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Abstract 
Tea producers are in demand of new high yielding cultivars, which produce high quality tea liquors. To 
breed for these phenotypic traits is challenging due to their polygenic disposition and influence by 
environment. Two C. sinensis populations, namely Comm cultivars from open pollinated field selections, 
and NComm cultivars from the reciprocal cross of two parents were used. These cultivars were employed 
to identify the metabolites responsible for distinguishing Comm cultivars, with high yield, high quality and 
DT from NComm cultivars that did not show these traits. PCA and PLS-DA models were constructed on 
UPLC/DAD data, which showed clear separation between the Comm and NComm cultivars. CHAID 
decision trees constructed aimed to classify the 303 genotypes as either Comm or NComm cultivars using 
subset of compounds. Breeders can predict the quality of new selections from mature seedling fields by 
employing CHAID decision trees, or the CAF/EC ratio, as predictors. 
 
Keywords: Camellia sinensis; catechin; metabolomics; theaflavin 

 
Introduction  
Tea (Camellia sinensis) is one of the most widely consumed beverages across the world (Hicks, 
2009) [14]. The crop which originated in China is grown certain regions of Asia (India, China, Sri 
Lanka and Japan), Africa (Kenya, Uganda, and Malawi), and Latin America (Argentina). The 
tea beverage is prepared by brewing or boiling the dried tea leaves in water. Kenya is the 
world’s third largest producer of tea after India and China though it is the leading exporter of 
black Crush Tear and Curl (CTC) tea (Elbehri et al., 2015) [8]. The tea industry therefore 
contributes significantly to Kenya’s economy by contributing over 26% and 4% of total foreign 
exchange earnings and Gross Domestic Product (GDP), respectively (Kenya National Bureau of 
Statistics, 2012) [23]. Tea producers are in demand of new cultivars, which are high yielding, 
drought tolerant, and produce high quality tea liquors. Tea gets its distinctive astringent and 
somewhat bitter taste from caffeine (Horie et al., 1997) [17], even though several other 
metabolites such as the catechins (catechin (CAT), epicatechin (EC), epicatechin gallate (ECg), 
epigallocatechin (EGC), and epigallocatechin gallate (EGCg)) and all other polyphenols, 
carbohydrates, and amino acids are influential in its overall taste and aroma (Adkins et al., 2007; 
Nyarukowa et al., 2016) [1]. The amino acid theanine, which makes up approximately two-thirds 
of a tea leaf’s total free amino acids content, is with other less abundant amino acids, responsible 
for the sweet and brothy “umami” taste of green tea (Vuong et al., 2011). However, it is 
noteworthy to indicate that the metabolite composition, which influences tea quality, varies 
between green and black tea. Unlike green tea, whose quality depends on amino acids, 
particularly theanine, catechins and caffeine, the quality of black tea depends on theaflavins 
(theaflavin (TF1), theaflavin-3-gallate (TF2), theaflavin-3’-gallate (TF3), and theaflavin-3,3’-
digallate (T4)), thearubigins, catechins and caffeine (Le Gall et al., 2004) [26]. The four TFs are 
formed during black tea processing by oxidation of green tea catechins in presence of 
polyphenol oxidase as shown: (1) EC + EGC = TF1; (2) EC + EGCg = TF2; (3) ECg + EGC = 
TF3; (4) ECg + EGCg = TF4. This therefore indicates that the green leaf catechins are important 
and thus tea cultivars rich in catechins are likely to produce higher quality teas (Takemoto and 
Takemoto, 2018) [38]. 
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The employment of seeds obtained from Assam, India, saw the 

beginning of improvements in Kenya’s tea breeding 

programmes, which brought about the establishment of the 

initial two polyclonal seed baries at Kangaita and Timbilil 

(Anon, 1990) [2] following the 1980 formation of Tea Research 

Foundation of Kenya (TRFK), now known as the Tea Research 

Institute (TRI). Other large tea producing companies such as 

James Finlay (Kenya) and George Williamson (Kenya) followed 

and instituted programmes that saw the establishment of their 

own improved seed baries.  

Traditionally tea breeding, involved selecting of vigorous 

growing plants, uprooting them from the wild forest, or seedling 

tea fields and planting in a separate seed garden, called a seed 

barie, away from slow growing plants. The seeds collected from 

the seed baries are normally slightly better than seeds collected 

from seedling gardens with vigorous and slow growing plants. 

