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Abstract 
Increasing demand for accurate crop yield predictions in agriculture has been fueled by technological 

innovation. Machine Learning (ML) and Remote Sensing (RS) have become leading tools for precision and 

scalability in predictions. This review discusses the present state of the integration of ML and RS, bringing 

out methodologies, datasets, applications, and challenges in predicting crop yields. It has thus proven to 

show considerable promise for agricultural decision-making, resource use optimization, and improvement 

in food security through synergies between ML algorithms and RS data. The future trends and potential 

advancement are also discussed below. 

 

Keywords: Crop yield prediction, machine learning, remote sensing, precision agriculture, agricultural 

technology, data analytics, satellite imagery, AI in agriculture 

 

1. Introduction  

Productivity and sustainability in agriculture are vital in the context of increasing population and 

climate variability, for food security challenges worldwide (Ahmed et al., 2023) [2]. Precise crop 

yield estimation can ensure effective planning, optimal resource use, and risk management 

against the variability of climate, extreme weather conditions, and market volatility. Combining 

ML with RS technology presents a powerful and innovative way to meet these challenges 

(Wang et al., 2024) [115]. This integration supports precision agriculture, enhances decision-

making, and ultimately contributes to sustainable insights of RS data (Sabir et al., 2024) [97]. 

Crop yield prediction is an integral part of contemporary agriculture, aiming to overcome the  

major challenges of food security, optimal resource use, and climate change (Sharma et al., 

2024) [105]. Traditional yield-prediction techniques, mainly dependent on manual observation and 

statistical modeling, fail to capture the full complexity and variability of agricultural systems 

(Jin et al., 2018) [47]. The machine learning (ML) approach that integrates remote sensing (RS) 

technologies has turned out to be a game changer, utilizing big data to promote accuracy and 

scalability (Singh et al., 2021) [109]. 
There are significant areas of concentration in the continuing global effort towards food security. 

Given the rapidly increasing global population and the challenges caused by climate change and 

extreme weather events, demand for innovative solutions in agriculture has never been more 

pressing. The integration of accurate crop yield predictions can play a pivotal role in ensuring 

effective agricultural planning, resource optimization, and risk mitigation strategies, especially 

in times of climate variability and market instability (Akintuyi, O. B. 2024) [3]. 

In this context, Machine Learning (ML) and Remote Sensing (RS) technologies offer a 

promising solution to meet these challenges. By taking the strong predictive ability of ML 

algorithms and combining them with the insight’s RS data contains on the spatial and time 

dimensions, sophisticated models can be developed which not only enhance the accuracy of crop 

yield forecasts but also support the optimization of farming practices (Polwaththa et al., 2024) 

[92].
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Fig 1: Use of remote sensing for crop monitoring  

 

The innovative integration will allow the implementation of 

precision agriculture and better decision-making processes while 

contributing to more sustainable agricultural systems, and hence 

food security, on a large global scale (Bhat SA, Huang NF, 

(2021) [15]. 

This review reviews the recent trend in ML and RS for crop 

yield prediction and points out improvements in data acquisition 

via satellites and UAVs, feature extraction, and model 

development. Key machine learning algorithms used for the 

processing of RS data include random forests, support vector 

machines, deep learning, and ensemble methods in 

multispectral, hyperspectral, and LiDAR imagery (El-Omairi, 

and El Garouani, 2023) [30]. In addition, the review deals with 

challenges regarding data quality, spatial resolution, model 

interpretability, and transferability across regions. By 

synthesizing recent studies and identifying gaps in research, this 

work sheds light on the possibility of revolutionizing sustainable 

agriculture and decision-making processes through ML and RS 

(Han et al., 2023) [42]. 

2. Machine Learning in Agriculture 

Machine Learning is the next generation of changes sweeping 

through almost all sectors; it has already impacted agriculture 

greatly. The high capabilities of the algorithms to deal with and 

analyze complex data have highly boosted the use of crop yield 

predictions and much better farming methods (Elbasi et al., 

2023) [29]. By enabling farmers to gain insights from diverse data 

sources such as weather patterns, soil conditions, crop health 

indicators, and management practices, ML technologies have 

opened up new avenues for increasing agricultural productivity 

and ensuring sustainability (Karunathilake et al., 2023) [52]. 

With the aid of advanced data analysis techniques, ML models 

can detect subtle interrelations among variables, thereby 

allowing the prediction of future outcomes, optimization of 

agricultural practices, and early detection of potential problems 

such as pest outbreaks, diseases, and weather anomalies. This is 

why the incorporation of ML into agricultural systems is of great 

promise to enhance resource use efficiency, crop yields, and 

environmental impact (Alahmad et al., 2023) [4]. 

 

 
Source: Pokhariyal et al., 2023 [91] 

 

Fig 2: Essential architecture for Machine learning 
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2.1 Overview of Machine Learning Algorithms 

The core of predictive analytics in agriculture is the ML 

algorithms. These algorithms differ in their approaches and 

methodologies to solve the vast spectrum of agricultural 

challenges-from predicting crop yields to detecting pests and 

diseases (Alzubi et al., 2018) [6]. The choice of algorithm 

depends on the specific task at hand and the nature of the 

available data. Below, we explore different categories of ML 

algorithms and their applications in agriculture. 

