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Abstract 
For food security, accurate mapping of paddy distribution and yield forecasting are vital for rice, a staple 

food for billions of people worldwide. Remote sensing techniques have proven important for agricultural 

system management and monitoring during the past thirty years. This study utilized SAR data from 

Sentinel-1A sensors to map paddy yields in the Ribhoi district of Meghalaya during the 2022 monsoon 

season. Employing a univariate spectral statistical model, the research predicted/estimated crop yield by 

leveraging the correlation between backscatter SAR data (VH and VV polarization) and rice yield from 

different rice fields. VH+VV backscatter exhibited a positive relationship with yield. The robustness of the 

relationship between rice yield and VH+VV backscatter, the derived equation was used to estimate rice 

yield for different rice yield as well as to generate the productivity or yield map of Ribhoi district. The 

yield estimation model was then validated with the observed yield. The observed yield ranges between 800 

to 2000 kg/ha, whereas the estimated yield ranges from 655 to 2000 kg/ha. The yield estimation model 

demonstrated a reasonable level of accuracy, yielding an RMSE of approximately 262 kg/ha, with an R2 of 

0.64. 
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Introduction  

Rice cultivation is a crucial element of worldwide farming and contributes significantly to 

guaranteeing food stability for millions of individuals globally. Rice serves as a key source of 

nutrition, particularly in Asia, where it is a staple food for a large portion of the population. 

Approximately 85% of the world's farms are managed by smallholder farmers, confront multiple 

challenges to their agricultural output due to outbreaks of pests and diseases, extreme weather 

events, and market disruptions. These factors jeopardize the food and income security of their 

households (Setiyono et al., 2018; O’Brien et al., 2004) [10, 8]. Nevertheless, the rice yield in 

India is significantly influenced by the variability of the monsoon, which is affected by climate 

change in the tropics a region considered to be the most vulnerable in the world. (Liu et al., 

2022; Gupta et al., 2019) [5, 3]. The rice production process encompasses various stages, 

beginning with land preparation and culminating in harvesting. In the face of climate change, the 

task of enhancing crop yield to meet the growing demand of the population and adapt to climate 

variations presents a formidable challenge. Hence, the timely, precise, and dependable 

prediction of rice yield in India holds significant importance for food security, health concerns, 

and strategic marketing planning at local, national, and global scales. (Liu et al., 2022; Gupta et 

al., 2019; Zabel et al., 2021) [5, 3, 11]. The use of a biophysical modeling approach to provide crop 

yield data is preferable due to its unbiased and replicable nature. This can be achieved by 

leveraging remote-sensing data, incorporating rainfall data within a statistical framework 

(Setiyono et al., 2018; Löw et al., 2017) [10, 6], employing a crop growth model (Lansigan et al., 

1993) [4], or integrating remote-sensing data with a crop growth model (Fang et al., 2008) [2]. 

The latter method shows greater promise compared to the empirical approach of directly 

translating remotely sensed vegetation indices into crop yield and production values (Zhang et 

al., 2016) [12]. This is because the integration approach capitalizes on the synergies between: (i) 

the strengths of remote-sensing technology in capturing spatial and temporal variations related 

to agro-practices (such as crop establishment dates) and seasonal crop development (phenology 

and vegetation status (like leaf area index); and (ii) the strengths of the process-based crop 

growth model in reliably simulating yield by considering biophysical growth drivers 
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(microclimate, water, and nutrients) once key parameters are 

appropriately assigned (Maki et al., 2017) [7]. This study 

showcases a methodology for estimating rice yield at the district 

level through the use of SAR based statistical model. The 

performance of this approach is assessed within a particular 

geographical context, namely the Ribhoi district of Meghalaya 

through out the growing season of winter rice. For the successful 

execution of this task, obtaining historical information on spatial 

variability in yield over a reasonably extended period, such as 10 

years, is essential (Carter et al., 2007) [1].  