Early studies (Green, 1971) [11] failed to establish reliable 

correlations between growth and yield properties of mother 

bushes, and their resultant F1 progeny clones. In the 1950’s 

vegetative propagation from stem cuttings became possible for 

tea (Banerjee, 1992) [3]. Subsequent studies (Nyirenda, 1991) [31] 

have shown adequately strong correlations between the mother 

bush area, shoot number, and yield of their vegetative 

propagated clones. A strong positive correlation has also been 

observed (Shanmugarajah et al., 1991) [37] between clones and 

their mother bush height, leaf area, stem girth, and stem dry 

weight in matured seedling fields. All mature seedling tea fields 

are pruned on a four or five year cycle. The tea breeder normally 

selects only 100 bushes every year that recover quickly from the 

prune and meet several criteria e.g. good bush shape, leaf pose, 

DT and termite resistance, among other traits. These elite mother 

bushes are believed to be high yielders. Stem cuttings are used 

to propagate each of the 100 mother bushes into 15-bush 

observation plots, called clones. The limit of 100 yearly 

selections is due to the high cost establishing and of maintaining 

the 15-bush plots. The yield of each clone is measured after five 

years. Black tea is produced from each of the ten highest 

yielding clones selected each year, and the tea quality is scored 

by expert tea tasters. Normally, only one or two of the 100 

selected mother bushes produce clones with high yield and good 

taste. The clones with high yield and good quality are advanced 

to further field trials and if suitable, are released to the 

commercial growers. The success rate, from the 100 mother 

bushes until release to commercial growers is about 1%. 

Initially, mass selection was employed as tea improvement 

method, proving a success, to an extent. It however, failed to 

generate a robust type of tea, possessing satisfactory cup 

attributes and plant morphological consistency. The developed 

progenies had not been specifically chosen for their high quality 

and yielding traits, and as such the resultant seedlings were a 

mixture of miscellaneous and mediocre genotypes (Wachira, 

2001) [41]. Plant breeders have been finding it daunting to 

develop high yielding tea clones from seedling mother bushes. 

Our aim is to develop new methods with molecular markers, for 

selecting mother bushes to increase this success rate. 

The effects of global warming, fluctuations in weather patterns 

are being observed in Kenya, particularly the increased 

temperatures, leading to prolonged drought spells in the tea 

growing regions (Elbehri et al., 2015) [8]. Due to these changes 

in the climate, tea production is likely to be drastically reduced 

because of a shortage of suitable lands at lower altitudes and the 

result of this is that farmers have to seek lands at higher, dryer 

altitudes most of which are occupied by conservation forests. 

Moreover, evidence has been furnished, over the course of the 

past 30 years, that temperatures in tea growing regions have 

been increasing at a rate of 0.2°C per decade (Cheserek et al., 

2015) [7]. In addition to this, stresses concomitant with 

temperature fluctuations in tea producing areas such as Kericho, 

Kisii, and Nandi, have added to the tea production limitations in 

Kenya. Tea production is also reliant on well distributed rains; a 

rise or drop in temperatures as a result of the fluctuations in the 

rainfall patterns, adversely influences the quantity and quality of 

tea (Chang, 2015) [5]. The cultivation of tea has also been 

extended to previously deemed marginal and unsuitable tea 

growing areas further exacerbating tea quality and tolerance to 

environmental stresses (Owuor et al., 2010) [33].  

The insufficient understanding of the genetics involved when 

breeding for yield and quality is a problem not only for breeders, 

but for the tea industry as a whole. Currently, the practice of 

making field selections based on traits such as recovery from 

prune and leaf pose have a success rate of about 1% when it 

comes to identifying elite mother bushes that become 

commercial successes (Chen et al., 2013) [6]. The tea industry is 

in need of new methods for field selections to increase this 

success rate. Metabolomics is one approach than can be broadly 

applied in screening of elite tea lines, evaluation of quality and 

physiological changes in tea (Jiang et al., 2019). The key to 

metabolomics research is the employment of analytic tools to 

comprehensively analyse metabolites. Holistic metabolic 

profiles have been obtained from intricate animal and plant 

samples, using high resolution, information-rich powerful 

spectrometric techniques. Liquid chromatography coupled with 

mass spectrometry (LC-MS), due to its advancements within the 

field, is a central technique in metabolomics research (Khan and 

Mukhtar, 2007) [24], with it being used predominantly in 

differential profiling and biomarker identification (Theodoridis 

et al., 2012) [39]. Metabolomics analyses can either employ a 

targeted or an untargeted approach. The objective of the targeted 

approach is the identification and quantification of specific 

metabolites for which pure standards exist to confirm the 

identities of the metabolites detected in the samples i.e. the 

chemical properties of the metabolites under investigation are 

known. Targeted metabolomics is customarily hypothesis 

driven, while untargeted metabolomics leads to hypothesis 

generation, which involves assessing all the metabolites in a 

biological system (Zhou et al., 2012) [48]. LC-MS has been 

established as predominant favourite targeted profiling 

technique especially for plant metabolomics studies (Zhou et al., 

2012) [48].  