 

Regression Models 

Regression models are very common for predicting continuous 

outcomes; hence, the application can be optimal for deriving 

estimates of crop yields from environmental and agricultural 

data (Fahrmeir et al., 2013) [31]. These are generally used when 

there is a clear, measurable relationship between the dependent 

variable, like crop yield, and the independent variables, such as 

weather conditions and soil attributes. Among the common 

regression models are the following. 

 Linear Regression: This model is adopted for the 

prediction of crop yield based on straightforward relations 

with variables such as temperature, rainfall, and soil quality 

(Conradt T, 2022) [23]. It supposes a linear relationship 

between the input variables and the output. 

 Support Vector Regression: A more advanced method, it 

handles complex, non-linear relations in the data. SVR is 

highly useful and effective when the relation of input 

features with the outputs is not straightforward (Zhou et al., 

2024) [125]. 

 Ridge and Lasso Regression: These models introduce 

regularization terms that prevent overfitting, particularly 

when datasets contain many predictors (Santos et al., 2022) 
[100]. Ridge regression can handle multi-collinearity; 

otherwise, Lasso regression can be used for feature 

selection because some coefficients get forced to zero. 

 

Tree-Based Models 

Tree-based models are effective at handling nonlinear and high-

dimensional data, common in agriculture (Nzekwe et al., 2024) 
[84]. Tree-based models operate on the basis of recursive 

partitioning of the data using feature importance (Badshah et al., 

2024) [12]. The approach ensures complex interactions between 

variables are managed well. Major tree-based models are: 

 Decision Trees: Decision trees are a way of breaking down 

data into smaller, more manageable parts by making 

decisions based on the most significant features (Charbuty, 

& Abdulazeez, 2021) [19]. They are interpretable, making 

them valuable for understanding which factors are most 

important for predicting outcomes like crop yields. 

 Random Forests: Random Forest is an ensemble method 

that builds up multiple decision trees and aggregates their 

results in order to offer a better accuracy and avoid 

overfitting (Zhou ZH, 2025) [126]. This seems to be 

especially useful for enhancing robustness and performance 

of predictions. 

 XGBoost: An advanced gradient-boosting algorithm that 

combines the predictions of multiple decision trees. 

XGBoost is known for its speed, scalability, and high 

performance, making it particularly effective when working 

with large datasets common in agricultural research 

(Elavarasan and Vincent, 2020) [28]. 

 

Deep Learning Models 

Deep learning models are powerful tools to handle large, 

unstructured datasets such as satellite images, time series data, 

and sensor readings (Moskolaï et al., 2021) [79]. These models, 

inspired by the structure of the human brain, consist of multiple 

layers of interconnected nodes (neurons) that learn hierarchical 

representations of the input data (Cravero et al., 2022) [24]. 

Notable deep learning models include. 

 Convolutional Neural Networks: CNNs are very efficient 

at analyzing spatial data, like images, and can be used to 

classify images for assessing crop health by using satellite 

or drone imagery (Bouguettaya et al., 2022) [17]. These 

models extract relevant features automatically from images, 

which makes them highly valuable for monitoring crop 

conditions and detecting diseases or pests (Peng et al., 

2024) [90]. 

 Recurrent Neural Networks (RNNs): RNNs are 

particularly designed for sequential data, such as time series 

data that could represent weather patterns, crop growth 

stages, or sensor readings over time (Khaki et al., 2020). 

They are especially useful in forecasting trends and 

predicting future crop yields based on historical data 

(Kamilaris et al., 2018) [50]. 

 Transformers: The most complex architecture developed 

lately that is increasingly gaining acceptance nowadays 

(Giedion, 2009) [34]. These excel at learning long-range 

dependencies within data and hence prove quite beneficial 

when using disparate data streams together such as 

overlaying weather forecast information over satellite 

images, solving the problems associated with agriculture 

under multiple models. 

 

Clustering and Unsupervised Learning 

Unsupervised learning techniques, such as clustering, are used to 

identify patterns and groupings within data without requiring 

labeled outcomes (Mehta et al., 2015) [75]. This proves very 

helpful in the discovery of huge datasets or when trying to 

uncover hidden relationships (Badapanda et al., 2022) [11]. Some 

of the popular clustering algorithms include: 

 K-Means Clustering: A widely used algorithm that divides 

data into k clusters based on similarities in features 

(Golubovic et al., 2019) [37]. For example, k-means can be 

used to segment agricultural regions based on soil types or 

vegetation indices, enabling targeted interventions for 

different regions (Pascucci et al., 2018) [87]. 

 Principal Component Analysis: PCA is another technique 

for dimension reduction that helps make complex datasets 

much easier to view and understand by bringing out the 

important features or principal components of those data 

sets (Greenacre et al., 2022) [38]. 

 

Hybrid Models 

Hybrid models are ones that integrate various machine learning 

algorithms together in an attempt to draw strength from every 

individual model used (Krasnopolsky et al., 2006) [59]. These 

models combine the interpretability of simpler algorithms with 

the power of complex ones, offering practical solutions to 

intricate agricultural problems. For example, combining 

Random Forests with Neural Networks offers the best of both 

worlds: interpretability as well as prediction accuracy, which can 

serve to better enable farmers and researchers to understand the 

factors driving the predictions and at the same time benefit from 

robust, data-driven insights (Aria et al., 2021) [9]. 

