to 1749 nm of AVIRIS-NG data provides optimal discrimination between 

Sorghum and Maize crops, irrespective of their growth stages. Notably, the wavelengths at 1649 nm and 

1654 nm emerge as particularly suitable for distinguishing between Maize and Sorghum crops, as indicated 

by statistical separability measures such as Wilks' Lambda and F-Value. At these wavelengths, we 

observed significant results with Wilks' Lambda values of 0.388 and 0.387, and F-Values of 39.29 and 

39.46, respectively, further supporting their efficacy in crop discrimination. 
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Introduction  

Hyperspectral data offers significant advantages over traditional multi-spectral data by providing 

detailed information across the electromagnetic spectrum. Hyperspectral sensors, which are 

passive sensors, capture hundreds of narrow bands simultaneously, organizing them into what is 

termed a hyperspectral data cube (Schweizer and Jose, 2001) [9]. This technology provides 

spectroscopic data across narrow, contiguous spectral bands spanning the visible, near-infrared, 

and short-wave infrared regions of the electromagnetic spectrum (Hong et al., 2002) [6]. The 

narrow and contiguous bands enable precise detection of absorption features, a capability not 

achievable with multi-spectral sensors, facilitating accurate vegetation identification and 

estimation of biochemical content. 

Goetz et al. (1985) [5] demonstrated in their study the ability to detect and quantify various earth 

resource materials using hyperspectral remote sensing data, whether collected from airborne or 

space-borne platforms. Furthermore, hyperspectral imagery has proven effective for quantitative 

classification and characterization of crops and vegetation properties (Richard Beck, 2003) [8]. 

Recent advancements in hyperspectral sensor technology, such as the Airborne Visible Infrared 

Imagine Spectrometer-Next Generation (AVIRIS-NG), have further enhanced capabilities. 

AVIRIS-NG is an airborne hyperspectral sensor that captures data in the wavelength range from 

380 nm to 2510 nm, boasting high spatial resolution (5m) and high spectral resolution (5 nm).  

Recent studies have underscored the utility of hyperspectral remote sensing for various 

applications beyond crop discrimination. Ben-Dor et al. (2002) [2] and Tiwari et al. (2015) [12] 

utilized hyperspectral images for mapping several soil properties, showcasing its effectiveness in 

soil characterization. Additionally, hyperspectral data has been instrumental in crop stage 

identification, as demonstrated by Senthilnath et al. (2011) [10], indicating its potential for crop 

monitoring and management.  
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Furthermore, Schweizer and Jose (2001) [9] highlighted the 

importance of hyperspectral sensors in capturing detailed 

spectral signatures, enabling accurate identification and 

classification of vegetation types. Hong et al. (2002) [6] 

emphasized the advantage of hyperspectral sensors in providing 

spectroscopic information across narrow contiguous bands, 

facilitating the detection of subtle variations in vegetation 

properties. 

Richard Beck (2003) [8] provided insights into the quantitative 

classification and identification of crops and vegetation 

characteristics using hyperspectral imagery, indicating its 

versatility in agricultural applications. These findings 

collectively underscore the potential of hyperspectral remote 

sensing technology for various enviro nmental monitoring and 

agricultural management tasks. 

Recent literature has continued to explore the applications and 

advancements of hyperspectral remote sensing. For instance, 

Yang et al. (2020) [16] investigated the use of hyperspectral data 

for monitoring crop water stress, demonstrating its efficacy in 

detecting subtle changes in plant physiological status. 

Additionally, Li et al. (2021) [17] explored the potential of 

hyperspectral imaging for assessing crop nitrogen status, 

highlighting its utility in precision agriculture practices. 

Moreover, advancements in machine learning algorithms have 

further enhanced the analysis of hyperspectral data. Hu et al. 

(2019) [18] developed a deep learning-based approach for crop 

classification using hyperspectral imagery, achieving high 

accuracy in distinguishing between different crop types. These 

recent studies highlight the continued relevance and importance 

of hyperspectral remote sensing in agricultural monitoring and 

management. 