In metabolomics, uni- and multivariate statistical techniques are 

used in combination to help pinpoint variation (e.g. between 

classes of interest) in datasets that are often large and high-

dimensional. The univariate statistical methods used here was 

the independent samples t-test and Cohen’s d effect size. Three 

multivariate methods were included, principal component 

analysis (PCA); partial least squares discriminant analysis (PLS-

DA) and Chi-square Automatic Interaction Detection (CHAID) 

decision trees. PCA and PLS-DA are both multivariate methods 

that project data onto lower dimensional subspaces by 

summarising variation, making it possible to graphically present 

large datasets. PCA models are not provided with group or class 

membership information, while PLS-DA models, though 

predictive, are complex and often do not generalise well. During 

the preceding decade, CHAID decision trees gained popularity, 

as is documented by the trend in peer-reviewed science journals 

(Miller et al., 2014) [25]. This increase in popularity is attributed 

to the realisation by researchers of the benefits associated with 

making use of advanced statistical software packages to perform 

http://www.agronomyjournals.com/


International Journal of Research in Agronomy  http://www.agronomyjournals.com  

~ 11 ~ 

comprehensive analyses. Decision trees combine inductive 

reasoning and supervised learning capable of being used for 

prediction, regression, estimation, data description, visualisation 

and dimensionality reduction (Milanović, 2016) [27]. CHAID 

decision trees were constructed to determine the minimum 

combination of metabolites that can serve as predictors for 

separating the Comm cultivars from the NComm cultivars. 

These CHAID decision trees offer a non-algebraic, data 

partitioning option, becoming a popular alternative to logistic 

regression, and discriminant analysis in the past two decades 

(Wilkinson, 1992). Finally, violin plots, that combine box plots 

with kernel density plots, were used to show original data for 

key differentiating metabolites.  

The objective of this study was to make use of UPLC/DAD 

generated data to develop CHAID decision trees, to classify the 

303 genotypes as either Comm or NComm cultivars. This may 

then serve in predicting whether a new field selection is likely to 

become commercialised due to its similarities with the Comm 

cultivars. This is the first study to use targeted metabolomics to 

obtain markers which predict commercial potential in C. 

sinensis. 

  

2. Materials and Methods 

2.1. Plant material, and UPLC/DAD sample preparation and 

analysis 

The plant material collection, processing and analyses were 

performed as described in Nyarukowa et al., (2020). Sixty tea 

clones used by commercial tea growers near the TRI, were 

identified and designated the Comm cultivars. A further 247 

cultivars from the populations TRFK St.504 and TRFK St. 524 

were used and designated the NComm cultivars. Fresh shoots 

comprising two leaves and a bud were harvested from the 303 

cultivars in June 2018. The fresh shoots were placed in 

appropriately labelled zip-lock plastic bags, and placed on ice 

blocks to keep cool; these were processed at the TRI miniature 

tea factory. Five hundred grams of tea leaves were used to make 

black tea according to Koech et al., (2018) [30]. Briefly, the 

leaves were withered to a %relative water content of 50–65% 

over an 18 hour period before being passed through crush, tear 

and curl (CTC) rollers till maceration was achieved. Following 

maceration, the resultant dhool was aerated at 22–26°C for 

90 min, and at 100% humidity for enzymatic oxidation 

(fermentation) to occur. A TeaCraft Ltd bench top fluid-bed 

drier system was employed for firing the tea, starting at 120°C 

for 25 min, and subsequently lowered to 100°C for 10 min. The 

black tea samples were then ground using a coffee grinder, 

placed in sealed in zip-lock plastic bags and stored in 4°C fridge 

until UPLC analysis. 

 

2.2. Extraction of catechins, caffeine, and theaflavins 

Samples were collected, and metabolites extracted from the tea 

samples according to ISO14502-2 (2005). Briefly, amounts of 

0.200 ± 0.001 g of green or black tea samples were weighed out 

using a Mettler Toledo model MS204TS/00 analytical balance 

(Microsep, South Africa) and transferred to 20 ml thick walled 

glass test tubes, following which five ml volumes of 70:30 

MeOH (Merck, South Africa): water (v/v) at 70°C was added to 

each, stoppered and vortex mixed for ± five seconds before 

being placed into a 70°C set water bath. After five minutes, the 

extraction mixtures were removed from the water bath and 

vortex mixed before being returned for an additional five 

minutes. The mixtures were vortex mixed a second time, cooled 

and then centrifuged at 3,500 g using a Thermo Scientific 

Heraeus Labofuge (Sepsci, South Africa) Model 300 centrifuge 

for ten minutes. The resultant supernatants were decanted into 

respective ten ml volumetric flasks and the extraction step 

repeated once more. The two extracts were then pooled, and the 

volume adjusted to ten ml with cold 70:30 MeOH: water (v/v). 

A one ml volume of each extract was diluted to five ml using 

stabilising solution, which constituted 10% (v/v) acetonitrile in 

water, 500 µg/ml EDTA and 10 mg/ml ascorbic acid, all 

purchased from Sigma-Aldrich, South Africa. About 100 µl of 

each resultant dilution was then filtered through a 0.2 μm 

Minisart®RC4 syringe filter (Sartorius, South Africa) with 

hydrophilic, solvent-resistant regenerated cellulose membranes 

and the samples were then analysed using UPLC/DAD. 