In summary, the integration of different machine learning 

algorithms into agricultural systems offers great potential to 

revolutionize farming practices, enhance productivity, and 

https://www.agronomyjournals.com/


International Journal of Research in Agronomy  https://www.agronomyjournals.com  

~ 552 ~ 

contribute to sustainability (Sharma et al., 2020) [106]. By 

harnessing the power of advanced models, farmers can make 

more informed decisions, optimize resources, and ultimately 

improve global food security. 

 

2.2 Applications in Crop Yield Prediction 

ML has revolutionized crop yield prediction as it provides 

significant improvements in terms of the accuracy and reliability 

of the prediction made (Rashid et al., 2021) [96]. Previously, crop 

yield prediction used only simple statistical models that involved 

fewer factors. However, with ML, many variables related to 

climate conditions, soil characteristics, and crop health 

indicators can be analyzed together to create more accurate and 

dynamic yield predictions (Chlingaryan et al., 2018) [21]. The 

features of ML in the sense that it can work on very large 

datasets and recognize patterns in them offer numerous 

applications in crop yield prediction that fall under a few main 

clusters. 

 

Data Integration 

Crop yield prediction is one of the most useful applications of 

ML. Nowadays, modern agriculture systems produce highly 

diverse data originating from multiple channels of satellite 

imagery, IoT sensors, historical yield records, and live weather 

patterns (Saiz-Rubio, and Rovira-Más, 2020) [98]. ML models 

particularly thrive in condensing this vast and voluminous data 

toward obtaining a holistic picture of the environment. By 

recognizing interdependencies between different variables, ML 

models can make more accurate predictions about crop yields 

(Chlingaryan et al., 2018) [21]. 

For instance, IoT enabled sensors placed in the field can collect 

real time soil moisture, temperature, and nutrient levels. Thus 

combining the above real-time data with historical yield data and 

weather forecasts, can enable more accurate models in 

predicting future crop yields. The integration also supports 

adaptive management practices by allowing proactive farmer 

responses to environmental changes. 

 

Integration of Remote Sensing 

Remote sensing is considered a very important method for crop 

yield prediction, as it delivers valuable information related to 

vegetation health, growth patterns, and environmental conditions 

(Karthikeyan et al., 2020) [51]. Satellite and drone-based remote 

sensing technologies offer very high-resolution images that 

include vegetation indices (such as NDVI), spectral reflectance, 

and temperature data (Bansod et al., 2017) [13]. Such parameters 

are extremely important inputs into ML algorithms targeted at 

high accuracy crop yield estimates (Paudel et al., 2021) [89]. 

An example of this integration is the use of MODIS satellite 

data, which offers global coverage and high-frequency data on 

vegetation health and temperature (Yang, et al., 2020) [122]. By 

applying Random Forest models to MODIS data, researchers 

can predict crop yields, such as corn, across vast geographic 

areas. Remote sensing data can also be combined with ground-

level data, such as soil characteristics and farm management 

practices, to improve yield predictions (Argento et al., 2021) [8]. 

 

 
Source: Wang et al., 2024) [115] 

 

Fig 3: The process of detecting insect infestation and evaluating forest health was realized based on IDS, MODIS and Landsat-8 mapping, along 

with hyper spectral response technology 
 

Scenario Analysis 

ML models can be used not only for predicting current crop 

yields but also to simulate potential future scenarios. They can 

assess how changes in agronomic practices, such as planting 

dates, irrigation schedules, and fertilizer application rates, may 

affect crop yield. By examining a variety of scenarios, ML can 

give decision-makers insights into how to optimize farming 

practices for maximum productivity under varying conditions 

(Sharma et al., 2020) [106]. 

For instance, ensemble learning methods have been utilized to 

predict the yields of wheat under various scenarios of climate 

change (Iqbal et al., 2024) [45]. Such models consider how shifts 

in temperature regimes, alterations in rainfall patterns, and 

changes in other climate components might impact crop growth 
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and overall production (Eddamiri et al., 2024) [27]. Simulated 

scenarios help farmers and agricultural planners design more 

robust strategies for coping with climate-related uncertainties. 

 

Automation in Agriculture 

One of the most intriguing agricultural technologies used is ML-

based predictive models. Predictive models integrate into farm 

management systems, then automate decision-making so as to 

make the utmost time to irrigate, fertilize, or control pests 

(Mohyuddin et al., 2024) [78]. Using data in real time from 

sensors and short-range forecasts, among other sources, ML 

models can make timely recommendations to farmers, thus 

reducing waste and improving productivity (Imade et al., 2024) 
[44]. 

For example, an ML-controlled irrigation system would suggest 

changes in water usage due to current levels of soil moisture, 

weather forecasts, and crop-specific water requirements. In the 

same way, ML can calculate the optimal level of fertilizer or 

pesticide to use so that every resource is efficiently utilized 

while crops can grow optimally. 

 

Case Studies 

The practical applications of ML in crop yield prediction are 

becoming increasingly evident, as several case studies 

demonstrate the effectiveness of ML techniques in various 

crops. Below are some examples of successful ML applications 

in crop yield prediction. 

 

Maize Yield Prediction 

These Random Forest models were implemented to predict the 

yield of maize by including information from diverse data 

sources that relate to the variables of interest like soil properties, 

climatic variables, and even vegetation indices like NDVI (Ngie, 

and Ahmed, 2018) [81]. The analysis results in proper estimations 

for local as well as regional scales, while this form of predictive 

modeling gives more accurate direction to manage their 

resources appropriately-water as well as fertilizers-and in 

consequence, their yield of maize gets improved (Sakamoto et 

al., 2020) [99]. 