Materials and Methods 
Study area 
The study area, located in the Ribhoi district of Meghalaya (Fig. 
1), covers an area of 2448 sq. km. Situated between E 91°20'30" 
to E 92°17'00" Longitude and N 25°40' to N 26°20' Latitude, it 
has a population of 258,840 (as of 2011). The rugged terrain 
consists of hill ranges sloping northward, merging with the 
Brahmaputra Valley. The climate varies from tropical to 
temperate, with hot and humid summers in areas bordering 
Assam. Average rainfall is 2900 mm annually, and temperatures 
range from 10 °C to 30 °C in December and January. The soil 
includes black loamy soil and lime silt, supporting both local 
and improved crop varieties. 

 

 
 

Fig 1: Map of the study area showing the multi date Sentinel -1 SAR 

 

Sentinel-1 SAR data 

The Sentinel-1 mission comprises two polar-orbiting satellites, 

namely Sentinel-1A and Sentinel-1B. These satellites are active 

day and night, utilizing a C-band synthetic aperture radar 

instrument with a central frequency of 5.405 GHz, enabling 

them to capture imagery without being hindered by weather or 

lighting conditions (https://eos.com/). The Sentinel-1 satellite 

constellations gather Synthetic Aperture Radar (SAR) data in 

either single polarization (HH or VV) or dual polarization 

(HH+HV or VV+VH) with a revisit cycle of 12 days. Sentinel-1 

operates in four distinct acquisition modes, which are Stripmap 

(SM), Interferometric, Wide swath (IW), Extra-Wide swath 

(EW), and Wave mode (WV) (https://eos.com/). Sentinel-1 

level-1 GRD products encompass focused SAR data that have 

been processed, subjected to multi-looking, and projected to 

ground range, employing an Earth ellipsoid model (Filipponi, 

n.d.) 

The research utilized data obtained from the Sentinel-1A 

satellites, focusing on GRD products accessible through the 

European Space Agency's Scientific Data Hub 

(https://scihub.copernicus.eu/). The analysis specifically 

involved multi-temporal C-band Synthetic Aperture Radar 

(SAR) images in both cross-polarized (VH) and co-polarized 

(VV) modes. Sentinel-1 SAR data was acquired for the kharif 

season, spanning from June to November, for the winter rice 

season 2021-22. Details of Sentinel-1A SAR images are 

presented in table 1.  
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Table 1: Details of Sentinel-1A SAR images used for yield estimation 
 

S. No. Acquisition dates Polarisation Pass Modes 

1. 29th July, 2021 VV & VH Descending IW 

2. 20th August, 2021 VV & VH Descending IW 

3. 27th September, 2021 VV & VH Descending IW 

4. 21st October, 2021 VV & VH Descending IW 

5. 14th November, 2021 VV & VH Descending IW 

 

Crop yield data 

Information regarding the area, production, and yield of rice in 

the Ribhoi district was sourced from the Department of the 

District Statistical Office, Ri-Bhoi. This data was utilized to 

compare the satellite-derived data with the actual area and yield 

figures.  

 

Processing of Sentinel-1A SAR data  

The pre-processing of Sentinel-1 SAR data was conducted using 

open-source tools available in the Sentinel Application Platform 

(SNAP) software. Firstly, satellite positioning errors were 

corrected by applying the orbit file. Subsequently, calibrated 

noise profiles were employed to effectively eliminate thermal 

noise, thus enhancing image quality. The digital pixel values 

within the SAR images were then accurately converted into 

radar backscatter intensity (σ0) using SNAP's default 

radiometric calibration feature. Additionally, a speckle filter 

using a Lee filter with a 5x5 window was applied to reduce the 

presence of SAR salt and pepper noise, resulting in clearer and 

more interpretable images. To rectify topographical disparities 

and sensor tilt, the SAR images underwent Range Doppler 

terrain correction utilizing the SRTM DEM product at 1 arc-

second resolution (30 m), this correction ensured precise 

representation of terrain characteristics within the images. And 

the final step was converting the backscatter values from a linear 

scale to a decibel (dB) scale. The pre-processed SAR images 

was then converted to geotiff format for further analysis using 

ArcGIS in order to map the spatial dynamics of rice yield in the 

study area. 