 

2.3. UPLC/DAD analyses 

The UPLC/DAD analyses were accomplished on a Waters 

ACQUITY UPLC H-Class system (Waters, Milford, MA, USA) 

equipped with a binary solvent delivery pump, an autosampler, 

and a photodiode array detector and controlled by the Empower-

3 software. Separation was attained on a Waters Acquity HSS 

T3 column (1.8 μm, 2.1 × 150 mm), at 40oC, with the mobile 

phase constituted of solvent A, which was 2% acetic acid and 

9% acetonitrile in deionised double distilled water, at a pH of 

2.8, and solvent B comprised of 2% acetic acid and 80% of 

acetonitrile in deionised double distilled water. The mobile 

phases were filtered through a 0.2 μm cellulose acetate 

membrane filter and degassed using a Neuberger Laboport 

(Labotech, South Africa) vacuum pump. A gradient elution 

method was employed: 0 min (5% B), 0-21 min (5-20% B), 21-

30 min (20-25% B), 30-32 min (25-100% B), 32-39 min (100-

100% B), 39-40 min (100-5% B), and 40-45 min (5-5% B). A 

sample injection volume of five μl and a 0.2 ml/min flow-rate 

were employed for analyses. Catechins (CAT, EC, ECg, EGC, 

and EGCg), caffeine and gallic acid (Sigma-Aldrich, South 

Africa) were used as standards. Tryptamine, sulfanilamide and 

mycophenolic acid (Sigma-Aldrich, South Africa) were the QC 

internal standards; identification and quantification were at 278 

nm, with the individual catechins and caffeine in the samples 

being identified on retention times of the standards, and UV/vis 

spectra matches. 

 

2.4. Data pre-processing and statistical analysis 

The data pre-processing and statistical analyses were performed 

as described in Nyarukowa et al., (2020). Briefly, variables with 

over 50% missing values, in both classes, were eliminated. Since 

missing values were deemed below the quantification threshold 

of the instrument, the remaining missing values were imputed 

with random numbers below the minimum observed. Outliers 

were removed based on PCA scores plots with 95% CIs, after 

data transformation and scaling.  

PCA plots were included as supportive evidence, along with 

other validation statistics generated by the PLS-DA model, 

namely predictive accuracy considering unseen cases. In the 

current context, both methods were used to visualise the data 

rather than predict group membership. However, VIP (variable 

importance in projection) values were generated to rank 

metabolites according to their predictive ability. Metabolites 

with VIP values greater or equal to 1 are generally considered 

strong predictors. Univariate statistics were generated to support 

and supplement multivariate findings. The independent sample 

t-test was used to assess the statistical significance of differences 

between group means, after correcting for multiple testing by 

controlling the false discovery rate using Benjamini & 

Hochberg’s approach as coded by Groppe et al., (2011) [12]. The 

practical relevance of differences were quantified using Cohen’s 
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d-value. Data pre-processing, PCA, PLS-DA and univariate 

statistics were performed using MATLAB with Statistics 

Toolbox (2019), version 9.5.0 (R2018b) software (Natick, 

Massachusetts: The MathWorks Inc) in conjunction with the 

PLS_Toolbox (2019), version 8.7 software (Wenatchee, WA: 

Eigenvector Research Inc. Software available 

at http://www.eigenvector.com). Chi-square Automatic 

Interaction Detector (CHAID) trees were constructed here using 

IBM SPSS Statistics for Windows, Version 26.0. Armonk, NY: 

IBM Corp. The dataset was randomly split into training and test 

sets. The training set was used to construct CHAID trees, while 

the test set was used to validate the trees’ performance. Lastly, 

are the violin plot, which were created using JMP Pro 15 

statistical software, contain similar information as found in a 

box plot, but have the indisputable advantage over the box plot 

because they show the entire data distribution, which is 

beneficial when working with multimodal data i.e. distribution 

with several peaks was used (Hintze and Nelson, 1998) [16]. 

 

3. Results and Discussion 

3.1. Violin plots for UPLC/DAD 

To visually represent the abundance of metabolites retained after 

zero-filtering, violin plots were constructed. A good separation 

was attained between the Comm and NComm cultivars by CAF, 

CAT, EC, and TF2-TF4 (Figure. 1). 

 

 

 
 

 
 

Fig 1: Violin plots showing separation between the Comm and NComm cultivars based on detected metabolites. The y-axis units for 

the CAF, and the catechins are %w/w dry weight; TF1-TF4 in black tea samples were quantified as EGCg equivalents, based on the 

EGCg response factor. The black dots represent outliers, which are observations 1.5 x interquartile range (IQR) greater than the 75th 

quantile or 1.5 x IQR less than the 25th quantile. 