 

Wheat Yield Prediction 

CNNs have been particularly useful in predicting wheat yields 

based on time-series weather data and crop phenological stages 

(Wang et al., 2023) [114]. Deep learning models are better than 

traditional regression techniques because they capture complex, 

non-linear relationships between environmental variables and 

crop growth. The ability of CNNs to process large amounts of 

data quickly and efficiently makes them a valuable tool for 

predicting wheat yields, especially in large-scale farming 

operations (Chlingaryan et al., 2018) [21]. 

 

Rice Yield Prediction 

Support Vector Machines (SVMs) represent a popular algorithm 

in supervised learning, and various studies have achieved 

successful rice-yield predictions that integrate agroclimatic 

datasets with those of pest infestations (Rashid et al., 2021) [96]. 

Indeed, the inherent ability of SVMs to explore patterns and 

determine predictions, even based on noisy data or data deficits, 

can serve as a benefit in such adaptability for different ML 

models-pest infestation challenges that help ensure reliable 

forecasts of crop yield (Gandhi et al., 2016) [32]. 

 

Soybean, Cotton, and Other Crops 

Thermal RS data-driven mapping of water stress in soybean 

fields using regression models. Cotton yield prediction using 

UAV imagery and ensemble ML techniques. 

This paradigm shift in crop yield prediction by Machine 

Learning not only transforms the traditional approach to 

agriculture but also empowers stakeholders with critical tools to 

tackle key challenges related to future food security, climate 

change, and resource management (Leo et al., 2021) [65]. 

 

Broader Implications for Agricultural Sustainability 

It is not just the application of ML in crop yield prediction but it 

also represents a paradigm shift for the approach of agriculture. 

More precision in the prediction of crop yields through ML 

models enables farmers to make data-driven decisions that help 

in increasing productivity and reducing waste and environmental 

degradation (Titirmare et al., 2024) [112]. Furthermore, the 

application of ML provides recommendations tailored to specific 

farms based on their unique features. 

Further, yield prediction models through machine learning 

promote sustainability of agriculture through the encouragement 

of resource optimization and support to better climate-resilient 

strategies (Patil, 2024) [88]. By forecasting likely challenges and 

suggesting solutions adapted for specific conditions, machine 

learning assists farmers in preparation against uncertain future 

conditions, reducing climate change risks related to market 

volatilities and resource shortages (Amiri et al., 2024) [7]. This 

basically marks a critical aspect of the field of agriculture's 

evolution and highlights how machine learning contributes to 

crop yield prediction, allowing for more sustainable and efficient 

and resilient farming practices that are fundamental in providing 

food globally. In summary, it is with this adoption of Machine 

Learning in agriculture that it creates a data-driven 

transformation reshaping the approaches of farmers, researchers, 

and policymakers in tackling agricultural productivity and 

sustainability (Mohamed, 2023) [77]. 

 
Table 1: Different techniques used for prediction yield/production 

 

Paper Dataset Algorithm Observation 

Pallavi et al. 2021 “Crop 

yield forecasting using data 

mining”. 

Agricultural dataset Crop, area, 

yield, temperature, Humidity 

XGBoost, Logistic 

Regression, Random 

Forest, KNN 

The best classifier with a 67.8 percent accuracy rate is 

Random Forest. 

Mohsen et al. 2021 “Crop 

yield prediction in US corn 

belt.” 

A dataset from 1984 to 2018 is used 

to forecast corn output. Weather 

data, soil data, corn yield data. 

Linear Regression, 

LASSO, Light GBM, 

Random Forest, 

XGBoost 

This paper proposed a hybrid simulation-machine 

learning approach that provided improved county-scale 

crop yield prediction. This study demonstrated that on 

average, introducing APSIM variables into machine 

learning models and utilizing them as inputs to a 

prediction task can decrease the prediction error 

measure by RMSE between 7 and 20%. 

“Corn and Soybean yield 

prediction using Deep 

Learning” (S. Khaki et al., 

The yield performance dataset 

includes the observed county-level 

average yield for corn and soybean 

Random Forest, DFNN, 

CNN, RT, LASSO, 

Ridge 

Paper proposed a new convolutional neural network 

model called YieldNet. The goal of this paper is to 

predict the average yield per unit area of two crops 
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2021) [55] between 2004 and 2018 across 1132 

counties for corn and 1076 for 

soybean within 13 states of the US 

Corn Belt and corn satellite data 

used MODIS, cropland data layer 

before harvest based on the sequence of images taken 

by satellite. The transfer learning approach maximizes 

prediction accuracy. 

“An ensemble algorithm for 

crop yield predictions”. 

From different databases, 7 features 

were retrieved in 28242 instances of 

finalized parameters of rainfall, 

temperature, climatic conditions, 

crop-type 

AdaBoost Regressor, 

Gradient Boosting 

Regressor, Tree 

Regressor, Random 

Forest Regressor, KNN, 

Decision Bagging 

Classifier 

Decision tree regressor and Ada Boosting algorithm 

combinations gives the best results. Decision Tree 

Regressor has the highest R2 score of 95%. After 

analysis, AdaBoost and Decision Tree Regressor give 

the most accepted outcomes with 95.7% accuracy. 