 

Methodology  

Rice yield data for each district block was obtained from the 

District Statistic Office and integrated with GPS locations. 

Subsequently, this geo-referenced yield information was 

imported into ArcGIS to generate a point layer. The correlation 

between the rice yield and Sentinel-1A SAR data, specifically 

backscatter intensity values in σ0VH, σ0VV, and (σ0VH+σ0VV) 

polarizations, was examined. Scatter plots were constructed to 

visualize and assess the relationships between yield and 

backscatter values. 

To further analyze these connections, a regression model was 

established utilizing multi-temporal SAR images, incorporating 

backscatter intensity values for σ0VH, σ0VV, and 

(σ0VH+σ0VV) polarizations. This regression model was then 

employed to predict rice yield. The derived regression equation, 

treating yield as the dependent variable and backscatter 

coefficients as independent variables, was applied to SAR 

images, resulting in the creation of a yield map for the entire 

district. This process allowed for the estimation of rice yield 

across the district based on the backscatter characteristics 

derived from SAR imagery. 

 

 
 

Fig 2: Flowchart methodology of Rice yield estimation 

 

Results and Discussion 

The main objective of rice monitoring is to predict rice yield, 

and the observed yield, obtained from the Department of 

Statistical Office, was linked to backscatter coefficients of σ0VH 

and σ0VV polarizations from Sentinel-1A satellite data. These 

values were utilized to create a statistical yield model for 

forecasting rice production. Subsequently, a rice yield map was 

generated based on the backscatter coefficient and observed 

yield. This allowed for the calculation of average rice 

productivity in the Ribhoi district on a pixel-by-pixel basis using 

the yield map. 
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Initially, three univariate models were developed, one for each 

σ0VH and σ0VV polarization, and the best fit was chosen to 

predict pixel-wise rice yield in the Ribhoi district. The observed 

yield from various rice fields was correlated with the backscatter 

coefficients of σ0VH and σ0VV polarizations. Scatter plots were 

created for σ0VH and σ0VV polarizations against winter rice 

yield 2021-22. The relationship between backscatter coefficient 

and rice yield exhibited relatively poor performance, with the 

coefficient of determination (R2) achieving very low values for 

σ0VH polarization and moderately low for σ0VV polarizations, 

as illustrated in Figures 3 and 4. 

The lower R2 values could be attributed to the cultivation of 

different rice varieties by farmers. Varieties grown in farmers' 

fields have varying potentials for yield, biomass, and harvest 

index. Consequently, two different rice varieties with similar 

management practices and equal biomass may yield different 

results. While remote sensing techniques, whether optical or 

active, primarily sense the biomass in the field and relate it to 

crop yield, this assumption works well when a common variety 

is cultivated over a larger region. However, when there is a high 

degree of heterogeneity in terms of variety selection, the 

assumption may fail to achieve desired results. 

Another potential reason for the poor correlation could be that 

VV polarization is more sensitive to built-up areas rather than 

vegetative areas. This discrepancy might explain why the 

correlation of VV with yield is weaker compared to VH 

polarization. The scatter plots and coefficients of determination 

illustrating the relationship between rice yield and SAR scatter 

coefficients of VV and VH polarized radiation are depicted in 

Fig. 3 and 4, respectively. 

 

 
 

Fig 3: Relationship between SAR (σ0VH polarisation) and rice yield 

 

 
 

Fig 4: Relationship between SAR (σ0VV polarisation) and rice yield 
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Fig 5: Relationship between SAR (VH+VV) and rice yield 

 

Considering the robustness of the relationship between rice yield 

and VH+VV backscatter (Fig. 5), the derived equation (Eq. 1) 

was used to estimate rice yield for different rice yield as well as 

to generate the productivity or yield map of Ribhoi district.  