Building upon this body of literature, our study focuses on 

leveraging the capabilities of AVIRIS-NG hyperspectral data to 

identify specific spectral bands capable of discriminating 

between Maize and Sorghum crops, despite their physiological 

similarities. By pinpointing these optimal wavelengths, we aim 

to contribute to the development of more effective remote 

sensing methodologies for agricultural monitoring and 

management. 

 

Study area 

The study area encompasses the villages of Chinnapalem, 

Vallabhapuram, Perakalapudi, and Emani within the Duggirala 

mandal of Guntur District, Andhra Pradesh, India. Geospatially, 

this region spans from 80° 36' 28.48" E, 16° 24' 21.68" N to 80° 

43' 28.36" E, 16° 19' 21.94" N. Maize and Sorghum are the 

predominant crops cultivated during the Rabi season in this 

fertile area, which is well-served by a canal command system for 

irrigation. The geographical distribution of the study area is 

depicted in Figure 1. 

 

 
 

Fig 1: Study Area showing part of Duggirala mandal, Guntur District, Andhra Pradesh 
 

Methodology 

1. Data Acquisition 

• AVIRIS-NG (Airborne Visible-Infrared Imagine 

Spectroscopy- Next Generation) data was obtained from the 

VEDAS portal (https://vedas.sac.gov.in/aviris), developed 

by the Space Application Centre, ISRO, Ahmedabad. This 

data is provided under the "Announcement of Opportunity" 

(AO) for scientific studies. 

• Level-2 (reflectance) AVIRIS-NG hyperspectral data 

processed by NASA was downloaded for the study from the 

VEDAS portal. 

2. Data Rectification 

• To address inaccuracies in ground location caused by 

topographic relief and geometric errors, IRS P6 LISS-IV 

(5.8m) ortho-rectified satellite data from March 28, 2018, 

was acquired from the NRSC Data Centre (NDC), NRSC-

ISRO. 

• Image-to-image rectification was performed using image 

processing software to rectify the AVIRIS-NG data strips. 

The rectified strips were then mosaiced to create a synoptic 

view of the study area. 
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3. Ground Truth Data Collection 

• Ground truth data, including the latitude, longitude, and 

crop growth stage of maize and sorghum crops, was 

collected during field visits conducted on February 25th and 

26th, 2018. 

• The study area predominantly featured maize and sorghum 

crops, with three main growth stages identified for both 

crops: vegetative growth, grain filling, and maturity. 

 

4. Spectral Signature Extraction 

• Spectral signatures of maize and sorghum crops were 

extracted using GPS location data, and a spectral library 

was compiled for all three growth stages of both crops. 

• Spectral signatures were plotted to identify the optimal 

wavelengths/bands for differentiating between maize and 

sorghum crops, regardless of growth stage. 

 

5. Statistical Discrimination Analysis 

• To strengthen the results, a statistical discrimination 

analysis was performed using Minitab Statistical Software. 

• Multivariate separability measures, including Wilks' 

Lambda and F-Value, were employed to analyze different 

wavelengths in the AVIRIS-NG spectral data of maize and 

sorghum crops. 

• Wilks' Lambda is interpreted as the proportion of variance 

in the results not explained by an effect. It is commonly 

used in multivariate analysis of variance (MANOVA) to test 

for differences between group means on a combination of 

dependent variables.  

 

     (1) 

 

where H is the matrix of squares and products of the fitted 

response and E is the corresponding matrix for the residuals.  

 

  (2) 

 

Calculate the intergroup cross product matrix H (the variations 

across groups): 

 

  (3) 

 

Calculate the residual matrix E (the variations within groups) 

 

Results 

AVIRIS-NG data (26th February 2018) is rectified using ortho-

rectified IRS P6 LISS-IV sensor data of 28th March 2018. Image 

to image rectification process is performed to geo-locate the 

AVIRIS-NG data concerning earth scenario. Five strips of the 

study area are rectified. After rectification, all the strips are 

mosaiced.  

The collected ground truth data is overlaid on rectified and 

mosaiced strips of AVIRIS-NG data (Fig-2). The GT data is 

collected on 25th and 26th February 2018. The study area is 

mostly covered with Maize and Sorghum crop. The three stages 

of both the crops are identified. For maize crop the stages 

identified in the field are; Vegetative growth, Tasseling stage 

and Maturity stage. For sorghum crop also three growth stages 

are identified, which are vegetative growth, grain filling and 

maturity stage. Majority of maize crop is in tasseling stage, and 

the sorghum crop is in grain filling stage. Other two stages 

(Vegetative growth and Maturity stage) are identified on 

marginal scale in the study area. Total 80 observations are 

collected from the study area. 