“Artificial Neural Network-

Based Crop Yield Prediction 

using NDVI, SPI, VCI 

feature vector” (P. Tiwari et 

al., 2019) [113] 

Geospatial data used various feature 

vectors of SPI, NDVI and VCI. The 

Indian state of Madhya Pradesh is 

the chosen region. 

“Error Back Propagation 

Neural Network” 

(EBPNN), Spiking 

Neural Network (SNN) 

Numerous assessment factors have been overcome by 

comparing the proposed model to earlier researchers' 

studies. Compared to SNN, the proposed approach 

lowered relative error by 33% and RMSE by 31.8%, 

improving accuracy overall. 

“Environment Monitoring 

System for agriculture 

application using IoT and 

predicting crop yield using 

various data mining 

technique” 

Datasets are collected from the 

sensors used at the observation site. 

Humidity, Temperature, Moisture, 

Soil, Ph value, CO2%, Monthly 

rainfall. Datasets taken from records 

of Indian Government area and 

values of crop yield are also taken. 

Random Forest, KNN, 

SVM. 

Eleven thousand record values altogether information is 

used for observation. From random forest classification, 

it is concluded that it is an efficient tool for prediction 

on a narrow range of records, while KNN is 

recommended for a large range of statistical values. 

“Supervised Machine 

Learning approach for crop 

yield prediction in the 

agriculture sector”. 

Rainfall, Temperature, crop name, 

Ph, and Humidity data are obtained 

from the Kaggle website. 

Random Forest 

Classifier, Decision Tree 

The best crop production is predicted using the Random 

Forest method. 

“A CNN-RNN framework 

for crop yield prediction” (S 

Khaki, et al., 2020) [55] 

Yield dataset for corn and soybean, 

weather data (Minimum/Maximum, 

Temperature, solar radiation, 

Precipitation, Vapor Pressure), data 

on soil from the whole corn belt of 

US for 2016, 2017, 2018 years 

historical data. 

LASSO, Deep Fully 

Connected Neural 

Networks (DFNN), 

Random Forest, 

Recurrent Neural 

Networks (RNN), CNN 

The proposed model outperformed other methods like 

LASSO, Random Forest, and DFNN. The CNN-RNN 

model can generalize and provide predictions for 

untested places. The suggested study accurately 

predicted corn and soybean yields over the whole corn 

belt of the United States. Future projects involving 

yield prediction may make use of the presented model. 

The CNN-RNN model underwent feature selection 

using the back propagation approach. 

Nishant et al. 2020 [83] “Crop 

Yield Prediction based on 

Indian Agriculture using 

Machine Learning”. 

Information was obtained from an 

Indian government resource. 

District, state, season, crop, 

production, year, and area with 2.5 

lakh observations. 

Regression techniques 

like-LASSO, ENET, 

Kernel Ridge 

Root mean squared error is the performance statistic 

utilized for this assignment. ENET around 4%, LASSO 

was 2%, and Kernel Ridge after stacking was much less 

than 1%A web application is designed for user/farmer 

to enter details to get predictions. 

“Wheat crop yield prediction 

using new Activation 

Functions in Neural 

Networks” (SH Bhojani, et 

al., 2020) [16] 

Datasets from 1990-1991 to 2016-

2017 yield datasets are acquired 

from the directorate of agriculture in 

Gandhinagar, Gujarat, for analysis 

and research purposes. 

Weather data from the department 

of agro meteorology 

Neural Networks 

technique of Data 

Mining, Multi-layer 

perceptron (MLP) 

Compared the outcomes of several activation functions 

and suggested three new, straightforward activation 

features-DharaSig, DharaSigm, and SHBSIG-for 

improving general effectiveness of neural networks and 

the precision of the findings. Experiments indicate that 

newly created activation features offer better outcomes 

than the ‘sigmoid’ default ANN activation function for 

agriculture datasets. 

“Comparative Evaluation of 

Neural Networks in Crop 

Yield Prediction of Paddy 

and Sugarcane crop” (K. 

Krupavath et al., 2022) [60] 

Crop-sensitive parameters extracted 

from LANDSAT8 OLI imageries. 

Data on paddy and sugarcane crops 

have been taken through regional 

sensing at regional levels. 

Feed Forward Back 

Propagating Neural 

Network” (FFBPNN) 

The results showed that employing remote sensing 

photos and Neural Network models is very effective; 

Paddy shows the higher value of Mean Relative Error 

to be 6.166% and minimum relative error as-0.133%. 

For Paddy higher, an MAE of 0.178 was recorded. 

Manivasagam et al. 2022 

“An efficient crop yield 

prediction using machine 

learning”. 

The dataset contains production 

details, soil and environment 

parameters, rainfall, temperature, 

Humidity, ph. 

Logistic Regression, 

KNN, Random Forest 

Classifier 

Using ML methods to predict crops and also yield. 

Comparing the accuracy of three models, Decision tree 

(90%), KNN (85%), and Random Forest get more 

accuracy (95%). 

“Crop yield prediction 

techniques using machine 

learning algorithms”. 

Nitrogen, Phosphorus, Ph level, 

Humidity, Temperature 

Random Forest, 

Decision Tree, Logistic 

Regression, Support 

Vector Machine, Naïve 

Bayes 

The machine learning methods work on data training, 

resulting in Naïve Bayes to get optimal accuracy that 

helps suggest farming practices. 

