

E-ISSN: 2618-0618 **P-ISSN:** 2618-060X © Agronomy NAAS Rating: 5.20

www.agronomyjournals.com

2025; 8(3): 330-333 Received: 02-12-2024 Accepted: 10-01-2025

Neha M Arolkar

Ph.D. Scholar,
Department of Horticulture,
College of Agriculture, Vasantroa
Naik Marathwada Agricultural
University, Parbhani,
Maharashtra, India

GM Waghmare

Director, Department of Extension Education, Vasantroa Naik Marathwada Agricultural University, Parbhani, Maharashtra, India

Harshada R Galande

Ph.D. Scholar,
Department of Horticulture,
College of Agriculture, Vasantroa
Naik Marathwada Agricultural
University, Parbhani,
Maharashtra, India

Corresponding Author:
Neha M Arolkar
PhD Scholar, Department of
Horticulture, College of
Agriculture, Vasantroa Naik
Marathwada Agricultural
University, Parbhani,
Maharashtra, India

Evaluation of heterosis for morphological traits in interspecific hybridization of okra (*Abelmoschus esculentus* (L.) Moench)

Neha M Arolkar, GM Waghmare and Harshada R Galande

DOI: https://www.doi.org/10.33545/2618060X.2025.v8.i3e.2651

Abstract

The study, "Evaluation of Heterosis for Morphological Traits in Interspecific Hybridization of Okra (Abelmoschus esculentus (L.) Moench) " was conducted at the Instructional-Cum-Research Farm, Department of Horticulture, VNMKV, Parbhani, during Kharif 2022-23 (F1) and Summer 2023-24 (F2). The research aimed to evaluate heterosis for Plant growth characters, including Petiole length and Stipule length using interspecific crosses between cultivated okra and wild relatives (Abelmoschus tetraphyllus, Abelmoschus moschatus, and Abelmoschus manihot). A Line \times Tester mating design was adopted, comprising 10 lines and 3 testers in F1 generation and 7 lines and 2 testers in F2 generation. Experiments were laid out in a Randomized Block Design (RBD) with two replications. The study evaluated heterosis for petiole length and stipule length in Abelmoschus crosses across F1 and F2 generations. Significant positive heterosis was observed, with Punjab 8 \times A. tetraphyllus (45.91%) showing the highest petiole length in the F1 generation, and Parbhani Kranti \times A. manihot (19.69%) in the F2 generation. For stipule length, Phule Vimukta \times A. tetraphyllus (213.76%) displayed the highest heterosis in F1, while Parbhani Kranti \times A. manihot (123.96%) in F2. These traits are pivotal for improving yield potential in crop breeding programs.

Keywords: Okra, heterosis, better parent, standard check, Morphological traits

1. Introduction

Okra (Abelmoschus esculentus (L.) Moench) is a widely cultivated vegetable grown during the summer and rainy seasons. It has become a popular choice in tropical regions due to its ease of cultivation, high nutritional value, year-round export potential, resilience to pests, and adaptability to various moisture conditions (Haq et al., 2023; Ibitoye and Kolawole, 2022) [4, 5]. Global okra production reached 11.23 million tons across 2.80 million hectares, reflecting a 5.90% increase from the previous year and a 13.40% rise over the past decade. India is the leading producer, contributing 61.20% of global okra production (FAOSTAT, 2022) [2]. Okra fruits, known for their plump, green, and delicate appearance, are rich in calcium and various nutrients, serving as a staple in tropical diets. They are typically consumed fresh, dried, or preserved (Thamburaj and Singh, 2018) [8]. Despite its benefits, existing okra cultivars often have limited yield potential, which affects farmers' productivity and profitability, particularly in regions where okra is a crucial income source. Hybrid breeding offers a solution by overcoming yield limitations and harnessing hybrid vigour. Selecting parents solely based on their individual performance is often ineffective. A comprehensive assessment of the genetic transformation and prepotency of potential parents is crucial for successful hybridization (Yadav et al., 2023) [9]. Studies on heterosis and combining ability are essential to identify the best parent combinations and crosses for further genetic improvement.