 

3.2. Overview of predictive potential in UPLC/DAD metabolites  

PCA and PLS-DA models were used to summarise the variation 

in the metabolites retained after pre-processing. Scores plots, 

where each point on the graph represents a sample as projected 
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onto the new lower-dimensional space, were scrutinised to 

determine the variation between the two groups that can be 

explained by the measured variables. The PCA plot (Figure 2) 

indicates that the dominating source of variation can be 

attributed to the classes in the data. The PLS-DA plot (Figure 3) 

shows the combined ability of the metabolites to differentiate 

between classes, thus justifying further investigation for 

predictive models.  

 

 
 

Fig 2: The PCA scores plot for the first three principal components. The plot shows good separation and explaining 69% of the variation observed 

between the Comm and the NComm cultivars. Ellipsoids represent 95% CI of score centroids of each class. The percentage of the overall variation 

explained by each component is indicated along each axis. 

 

 
 

Fig 3: The PLS-DA scores plot for the first three latent variables. The plot shows clear separation between the Comm and the NComm cultivars. The 

goodness-of-fit values achieved for the UPLC/DAD model was deemed reliable with predictive accuracy R2=94% and leave-one-out crossvalidated 

predictive accuracy Q2=93%. Ellipsoids represent 95% CI of score centroids of each class. 

 

The PLS-DA model provides VIP (variable importance in 

projection) value that ranks metabolites according to their 

predictive ability. To further supplement this ranking, univariate 

statistics were derived and all are summarised in Table 1. To 
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demonstrate the potential of specific metabolites for predictive 

models was explored further in the next section as shown in 

Table 1. 

 
Table 1: Ranking of metabolites detected by the UPLC/DAD based on their VIP scores. 

 

Variable Adjusted p-value Cohen's d-value VIP 

Theaflavin-3,3’-digallate < 0.0001 5.75 1.8 

Theaflavin-3’-gallate < 0.0001 1.41 1.2 

Catechin < 0.0001 1.90 1.1 

Caffeine < 0.0001 1.42 1.1 

Epicatechin < 0.0001 1.53 1.0 

Theaflavin-3-gallate < 0.0001 0.73 0.7 

Epigallocatechin < 0.0001 0.69 0.7 

Theaflavin < 0.0001 0.73 0.6 

Epigallocatechin gallate 0.002 0.41 0.4 

Epicatechin gallate 0.013 0.37 0.4 

 

3.3. Predictive modelling based on UPLC/DAD metabolites 

Past studies have demonstrated the applicability of theaflavins as 

markers for black tea quality (Obanda et al., 1997; Wright et al., 

2002) [32, 46]. CHAID decision trees were constructed using the 

four theaflavin (TF1-TF4) variables. Seventy five percent of the 

303 genotypes dataset was used to make up the training sample 

set on which a CHAID decision trees was developed, with the 

remaining 25% serving as the test sample set, as shown in 

Figure 4. Cross validation of these CHAID decision trees is 

important because, as with stepwise regression, prediction errors 

for any tree applied to new samples may be higher than those of 

the training samples on which it was constructed. As such cross 

validation data should be reserved, when possible (Breiman et 

al., 1984) [4]. 

 

 
 

Fig 4: (A) CHAID decision tree – training set, and (B) CHAID decision tree – validation set, based on the four theaflavins variables. 

 
Table 2: Classification accuracy table for CHAID decision tree based on four theaflavins. 

 

Sample Observed 
Predicted 

Non Commercial Commercial Percent Correct 

Training 

NonCommercial 179 5 97.3 

Commercial 0 40 100.0 

Overall Percentage 79.9 20.1 97.8 

Validation 

NonCommercial 40 3 93.0 

Commercial 0 14 100.0 

Overall Percentage 70.2 29.8 94.7 

 

Because theaflavins can only be obtained from black tea, which 

is a laborious and time consuming process, requiring up to five 

years for a field selection to be propagated from cuttings, grown 

in a hedge, and produce enough shoots to make black tea, a less 

laborious solution was sought. CHAID decision trees were 

constructed from the green leaf analytes. These trees were based 

on CAF, EC, ECg, EGC and EGCg found in freeze dried green 

leaf (Figure 5). 
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Fig 5: (A) CHAID decision tree – training set, and (B) CHAID decision tree – testing set, based on CAF, EC, ECg, EGC and EGCg. 

 

Table 3: Classification accuracy table for CHAID decision tree based on CAF, EC, ECg, EGC, and EGCg. 
 

Sample Observed 
Predicted 

Non Commercial Commercial Percent Correct 

Training 

NonCommercial 175 4 97.8 

Commercial 10 28 73.7 

Overall Percentage 85.3 14.7 93.5 

Validation 

NonCommercial 47 1 97.9 

Commercial 4 12 75.0 

Overall Percentage 79.7 20.3 92.2 

 