“A comparison between 
Cropland data layer: Pixels 

extracted and registered on the CDL 

Deep Neural Networks, 

ANN, 

This article examined several AI algorithms to create a 

reliable crop yield forecast model. Using 

Major Artificial Intelligence 

models for Crop yield 

prediction; Case study of the 

Midwestern United States, 

Map as soybean and corn fields. 

Meteorological data-TMEAN, 

TMIN, TMAX, PPT. 

Satellite image data. 

Multivariate Adaptive 

Regression 

Splines(MARS), 

Extremely Randomized 

A prediction error of around 7.6 percent and 7.8 percent 

for corn and soybean, the DNN model with the JA 

(July-August) database beat the other five AI models. 

For corn and soybean, the model indicated correlation 
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2006-2015”. Statistics on Crop yield-soybean and 

Corn US Agriculture Department 

Hydrological data-Soil Moisture 

Trees, Random Forest, 

Support Vector Machine 

(SVM) 

coefficients of 0.945 and 0.901, respectively. This 

demonstrates how precisely the DNN with the JA 

model can anticipate corn and soybean production. The 

Optimized DNN version created for this research may 

also be used for other crops and in various geographies. 

“Smart Farming Systems; 

crop yield prediction using 

regression techniques”. 

The yield and weather databases 

included four hundred twenty-three 

observations of corn yield and 

monthly averages for temperature 

and precipitation. 

Rainfall, temperature, yield, and 

Humidity are all factors that affect 

the yield of crops. 

Random Forest, SVM 

Regression, Multivariate 

Polynomial Regression, 

Crop yield was used to compare the algorithms based 

on predicted yield, MAE, RMSE, and R squared and 

made. 

SVM outperforms the other two models across the 

board in all three metrics. 

Values of Median Absolute Error: 1.58, MAE: 

3.57, and RMSE: 5.48, and the max R-squared value 

for SVM was obtained to be 0.968. 

 

 

 

 

“Yield predict; a crop yield 

prediction framework for 

smart farms.” 

Data is collected from Open 

Government Data Platform India 

and also the agricultural site of 

Rajasthan. 

Data is divided into two datasets-

Kharif crops and Rabi crops are 

based on the rainfall pattern of 

India. Additional monitored 

attributes are District name, State 

name, Season crop, Crop year, 

Production, Area, Nitrogen, 

Seasonal rainfall, Potassium, 

Phosphorus, Solidic soil (ha), and 

Saline soil (ha), 

K-Nearest Neighbors 

(KNN), Linear 

Regressor, Support 

Vector Regression, Ada 

Boost Regressor, 

Extreme Gradient 

Boosting (XGBoost), 

Decision Trees, Gradient 

Boosting Regressor, 

Random Forest 

Regressor, Light GBM 

Regressor. 

The Gradient Boosting Regressor model has the 

greatest R2 value (0.616) compared to other models 

and performed the best for the Rabi crops dataset. This 

model's RMSE value is 0.482, which is very low. The 

XGBoost Regressor, which has an R2 value of 0.572 

and an RMSE of 0.37, is the model that performs the 

best for datasets on Kharif crops. 

“Crop yield prediction and 

efficient use of fertilizers” 

(S. Bhanumathi et al., 2019) 

[14] 

District, State, Area, Crop, 

Production, Season. This data is 

applied for training the model and 

predicting production. Another 

dataset is used to predict the amount 

of fertilizer used; input parameters 

are nitrogen quantity, phosphorus & 

potassium. 

Random Forest 

algorithm, Back 

Propagation algorithm 

While comparing the two models, the error rate was 

low with Random Forest as compared to the 

backpropagation. 

“Recommendation system 

for crop identification and 

pest control technique in 

agriculture” (S Bhanumathi 

et al., 2019) [14] 

Crop includes Bajra, Cashew nut, 

Chickpea, Jowar, Cotton, Wheat, 

Jute, Tea, Sugarcane, Rice, Ragi, 

and Pulse. Considered Attributes are 

temperature, average rainfall, ph, 

and soil color. 

SVM, Decision Tree, 

Logistic Regression 

The SVM algorithm gives the highest accuracy of 

89.66%. A recommendation system is built where the 

training set is categorized once input is collected 

through a form. 

“Sugarcane yield grade 

prediction using Random 

Forest and Gradient 

Boosting Tree techniques” 

(P. Charoen et al., 2018) [20] 

The study uses data on sugarcane 

output supplied by a Thailand-based 

sugar mill. Data are obtained by 

farmer plots (cane type/class, type 

of soil, area, fertilizer) and actual 

yield which the farmers deliver to 

the mills. 

Gradient Boosting; 

Random Forest 

Classification. 

Accuracies of the two models are-71.83% (Random 

Forest), and 71.64% (Gradient Boost). Comparisons are 

made of predictions of the RF-based method and GBT-

based method with two different non-machine learning 

baselines. 

“Crop Prediction on the 

Region Belts of India; A 

Naïve Bayes Map Reduce 

Precision Agricultural 

Model” (R. Priya et al., 

2018) [94] 

The data was collected from Krishi 

Vigyan Kendre of Telangana State 

of India. Information is gathered 

from various sources, including 

sensor-recorded field data, satellite 

images, reports on irrigation, crop 

data, and meteorological 

information. Temperature, 

Humidity, wind direction, soil 

moisture, speed, diffusion rate, 

radiation, and rainfall are all 

parameters. 