Heterosis enables breeders to develop hybrids with better growth, higher fruit production, and greater yield potential by combining complementary traits from genetically diverse okra genotypes (Fujimoto *et al.*, 2018) ^[3]. Such research streamlines the breeding process, ensuring more accurate predictions of hybrid performance and accelerating the development of new cultivars. Superior okra hybrids not only improve productivity and reduce input costs but also promote sustainability by optimizing resource use. The findings from this study aim to improve

breeding strategies by identifying superior parent combinations, understanding hybrid vigour. Ultimately, these advancements will contribute to the development of more productive, resilient, and market-competitive okra cultivars, supporting farmers' profitability and food security. The study focuses on evaluating heterosis for morphological traits, with the goal of discovering superior hybrids.

2. Materials and Methods

The study, "Evaluation of Heterosis for Morphological Traits in Interspecific Hybridization of Okra (Abelmoschus esculentus (L.) Moench) "was conducted at the Instructional-Cum-Research Farm, Department of Horticulture, College of Agriculture, VNMKV, Parbhani, during Kharif 2022-23 (F1 generation) and Summer 2023-24 (F₂ generation). The objective was to explore the heterosis of morphologicals traits. The experimental material consisted of 10 lines and 3 testers during Kharif 2023 and 7 lines and 2 testers during summer 2024, in a Line × Tester mating design within a Randomized Block Design (RBD) with two replications. The treatments included 45 entries in the F₁ generation (30 hybrids, 13 parents, and 2 checks) and 25 entries in the F₂ generation (14 hybrids, 9 parents, and 2 checks).For hybrid seed production, cultivated okra flowers (female) were emasculated in the evening, and wild male flowers were used for pollination the following morning. Emasculated buds were bagged, labeled, and allowed to mature for seed development. The crop was grown at a spacing of 60 × 30 cm, with the application of farmyard manure (15 t/ha) and fertilizers at 100:50:50 kg NPK/ha. Nitrogen was applied in splits, with onethird at sowing and the remaining in two equal top-dressings.

Estimation of Heterosis

Per cent heterosis of derived F_1 over better parent (BP) and checks was calculated. Standard checks Radhika, Parbhani Kranti were considered for calculating standard heterosis for all the character. Heterosis for each trait was computed by using following formula.

Percent heterosis over

Better parent (Heterobeltiosis) = $(\overline{F}_1 - \overline{BP} / \overline{BP}) \times 100$

Where,

 F_1 : Average mean of F_1 hybrid

BP: Mean value of better parent of that particular F_1 cross Std checks: Mean value of standard checks

a. Calculation of standard error

• S.E. for testing heterosis over better parent:

S.E. $(H1) = \pm (2Me/r)1/2$

• S.E. for testing heterosis over standard check:

S.E. $(H3) = \pm (2Me/r)1/2$

Wherein,

Me = Error due to mean sum of square r = Number of replications

b. Test of significance for heterosis

In order to test the significance for different estimates of heterosis, t-test were conducted as follows:

- 1. 't' calculated values for heterosis over $BP = (F_1-BP)/SE(H1)$
- 2. 't' calculated values for heterosis over $MP = (F_1-MP)/SE(H1)$
- 3. 't' calculated values for heterosis over $SC = (F_1-SC)/SE(H2)$

The 't' test calculated values for heterosis over better parent (BP) and standard check cultivar (SC) were compared with 't' tabulated values at error degree of freedom and P= 0.05. 't' calculated value > 't' tabulated value were marked as significant

3. Results and Discussion

3.1 Plant Growth characters

3.1.1 Petiole length

Among the 30 crosses evaluated, 8 cross combinations exhibited significant positive heterosis for Petiole length over the better parent, 12 and 9 cross combinations showed significant positive heterosis over the standard hybrid check 1 (Parbhani Kranti) and standard hybrid check 2 (Radhika) respectively during the F_1 generation (Table 1).

In the F_2 generation during summer 2023-24 (Table 2) 14 crosses were evaluated, 5 crosses displayed significant positive heterosis over the better parent, while 14 and 14 cross combinations showed significant positive heterosis over the standard hybrid check 1 (Parbhani Kranti) and standard hybrid check 2 (Radhika) respectively.

 F_1 generation during *Kharif* season (2022-23), the cross combination Punjab 8 × *Abelmoschus tetraphyllus* displayed the highest significant positive heterosis over the better parent (45.91%), while in the F_2 generation during Summer season (2023-24), the cross Parbhani Kranti × *Abelmoschus manihot* recorded the highest significant positive heterosis over the better parent (19.69%).