Figure 5 shows the CHAID decision tree developed on CAF and 

the four catechins. The tree, and the accuracy table (Table 3) 

show that 75% (12/16) of the Comm cultivars were correctly 

classified in the validation set. Considering that it is a very 

cumbersome process to manufacture black tea to obtain 

theaflavins, taking as much as 5 years for the bushes to grow 

before enough leaves can be harvested, the model making use of 

the green leaf CAF and four catechins correctly predicted 75% 

of the Comm cultivars in the validation set as Comm. This saves 

the tea breeder up to four years, and the labour and resources of 

cultivating the tea bushes for five years only to learn it is a low 

yield, drought susceptible and a low quality field selection, and 

will not be commercialised. From the CHAID tree results, it can 

be seen that CAF and EC are the important variables that can 

serve as predictors for distinguishing between Comm and 

NComm cultivars. A scatter plot of CAF vs EC, the compounds 

selected by the CHAID decision tree, graphically displays their 

combined potential to differentiate between Comm and NComm 

cultivars (Figure 6). The CHAID decision tree in Figure 5 

excluded CAT as a variable. The reason for this is that the CAT 

peak is small and elutes close to two unknown metabolites, 

which may make it difficult to accurately identify and quantify, 

especially on columns with lower resolution ability. This can be 

seen in the chromatogram in Figure 7. 

 

 
 

Fig 6: Scatter plot showing the distribution of Comm and NComm cultivars based on %w/w CAF vs EC 

http://www.agronomyjournals.com/
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A. 

 
B. 

 

Fig 7: (A) Superimposed green tea UPLC/DAD chromatograms of one Comm and one NComm cultivar, offset by 0.25 min for easy identification. 

The internal standards used were sulphanilamide (1.8 min), Tryptamine (7.3 min) and mycophenolic acid (27.9 min). (B) shows the zoomed in 

chromatograms of three Comm and three NComm cultivars, showing the position of CAT (5.75 min); CAF (9.60) and EC (10.30 min). In both plots, 

the dotted line represents the Comm cultivars, and the solid line represents the NComm cultivars. 

 

 
A. 
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B. 

 

Fig 8: (A) Superimposed black tea UPLC/DAD chromatograms of one Comm and one NComm cultivar, offset and standards as in Figure 7. (B) 

shows the expanded chromatograms of three Comm and three NComm cultivars, showing the position of TF1 (24.05 min), TF2 (24.40 min), TF3 

(24.55 min) and TF4 (25.10 min). In both plots, the dotted line represents the Comm cultivars, and the solid line represents the NComm cultivars. 

From the (B) figure, it can be seen that TF1, TF3 and TF4 are higher in the Comm cultivars. 

 

 as compared to the NComm cultivars Next the ratio of CAF/EC 

was considered given the inverse relationship observed in Figure 

6. The ratio is easier to implement as a distinguishing variable 

between the Comm and NComm cultivars i.e. the higher the 

ratio, the higher the likelihood that a cultivar would be Comm, 

as confirmed in Figure 9. 

 

 
A. 
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Fig 9: (A) Distribution of CAF/EC ratio by cultivar. (B). Stacked histogram with the CAF/EC ratio as a variable. 

In a study by Wright et al., (2000) [25], 20 high, and 20 low 

quality tea clones were used to investigate the correlations 

between the catechin profiles of the green tea leaves, and the 

quality of the resultant black tea produced from them. The 

results obtained in their study confirmed the findings by 

Robertson (1983) [35], which showed that the high and low 

quality tea cultivars differed significantly in CAT, EC, and ECg. 

The study showed a higher correlation between EC and quality, 

as compared to ECg, due to the lack of the gallic acid in EC, 

which has been reported to increase the astringency of tea (Xu et 

al., 2018) [47]. The high and low quality cultivars thus differed by 

considering CAT+EC+ECg. Another study by Ellis and 

Nyirenda, (1995) put forward that the ratio of simple: complex 

catechins could be a distinguisher between high and low quality 

teas. These findings do not agree with those of the present study 

as Table 1 shows that ECg, EGC, and EGCg have VIP scores 

lower than 1, and as such are not good distinguishers for 

separating the Comm cultivars from the NComm cultivars. 

Violin plots were constructed to visualise the possible 

application of the CAT+EC+ECg and simple: complex ratio in 

our set of samples, for differentiating between the Comm and 

NComm cultivars (Figure 10). 

 

  
A.  B. 

 

Fig 10: (A) The sum of simple catechins based on Wright et al., 2000 [25]. (B) The ratio of simple to complex catechins based on Ellis and Nyirenda, 

1995 

 

The objective of this study was to make use of UPLC/DAD 

generated data of the metabolites from the 303 Comm and 

NComm tea cultivars and to classify investigated genotypes as 

either Comm or NComm cultivars using CHAID decision trees. 

The best model may then serve as a prediction tool for whether a 

newly field selected mother bush is likely to become 

commercialised due to its similarities with the Comm cultivars. 