Naïve Bayes Classifier 

The proposed paper discusses a system for 

recommending crops. The proposed system uses 

MapReduce functionality for evaluation with Naïve 

Bayes. The model works in two stages-the first 

suggests which crop should be grown. The second 

suggests the best sowing month so that growth can be 

maximized. 

Source: Kulyal M & Saxena P, 2022) [62] 

 

3. Remote Sensing in Agriculture 

RS technologies are now an inevitable tool in modern 

agriculture. These have provision for exact, large-scale data for 

scanning or monitoring and managing agricultural landscapes 

(Weiss et al., 2020) [116]. With the use of satellites, drones, and 

aerial imagery, it becomes easy to collect real-time data and 

history for critical decision-making in crop production and yield 

estimation (Jewiss et al., 2020) [46]. 

Remote Sensing (RS) is revolutionizing modern agriculture by 

making it possible to monitor large areas of agricultural 

landscapes at a very fine scale (Ozdogan et al., 2010) [85]. In the 

collection of real-time and historic data, RS through satellites, 

drones, and aerial imagery assists in informed decision-making 

on crop yield, environmental monitoring, and yield estimation 

(Yadav et al., 2023) [120].
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Source: Wang et al., 2024 [115] 

 

Fig 4: The comprehensive application framework of different remote sensing satellites in precision agriculture 

 

3.1 Role of Remote Sensing 

One important role of RS in agriculture lies in providing detailed 

spatial and temporal data regarding a wide array of 

environmental and crop health parameters (Singh et al., 2020) 

[108]. The use of RS allows monitoring to be carried out on many 

of the factors affecting agriculture directly (Liaghat, and 

Balasundram, 2010) [68]. 

 Monitoring of Vegetation: The plant health can be tracked 

by using remote sensing based on the spectral signature of 

crops (Houborg et al., 2015) [43]. The NDVI or Normalized 

Difference Vegetation Index helps determine plant 

greenness, vigor, and stress. These values are very crucial in 

finding out the first sign of disease or water and nutrient 

deficiency and thereby correcting these measures before 

problems go out of control (Lawley et al., 2016) [64]. 

 Soil Analysis: RS tools can detect soil properties like 

moisture content, texture and organic matter. Satellite-based 

soil moisture sensors provide important data for judicious 

irrigation management. The data are used in conserving 

water and efficiently improving crop yield (Lobell et al., 

2015) [69]. It has helped farmers track soil properties within 

large areas to sustainably manage soil health. 

 Land Use Mapping: Monitoring and mapping of 

agricultural region land-use patterns can only be effectively 

realized using remote sensing techniques (You et al., 2017) 
[123]. This facilitates identification of crops grown, detecting 

land-cover change, and the assessment of the level of 

expansion in agriculture versus degradation. Information 

helps policymakers and farmers better manage agricultural 

landscapes to maximize and optimize land use (Joshi et al., 

2016) [48]. 

 Monitoring weather and climate: Through satellites, long-

term trends in temperature, precipitation, and wind regimes, 

which directly impact agricultural productivity, can be 

tracked. It enables prediction of climatic anomalies like 

drought or floods that would lead farmers to make changes 

in practice (Dewitte, et al., 2021) [25]. 

 

 
Source: Pokhariyal et al., 2023) [91] 

 

Fig 5: Digital transformation in agriculture representing integration of remotely sensed data, crop simulation, and machine learning 

 

3.2 Key remote sensing datasets 

Several satellite and aerial platforms are now used to provide 

high-resolution data that supports diverse agricultural 

applications (Zhang et al., 2020) [124]. These datasets enable 

farmers, researchers, and agricultural practitioners to assess crop 

health, optimize resource use, and forecast yields: 

 Landsat Program: Landsat satellites are a major part of 

monitoring agriculture for generations, even offering 

https://www.agronomyjournals.com/


International Journal of Research in Agronomy  https://www.agronomyjournals.com  

~ 557 ~ 

multispectral and thermal imagery (Wulder et al., 2022) 
[119]. These datasets are critical for long-term analysis in 

vegetation, mapping land cover, and studying trends in 

agriculture over time (Wulder et al., 2019) [118]. 

 Sentinel Satellites (Sentinel-2): Sentinel-2 offers high-

resolution optical and near-infrared imagery, enabling 

detailed analysis of vegetation health (Drusch et al., 2012) 
[26]. This data is used for crop condition monitoring, 

identifying plant stress, and assessing yield potential. Its 

ability to capture images every 5 days ensures frequent 

updates for dynamic agricultural systems. 

 MODIS: This sensor installed in NASA's satellites captures 

low-resolution data good for large area vegetation 

monitoring, assessment of drought and climate studies 

(Sheffield et al., 2018) [107]. It offers a nearly global 

coverage that is also quite useful to identify the large-area 

trends of vegetation (Ndehedehe et al., 2022) [80]. 

 UAV (Unmanned Aerial Vehicles): Drones equipped with 

multispectral and hyperspectral sensors allow for high-

resolution images to be interpreted at the field level. These 

are now common in precision agriculture for crop health 

monitoring, optimization of irrigation, or identification of 

early pest or disease outbreaks at farm level (Adão et al., 

2017) [1]. 