Cross Parbhani Kranti \times *Abelmoschus manihot* (36.27%) and Parbhani Kranti \times *Abelmoschus manihot* (30.34%) showed significant positive heterosis over the standard hybrid check 1 (Parbhani Kranti) and standard hybrid check 2 (Radhika) respectively F_1 generation during *Kharif* season (2022-23).

Whereas in the F_2 generation during Summer season (2023-24), Cross Parbhani Kranti \times *Abelmoschus manihot* (58.75%) and Parbhani Kranti \times *Abelmoschus manihot* (56.70%) showed significant positive heterosis over the standard hybrid check 1 (Parbhani Kranti) and standard hybrid check 2 (Radhika) respectively Meyer *et al.* (2004) [7] and KOUASSI *et al.* (2024)

Petiole length is an important trait influencing overall yield, as optimal petiole length ensures efficient photosynthesis and nutrient distribution significant and positive heterosis for plant height is a desirable characteristic in crop breeding programs. Significant and positive heterosis for these traits is desirable in crop breeding programs to enhance yield potential.

3.1.2 Stipule length

Among the 30 crosses evaluated, 27 cross combinations exhibited significant positive heterosis for Stipule length over the better parent, 10 and 6 cross combinations showed significant positive heterosis over the standard hybrid check 1 (Parbhani Kranti) and standard hybrid check 2 (Radhika) respectively during the F_1 generation during *Kharif* season (2022-23) (Table 1).

In the F_2 generation during summer 2023-24 (Table 2) 14 crosses were evaluated, 13 crosses displayed significant positive heterosis over the better parent, while no cross combinations showed significant positive heterosis over the standard hybrid check 1 (Parbhani Kranti) and standard hybrid check 2 (Radhika) respectively.

 F_1 generation during *Kharif* season (2022-23), the cross combination Phule Vimukta \times *Abelmoschus tetraphyllus* displayed the highest significant positive heterosis over the better parent (213.76%), while in the F_2 generation during Summer season (2023-24), the cross Parbhani Kranti \times *Abelmoschus manihot* recorded the highest significant positive heterosis over the better parent (123.96%).

Cross Parbhani Kranti × *Abelmoschus manihot* (37.92%) and Parbhani Kranti × *Abelmoschus manihot* (20.06%) showed

significant positive heterosis over the standard hybrid check 1 (Parbhani Kranti) and standard hybrid check 2 (Radhika) respectively F_1 generation during *Kharif* season (2022-23), Whereas in the F_2 generation during Summer season (2023-24), Cross Parbhani Kranti \times *Abelmoschus manihot* (28.74%) and Parbhani Kranti \times *Abelmoschus manihot* (9.14%) showed significant positive heterosis over the standard hybrid check 1 (Parbhani Kranti) and standard hybrid check 2 (Radhika) respectively.

Appropriate stipule length aids in protecting buds and promoting healthy plant growth. Significant and positive heterosis for these traits is desirable in crop breeding programs to enhance yield potential. Similar results were obtained by Espósito *et al.* (2014) [1] and Yadav (2013) [10]

Table 1: Heterosis percentage over the better parent and standard checks in F₁ generation (*Kharif* season, 2022-23) of okra (*Abelmoschus esculentus* L.)