This would increase the success rate of field selections from 

well-established seedling fields. Violin plots serve as a 

conspicuous means of visualising the differences between 

classes, carrying substantial statistical information about e.g. 

medians and outliers. When the mean of one class falls outside 

the box of the 25th and 75th percentile of the second group, as 

seen in Figure 1, this indicates that there is a statistically 

significant difference between these two classes, regarding that 

metabolite. The metabolites CAF, CAT, EC, and TF2-TF4 in 
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Figure 1 differentiate the Comm cultivars from the NComm 

cultivars, making these ideal predictors to be employed in 

classifying the 303 genotypes into the two classes. Figures 2 and 

3 show the PCA and PLS-DA plots based on the UPLC/DAD 

data. From both plots, a clear separation in the clustering 

between the two classes is visible, meaning the ten detected 

metabolites, listed in Table 1, are discriminators between Comm 

and NComm cultivars. On the basis of these ten the CHAID 

decision trees in Figures 4 and 5 were developed, with Figure 4 

based only on the theaflavins, and Figure 5 only on CAF, EC, 

ECg, EGC and EGCg. 

In this paper, we show that CHAID decision trees can serve as a 

strong analytical tool for classifying cultivars as either Comm or 

NComm, based on the black tea theaflavins of the dried green 

leaf CAF/EC ratio. The dried green leaf CAF/EC ratio can be 

applied to field selections immediately instead of taking 

cuttings, growing hedges for 5 years and manufacturing black 

tea to measure theaflavins. The study also tests other catechin 

combinations documented in literature to function as predictors 

for high and low quality teas (Figure 10). The theaflavin 

variables were separated from the catechin variables, and a 

CHAID decision tree was developed based on only the 

theaflavins (Figure 4). The results, and the classification 

accuracy table (Table 2) show that TF4 was able to correctly 

classify all Comm cultivars i.e. 100% of the Comm cultivars in 

the validation set were correctly classified as Comm cultivars. 

These results corroborate literature findings that report 

theaflavins as indicators of high tea quality (Wang and Ruan, 

2009) [43]. Theaflavins are orangish-brownish pigments, which 

contribute to the briskness and brightness of black tea 

(Muthumani and Kumar, 2007) and are the predominant 

constituents of black tea-cream upon cooling (Roberts, 1963) 
[34]; it is for this reason they are deemed as an important quality 

index of black tea. Theaflavin content influences the total colour 

of tea i.e. teas with higher theaflavins content will have a higher 

total colour score. Hilton and Ellis (1972), developed several 

regression formulae, which were used to correlate theaflavin 

content in Malawian teas, with price. One formula with a highly 

significant regression coefficient of p < 0.001 held: 

 

logprice = a1ogT.F. + b1ogT.C.   (1) 

with a correlation coefficient is 0.82. T.F = theaflavin and T.C = 

total colour. To validate their findings, they repeated their 

experiment using tea samples from Malawi, Uganda, Tanzania, 

Kenya, Assam and New Guinea; similar results were obtained 

depicting the close correlation between theaflavin content and 

market price. Our results agree with those of Hilton and Ellis, 

and show that the Comm cultivars have higher theaflavin 

content than the NComm cultivars. Their study and its findings 

however, failed to gain wide acceptance due to the crude 

extraction method employed. The current study employs UPLC, 

which allows for the quantitative identification of the individual 

catechins and theaflavins. Figure 8 shows superimposed black 

tea Comm and NComm cultivars, and from this figure, it is 

visible that the Comm cultivars have higher theaflavins content 

than the NComm cultivars.  

Tea breeders are concentrating on selecting and breeding 

populations rich in e.g. alkaloids such as caffeine, theobromine 

and theophylline; amino acids, namely theanine, and 

polyphenols, namely catechins (Karori et al., 2014). The reason 

for this is that tea liquor has become a renowned healthy drink. 

Tea consumption has risen annually by 4.5% to 5.5 million 

tonnes as of 2016, predominantly in China, India and countries 

with emerging, developing economies; consumption is 

postulated to increase by another 1.5 million tonnes by 2027 

(FAO, 2018). The top three black tea producing countries 

namely Kenya, India, and Sri Lanka, have bred and selected 

high yielding or theaflavin rich cultivars. Efforts have been 

made to combine these two traits into an F1 progeny via 

hybridisation breeding, but the lack of requisite knowhow 

pertaining to inheritance patterns and how to combine desirable 

attributes into a single progeny has caused sluggish progress in 

tea breeding (Wachira and Kamunya, 2005) [42]. From Table 1, 

the predictors CAT, CAF and EC are statistically significant 

metabolites, capable of classifying the 303 genotypes into the 

two classes. This implies that tea breeders can now analyse the 

CAT, CAF and EC content of green leaves from mature seedling 

field selections and follow decision tree branches, to ascertain 

whether a new cultivar is likely to be Comm based on their 

CAT, CAF and EC content. However, the identification and 

accurate quantification of CAT may be problematic due to its 

position on the chromatogram, near unknown peaks, and its 

small peak height (Figure 7), warranting an improvement of the 

chromatography conditions in the ISO14502-2 (2005) method. 