 

 
 

Fig 2: Distribution of ground truth data over on AVIRIS-NG data 
 

The spectral signatures of Maize crop are generated from 

AVIRIS-NG data using geo-locations collected during field 

observations. The spectral signature of three stages (vegetative 

growth, tasseling and maturity stage) are generated and saved as 

spectral library. The spectral signature of three stages with 

ground photos are shown in Fig-3. The same steps are followed 

to generate spectral signature of all three stages of sorghum crop 

and saved as spectral library. The spectral signature of three 

stages of sorghum crop with ground photos are shown in Fig-4. 
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Fig 3: Spectral signature of Maize crop (growth stage wise) 
 

 
 

Fig 4: Spectral signature of Sorghum crop (growth stage wise) 
 

During independent growth stages, Maize and Sorghum crops 

exhibit distinguishable spectral signatures within the 750 nm to 

1300 nm spectral range as captured by AVIRIS-NG data. 

However, when both crops are in similar growth stages 

simultaneously, identifying or separating their signatures within 

this range becomes challenging. Consequently, it has been noted 

that distinguishing between Maize and Sorghum crops is 

feasible in the spectral range of 1500 nm to 1750 nm, regardless 

of their growth stages (see Fig-5). 
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Fig 5: Spectral signature of Maize and Sorghum crop, differentiated in the range of 1500 nm to 1750 nm 

 

Six samples were extracted from various locations across the 

spectrum to analyze the reflectance values of Sorghum and 

Maize crops, showcasing the mixing, partial mixing, and non-

mixing wavelength bands (see Fig-6). To determine the highest 

separability between the crops, Wilks' Lambda and F-values 

were estimated at different wavelengths. Stratified random 

wavelength locations covering the entire spectrum of AVIRIS-

NG, including Visible, Near-Infrared (NIR), and Shortwave 

Infrared (SWIR) wavelengths, were identified for analysis. 

 

 
 

Fig 6: Samples from spectrum showing the mixing of Maize and Sorghum crops 
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Results revealed Wilks' Lambda values of 0.45, 0.65, 0.82, 0.59, 

0.39, and 0.59 at wavelengths 542 nm, 602 nm, 857 nm, 1228 

nm, 1654 nm, and 2215 nm, respectively. Corresponding F-

Values were observed at the same wavelengths as 30.64, 13.38, 

5.56, 17.74, 39.46, and 17.52, respectively. Notably, the lowest 

Wilks' Lambda value and the highest F-Value were observed at 

the wavelength of 1654 nm (see Fig-7). 

These findings suggest that the wavelength of 1654 nm exhibits 

the greatest discriminative power between Sorghum and Maize 

crops, as indicated by the lowest Wilks' Lambda value and the 

highest F-Value. This wavelength demonstrates significant 

potential for accurate differentiation between the two crops, 

contributing valuable insights for further spectral analysis and 

crop discrimination efforts.  

The same criteria were applied to 45 bands within the 

wavelength range of 1553 nm to 1749 nm, based on the visual 

separation observed in the reflectance of maize and sorghum 

crops, as indicated in Figure 5. Within this wavelength region, 

Wilks' Lambda ranged from 0.39 to 0.82, and F-values ranged 

from 5.56 to 39.46, as depicted in Figure 7. 

Among the wavelengths spanning from 1553 nm to 1749 nm, it 

was observed that at 1649 nm and 1654 nm, there were 

significant differences in Wilks' Lambda and F-values. These 

wavelengths were identified as the most suitable for separating 

maize and sorghum crops, as evidenced by the statistical 

separability measures. Wilks' Lambda showed significant results 

of 0.388 and 0.387, while F-Values were 39.29 and 39.46 at 

1649 nm and 1654 nm, respectively. 

These findings highlight the efficacy of 1649 nm and 1654 nm 

wavelengths in effectively distinguishing between maize and 

sorghum crops, underscoring their importance in spectral 

analysis and crop discrimination efforts. 