 

Rice yield = 1240.4*(VH+VV) - 1103.2   (1) 

 

The yield map of the Ribhoi district has been generated using 

Sentinel-1A based on the backscatter coefficient of VH+VV. 

The yield map was prepared using SAR images by taking only 

the rice area in the district. The comparison of the observed 

yield and the estimated yield seem to have a good agreement. 

From the table 3 we can say that the differences were low in all 

the field. Estimated yield gives higher yield values as compared 

to observed yield in all the rice fields except in field 1, field 2, 

field 3, field 5, field 9 and field 12 where it gives lower yield 

values than the observed yield. The RMSE derived between 

observed and predicted yield was 262 kg/ha and R2 of 0.64 

(Table 2). 

 

Table 2: Comparison of Observed and Estimated rice yield (SAR based model) 
 

Rice field Observed Yield (kg/ha) Estimated Yield (kg/ha) Difference RMSE (kg/ha) 

Field 1 800 655 -145.0 

262 

Field 2 930 892 -37.5 

Field 3 950 889 -61.0 

Field 4 800 1136 336.3 

Field 5 950 767 -183.3 

Field 6 800 1186 385.6 

Field 7 845 1246 401.3 

Field 8 1250 1404 153.8 

Field 9 2000 1395 -605.4 

Field 10 1000 1124 124.5 

Field 11 2000 2000 0.3 

Field 12 1800 1429 -370.9 

 

Yield map was generated as shown in fig. 6, the map shows the 

spatial varying of winter rice yield in the Ribhoi district using 

Sentinel-1 SAR image of VH+VV backscatter having a spatial 

distribution of 10m resolution. The rice yield was divided into 5 

categories by ranging them as less than 1000 kg/ha, 1000 to 

1500 kg/ha, 1500 to 2000kg/ha, 2000 to 2500kg/ha and more 

than 2500 kg/ha. And color coded was applied to each category 

as shown in fig 6. 

Rice holds paramount importance as a fundamental food source 

for billions worldwide. The mapping of paddy fields and the 

anticipation of yields play a critical role in the implementation 

of measures to ensure food security. A comparable study 

conducted by Ranjan et al. (2019) [9], involved yield prediction 

using both optical (Sentinel-2B) and SAR (Sentinel-1A) sensor 

data for mapping paddy acreage in the Sahibganj district, 

Jharkhand, during the monsoon season in 2017. The study 

employed a straightforward linear regression yield model, 

resulting in a predicted paddy yield of 1.60 tonnes/hectare. In a 

study by Liu et al. (2022) [5], yield prediction was conducted 

using the Informer, a transformer-based model, over the Indian 

Indo-Gangetic Plains. The integration of time-series satellite 

data, environmental variables, and rice yield records spanning 

from 2001 to 2016 was employed. The findings revealed that the 

Informer model exhibited superior performance, achieving an R2 

of 0.81 and an RMSE of 0.41 t/ha. 
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Fig 6: Spatial varying of the estimated yield of winter rice in the Ribhoi district 

 

Conclusion 

In this research, a univariate spectral statistical model was 

crafted to predict/estimate crop yield, leveraging the correlation 

between backscatter SAR data and rice yield from diverse fields. 

The yield estimation model exhibited a reasonable degree of 

accuracy, yielding an RMSE of approximately 262 kg/ha. A 

positive relationship between backscatter SAR data and yield 

was observed. While the estimates generally align well with 

observed values, it's essential to consider the scale of the yield 

variable and potential implications for decision-making in 

agriculture. Acknowledging limitations and areas for 

improvement, this research contributes valuable insights into 

estimated yield, offering a foundation for enhanced agricultural 

decision support in the future. 
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