Table 1 shows that although CAT has a higher Cohen’s d effect 

size (an effect size used to show the difference between two 

means) compared to CAF, it has the same VIP score with CAF, 

making them both equally important variables for distinguishing 

between Comm and NComm cultivars. The advantage of using 

CAF instead of CAT is that, unlike CAT, CAF has a large, clean 

peak at 9.60 min. This peak can be accurately identified and 

quantified with ease, without possible co-elution faced by CAT. 

EC is also a large peak with baseline resolution that is easy to 

quantify. 

Figures 6, a scatter plot of CAF vs EC, the metabolites selected 

by the CHAID decision tree, graphically displays the combined 

potential of these two metabolites to differentiate between 

Comm and NComm cultivars. It is however evident from both 

the tree and scatter plots, that this combination is not a perfect 

classifier as there are a few misclassifications; and CHAID 

decision trees cannot be used to rank samples. CAF is higher 

and EC lower in the Comm cultivars. Hence the ratio of 

CAF/EC was constructed to increase size of the signal. Figure 9 

shows the frequency histogram based on the CAF/EC ratio. This 

histogram further displays the ranking ability of this ratio i.e. the 

higher the ratio the higher the likelihood that the sample is of 

commercial value. In the current sample set, only Comm 

cultivars have a CAF/EC ratio that exceeds 4. This suggests that 

the CAT/EC ratio may be useful to identify field selections from 

mature seedling fields that have a good probability of becoming 

commercial cultivars. 

The present study reported CAT as an important metabolite 

predictor. This finding is, however, contradictory to the findings 

of Wright et al., (2000) [25], who showed that CAT correlated 

least with tea quality. The reason postulated was that CAT is not 

a precursor of any of the four major theaflavins, and as such was 

not important as a predictor for high quality cultivars. The 

research aim of their work was to investigate any correlations 

between the catechin profiles of the green tea leaves, and the 

quality of the resultant black tea produced from them. The study 

involved 20 high, and 20 low quality clones. The results 

obtained in the Wright study confirmed those obtained by 

Robertson, (1983) [35], who found that the high and low quality 

tea cultivars differed significantly in CAT, EC, and ECg. The 

Wright study also showed a higher correlation between EC and 

quality, as compared to ECg, due to the lack of the gallic acid in 

EC. Gallic acid has been shown to increase the astringency of 

green tea (Xu et al., 2018) [47]. The Wright study concluded that 
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high and low quality cultivars were distinguishable by high sum 

of simple catechins, namely CAT+EC+ECg, (B-ring di-hydroxy 

or simple catechins). The results in the current study show lower 

EC and ECg concentrations in the Comm cultivars, in contrast to 

Wright’s results where EC and ECg were higher in the good 

cultivars compared to the poor cultivars. This consideration 

prompted us to construct of a violin plot based on 

CAT+EC+ECg (Figure 10 A) in the present study. The results 

however showed no statistically significant difference between 

the Comm and NComm cultivars, based on the CAT, EC and 

ECg. In another study by Ellis and Nyirenda, (1995) on simple 

(CAT, EC and ECg) and complex catechins (EGC and EGCg), 

they documented that the higher the ratio of simple: complex 

catechins, the higher the amount of theaflavins produced, which 

means the higher the quality of the resultant tea liquor. It was 

therefore concluded that the cultivars with a higher ratio of 

simple: complex catechins were of higher quality and ought to 

be selected. In the present study, the ratio of simple: complex 

catechins were also employed in constructing a violin plot, and 

there was no statistically significant difference between the 

Comm and NComm cultivars (Figure 10 B). Our results, 

however, indicated that the findings of Robertson and Wright 

were not applicable to the cultivars used in this study. The 

reason for this could be that the NComm population used in our 

study was derived from two parents, whereas the cultivars used 

by Robertson and Wright were open pollinated plants from 

various parents. Another reason could be that the Robertson and 

Wright studies employed HPLC, which may have had CAT co-

eluting with other compounds, while the co-eluting compounds 

were separated in our study, with CAT having two shoulders, as 

is seen in our higher resolution UPLC chromatograms. Lastly, 

the difference in the results of both studies could be because our 

study employed a sample size of 303 cultivars whereas 

Robertson and Wright employed sample sizes of eight and 20 

respectively. This difference lends more credibility to our 

results.  

 

4. Conclusion 

The results of this study show that it is now possible for breeders 

to predict the quality of new selections from mature seedling 

fields by employing CHAID decision trees, or the CAF/EC, as 

predictors. By making use of the model based on CAF and the 

four catechins, breeders will be more successful in identifying 

and field selections rich in catechins, which as stated in the 

introduction, will result in teas rich in theaflavins, and higher 

market price. However, further studies must be done on varieties 

from other tea producing countries such as Malawi, Sri-Lanka 

and India, and on populations derived from more parents, to 

confirm the validity and efficacy of the results obtained. 

Additionally, chromatographic work must be done to improve 

on the identification and quantification of CAT, which has been 

shown to possibly be an important predictor. The method 

proposed in this study may improve the success of field 

selections to higher than the current 1%. 
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