 

 
 

Fig 7: Wilks' lamda and F-Value at 542 nm, 602 nm, 857 nm, 1228 nm, 1654 nm and 2215 nm 
 

https://www.agronomyjournals.com/


International Journal of Research in Agronomy  https://www.agronomyjournals.com  

~ 193 ~ 

 
 

Fig 7: Low Wilks' lamda value and high F-value at 1649 nm and 1654 nm among 1553 nm to1749 nm wavelengths. 
 

Discussion  

In this study, AVIRIS-NG reflectance data at Level-2 with 5m 

spatial resolution underwent preprocessing by NASA to correct 

fundamental geometric and radiometric errors resulting from 

vehicle motion during collection. Additional corrections were 

necessary to address errors due to atmospheric effects such as 

absorption and scattering, as well as geometric errors related to 

the topography of the study area. Co-registration of 

hyperspectral images, as suggested by Brook and Ben-Dor 

(2011) [3], was deemed significant to ensure accurate spectral 

analysis. Image rectification with precise ground location 

matching was conducted using a reference image from IRS P6 

LISS-IV, with a similar resolution. 

Observations during the study revealed the ability to identify 

crop growth stages using AVIRIS-NG data. Previous studies, 

such as Senthilnath et al. (2013) [11], have also successfully 

classified crop stages using hyperspectral data. Spectral 

signatures within the range of 700 nm to 1300 nm easily 

distinguish growth stages, leading to mixing of growth stage 

signatures of both maize and sorghum crops within this range. 

Upon plotting the spectra of all growth stages for both crops, it 

was noted that maize and sorghum crop spectral signatures 

become distinct in the spectral range of 1500 nm to 1750 nm, 

falling under the Short Wave Infrared (SWIR) range. This range 

is particularly sensitive to leaf water content (Wang et al., 2008) 
[13], with reflectance affected by leaf temperature and water 

content. Additionally, studies by Baret et al. (1993) [1] and 

Lobell and Asner (2002) [7] have highlighted the impact of 

mineral, organic matter-related absorptions, and soil moisture on 

reflectance in the SWIR spectral domain, influencing vegetation 

water indices. 

To support these findings, statistical discrimination analysis was 

conducted using Wilks' Lambda, which inversely measures 

discrimination between samples. Low Wilks' Lambda values, 

near zero, indicate high discrimination between samples, as 

observed in the study. This criterion, noted by Chatfield and 

Collins (1986) [19], aided in identifying the most suitable bands 

for discriminating between maize and sorghum crops. 

Additionally, coupling Wilks' Lambda with F-values 

strengthened the criteria for band selection. Lower Wilks' 

Lambda values coupled with high F-values enhanced the 

identification of the most suitable bands, a criterion also utilized 

by Manjunath et al. (2011) in discriminating spectrally close 

crops using ground-based hyperspectral data.  

 

Conclusion 

The identification of crops that are phenologically similar to 

each other poses a significant challenge for traditional multi-

spectral sensor data. However, our study demonstrates that 

AVIRIS-NG hyperspectral data has the capability to distinguish 

between Sorghum and Maize crops, even when they are at 

similar growth stages. Specifically, our analysis reveals that 

within the spectral range of 1553 nm to 1749 nm, both crops can 

be effectively differentiated. Furthermore, the wavelengths of 

1649 nm and 1654 nm emerge as the most suitable for 

distinguishing between Maize and Sorghum crops. This 

conclusion is supported by significant results obtained from 

statistical separability measures, including Wilks' Lambda and 

F-Value, at these specific wavelengths. 

The ability to differentiate between these crops using AVIRIS-

NG data, particularly at the identified wavelengths, holds great 

potential for practical applications such as crop identification 

and yield estimation. By leveraging hyperspectral technology, 

agricultural monitoring and management efforts can be 
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significantly enhanced, enabling more accurate assessments of 

crop health, productivity, and overall agricultural performance. 

Thus, our findings underscore the importance of hyperspectral 

remote sensing in addressing the challenges associated with crop 

identification and management, ultimately contributing to 

improved agricultural practices and food security. 
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