	Parents/Hybrids	Plant growth characters						
SN		PL(cm)			SL(cm)			
SIN		1			2			
		BPH	Parbhani kranti	Radhika	ВРН	Parbhani kranti	Radhika	
1	Parbhani kranti X Abelmoschus. manihot	30.22 **	36.27 **	30.34 **	166.91 **	37.92 **	20.06 **	
2	Parbhani kranti x Abelmoschus moschatus	4.54	12.63	7.72	122.30 **	14.87	0.00	
3	Parbhani kranti x Abelmoschus tetraphyllus	-17.03	-13.17	-16.95	122.30 **	14.87	0.00	
4	Arka Anamika X Abelmoschus manihot	1.92	11.60	6.74	148.62 **	0.74	-12.30	
5	Arka Anamika x Abelmoschus moschatus	7.73	17.96 *	12.83	27.52	-48.33 **	-55.02 **	
6	Arka Anamika x Abelmoschus tetraphyllus	13.54	24.33 **	18.91 *	188.52 **	30.86 **	13.92	
7	Konkan Bhindi x Abelmoschus manihot	40.54 **	30.49 **	24.81 **	-18.30 *	-3.72	-16.18 *	
8	Konkan Bhindi x Abelmoschus moschatus	-3.44	12.68	7.77	-4.10	13.01	-1.62	
9	Konkan Bhindi x Abelmoschus tetraphyllus	34.33 **	16.45	11.38	-13.56	1.86	-11.33	
10	Arka Abhay X Abelmoschus manihot	0.37	-6.80	-10.86	129.36 **	-7.06	-19.09 **	
11	Arka Abhay X Abelmoschus moschatus	7.22	15.52	10.49	176.15 **	11.90	-2.59	
12	Arka Abhay X Abelmoschus tetraphyllus	33.99 **	20.41 *	15.17	173.39 **	10.78	-3.56	
13	Phule Vimukta X Abelmoschus manihot	20.03 *	14.39	9.41	183.49 **	14.87	0.00	
14	Phule Vimukta x Abelmoschus moschatus	-2.85	13.36	8.43	146.72 **	11.90	-2.59	
15	Phule Vimukta x Abelmoschus tetraphyllus	29.22 **	23.15 *	17.79 *	213.76 **	27.14 **	10.68	
16	Phule Utkarsha X Abelmoschus manihot	-13.69	-3.72	-7.91	100.00 **	-7.81	-19.74 **	
17	Phule Utkarsha X Abelmoschus moschatus	-0.38	16.25	11.19	156.45 **	18.22 *	2.91	
18	Phule Utkarsha X Abelmoschus tetraphyllus	11.23	24.08 **	18.68 *	157.26 **	18.59 *	3.24	
19	Varsha Uphar X Abelmoschus manihot	-2.46	24.03 **	18.63 *	150.48 **	-2.23	-14.89 *	
20	Varsha Uphar X Abelmoschus moschatus	-8.55	16.30	11.24	132.79 **	5.58	-8.09	
21	Varsha Uphar X Abelmoschus tetraphyllus	0.77	28.14 **	22.57 *	145.08 **	11.15	-3.24	
22	Pusa Sawani X Abelmoschus manihot	3.33	0.34	-4.03	124.17 **	0.00	-12.94	
23	Pusa Sawani x Abelmoschus moschatus	-8.68	6.56	1.92	140.98 **	9.29	-4.85	
24	Pusa Sawani X Abelmoschus tetraphyllus	11.19	7.98	3.28	124.17 **	0.00	-12.94	
25	Kashi Satdhari X Abelmoschus manihot	16.93	17.33	12.22	201.83 **	22.30 **	6.47	
26	Kashi Satdhari x Abelmoschus moschatus	-3.94	12.09	7.21	128.69 **	3.72	-9.71	
27	Kashi Satdhari X Abelmoschus tetraphyllus	14.63	15.03	10.02	196.33 **	20.07 *	4.53	
28	Punjab 8 X Abelmoschus manihot	40.27 **	30.25 **	24.58 **	44.30 **	22.30 **	6.47	
29	Punjab 8 X Abelmoschus moschatus	11.63	20.26 *	15.03	29.39 **	9.67	-4.53	
30	Punjab 8 X Abelmoschus tetraphyllus	45.91 **	32.84 **	27.06 **	38.16 **	17.10 *	1.94	
	SE±	0.91	0.91	0.91	0.10	0.10	0.10	
	CD 95%	1.83	1.83	1.83	0.22	0.22	0.22	
	CD 99%	2.44	2.44	2.44	0.29	0.29	0.29	
		2.44	2.44	2.44	0.29	0.29	0.29	

^{*, **} denotes significance at 5% and 1% respectively. Petiole length=PL; Stipule length=SL

Table 2: Heterosis percentage over the better parent and standard checks in F2 generations (Summer season) of okra (Abelmoschus esculentus L.)

	Parents/Hybrids	Plant growth characters						
SN		PL(cm)			SL(cm)			
SIN		1			2			
		BPH	Parbhani kranti	Radhika	BPH	Parbhani kranti	Radhika	
1	Parbhani kranti X Abelmoschus. manihot	19.69 *	58.75 **	56.70 **	123.96 **	28.74	9.14	
2	Parbhani kranti x Abelmoschus moschatus	14.96	40.47 **	38.66 **	96.55 **	2.40	-13.20	
3	Parbhani kranti x Abelmoschus tetraphyllus	15.75	53.52 **	51.55 **	90.62 **	9.58	-7.11	
4	Arka Anamika X Abelmoschus manihot	4.97	37.86 **	36.08 **	103.45 **	5.99	-10.15	
5	Arka Anamika x Abelmoschus moschatus	13.78	50.91 **	48.97 **	80.81 **	7.19	-9.14	
6	Arka Anamika x Abelmoschus tetraphyllus	22.32 *	43.08 **	41.24 **	103.03 **	20.36	2.03	
7	Konkan Bhindi x Abelmoschus manihot	9.84	45.69 **	43.81 **	107.29 **	19.16	1.02	
8	Konkan Bhindi x Abelmoschus moschatus	18.97 *	39.16 **	37.37 **	133.33 **	21.56	3.05	
9	Konkan Bhindi x Abelmoschus tetraphyllus	13.78	50.91 **	48.97 **	113.54 **	22.75	4.06	
10	Arka Abhay X Abelmoschus manihot	17.72 *	56.14 **	54.12 **	105.62 **	9.58	-7.11	
11	Arka Abhay X Abelmoschus moschatus	4.92	39.16 **	37.37 **	115.46 **	25.15	6.09	
12	Arka Abhay X <i>Abelmoschus tetraphyllus</i>	7.32	33.94 **	32.22 **	108.25 **	20.96	2.54	
13	Phule Vimukta X Abelmoschus manihot	15.75	53.52 **	51.55 **	116.67 **	24.55	5.58	
14	Phule Vimukta x Abelmoschus moschatus	19.06 *	49.61 **	47.68 **	20.69	-37.13 *	-46.70 **	
	SE±	0.76	0.76	0.76	0.23	0.23	0.23	
	CD 95%	1.64	1.64	1.64	0.51	0.51	0.51	
	CD 99%	2.29	2.29	2.29	0.71	0.71	0.71	

^{*, **} denotes significance at 5% and 1% respectively. Petiole length=PL; Stipule length=SL

4. References

- 1. Espósito MA, Bermejo C, Gatti I, Guindón MF, Cravero V, Cointry EL. Prediction of heterotic crosses for yield in *Pisum sativum* L. Scientia Horticulturae. 2014;177:53-62.
- 2. FAOSTAT. Crop and livestock products. Food and agriculture data. Food and Agriculture Organization of the United Nations; 2022. Available from: https://www.fao.org/faostat/en/#home
- 3. Fujimoto R, *et al.* Recent research on the mechanism of heterosis is important for crop and vegetable breeding systems. Breed Sci. 2018;68(2):145-158. doi:10.1270/jsbbs.17155
- 4. Haq IU, et al. Improving the genetic potential of okra (*Abelmoschus esculentus* L.) germplasm to tolerate salinity stress. Sci Rep. 2023;13(1):21504. doi:10.1038/s41598-023-48370-4
- Ibitoye DO, Kolawole AO. Farmers' appraisal on okra (Abelmoschus esculentus (L.)) production and phenotypic characterization: a synergistic approach for improvement. Front Plant Sci. 2022;13:787577. doi:10.3389/fpls.2022.787577
- Kouassi KBA, N'Dri KE, Asseh EE, Kouassi AB, Saraka EBZK, Yao DM. Heterosis in interspecific hybrids between Solanum melongena L. and species from the primary and secondary gene pools. Afrique SCIENCE. 2024;25(1):1-14.
- 7. Meyer RC, Torjek O, Becher M, Altmann T. Heterosis of biomass production in *Arabidopsis*: establishment during early development. Plant Physiol. 2004;134(4):1813-1823.
- 8. Thamburaj S, Singh N. Textbook of Vegetable, Tubercrops and Spices. Indian Council of Agricultural Research; 2018.
- 9. Yadav K, *et al.* Exploitation of combining ability and heterosis potential for improvement in okra (*Abelmoschus esculentus*) genotypes. Indian J Agric Sci. 2023;93:127-132. doi:10.56093/ijas.v93i2.132161
- 10. Yadav SK. Diallel cross analysis for yield and quality attributes in field pea (*Pisum sativum* L.) [doctoral dissertation]. Indira Gandhi Krishi Vishwavidyalaya, Raipur; 2013.