 

3.3 Vegetation Indices for Yield Prediction 

 Vegetation indices (VIs): Derived from RS data represent 

an essential tool for crop health assessment and yield 

prediction in agriculture (Karthikeyan et al., 2020) [51]. Key 

indices used for yield prediction include vegetation indices 

based on light reflectance at different wavelengths: 

 NDVI: Stands for Normalized Difference Vegetation Index. 

This is one of the most frequently used VIs in assessing the 

general health of the plants. NDVI measures the difference 

between near-infrared and red light reflected from the 

plants. It is positively correlated with chlorophyll and plant 

vigor. NDVI can be used to determine crop health, so 

proper harvesting time is determined. 

 Enhanced Vegetation Index (EVI): EVI is more accurate 

than NDVI since it removes the effect of clouds, aerosols, 

and soil brightness. EVI, therefore, becomes more accurate 

in densely vegetated areas rather than NDVI because the 

latter becomes saturated (Matsushita et al., 2007) [73]. The 

use of EVI has become significant in high-density cropped 

areas to assess the growth and stress of crop vegetation 

(Gurung et al., 2009) [41]. 

 
Table 2: Yield prediction using RS and ML techniques in India 

 

Crop Input Functionality Algorithm Scale Result Reference 

Rice 
RS variable: NDVI 

Satellite: Sentinel 1A and Sentinel 2B 

RF (Random 

Forest) 
Regional 

Rice yield predicted as 1.60 metric 

tons/hectare 

(Ranjan et al., 

2019) [95] 

Sugarcane 

(a) RS variable: NDVI 

(b) Meteorological: temperature, dew point temperature, 

soil temperature, soil moisture, precipitation, relative 

humidity, sunshine duration, evapotranspiration 

Satellite: LANDSAT 8 

SVR, LR, NB, 

DT, SVR-RBF 
Regional 

Best model: SVR-RBF, OA = 

83.49% 

(Medar et al., 

2019) [74] 

Rice 

RS variable: NDVI 

Meteorological data: RF, Temperature, SR, RH 

Satellite: LANDSAT 8 

ANN, RF Regional 

Combined ANN models with Boruta 

feature selection and random forest 

importance: 0.651-0.663 

(Chandra et 

al., 2019) [18] 

Wheat 

(a) RS variable: NDVI, NIRv, NDWI 

(b) Meteorological: Tmin, Tmax, Tmean, RF, VPD, 

SWdown, day length 

Satellite: MODIS 

CNN, RF, RR IGP 
Best model: CNN with NSE of 

0.868 

(Wolanin et 

al., 2020) [117] 

Sugarcane 

RS variable: RVI, NDVI, SAVI, OSAVI, DVI, GCI, EVI, 

ARVI, VARI, NDMI, NDWI, NN, NG 

Satellite: LANDSAT-8 

SVR, CART, 

k-NN, RF 
Regional 

Best model: RF with R² = 0.94 and 

RMSE = 1.51 t/ha 

(Singla et al., 

2020) [110] 

Sugarcane 
RS variable: NDVI, WSI, APAR, CWSI (NDVI/Ts) 

Satellite: LANDSAT 8 
ANN Field 

Estimated sugarcane yield with 95% 

accuracy 

(Krupavathi et 

al., 2021) [61] 

Cotton 

(a) RS variable: NDVI 

(b) Meteorological: RF 

Satellite: MODIS 

RF Regional September month: R² = 0.69 
(Prasad et al., 

2021) [93] 

Rice 

(a) RS variable: MODIS-LAI 

(b) Observed yields (2003-2017) from the Directorate of 

Economics and Statistics (MoA) 

Satellite: MODIS 

GBR Regional 
Validation for 2016: R² = 0.84 

Validation for 2017: R² = 0.77 

(Arumugam et 

al., 2021) [10] 

Sugarcane 

RS variable: NDVI, EVI, LAI, FPAR, ET, PET, LE, GPP, 

RF 

Satellite: MODIS, CHIRPS 

RF, SVR, 

GBR, XGB 
Regional 

Best model: GBR, R² = 0.66, RMSE 

= 7.15 t/ha 

Nihar et al., 

2022 [82] 

Source: Pokhariyal et al., 2023 [91] 

 

3.5 Challenges in Remote Sensing 

Despite the numerous advantages, remote sensing in agriculture 

faces certain challenges. 

 Data Resolution and Availability: High-resolution RS 

data is often expensive and not readily available to small-

scale farmers. The cost of acquiring and processing high-

quality data is a significant barrier to its widespread 

adoption, especially in developing regions (Kempeneers et 

al., 2011) [54]. 

 Cloud Cover and Weather Conditions: Weather 

conditions in general, cloud cover, and the lack of clear 

satellite imagery may prevent or limit the data-gathering 

process (Alavipanah et al., 2010) [5]. Especially where 

rainfall or cloud cover is common, it becomes quite 

challenging to get clear images, as farmers need to monitor 

crops continuously. 

 This needs expertise in remote sensing, image processing, 

and analysis of RS data. Innumerable farmers and practicing 
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agriculturalists don't possess adequate technical knowledge 

and facilities to be able to operate the RS tools properly and 

so, their integration at the field levels is difficult. 

 

4. Applications of ML for Crop Yield Predictions 

The integration of machine learning with remote sensing data 

has the potential to significantly improve the accuracy and 

efficiency of crop yield prediction. 

 

4.1 Workflow for Integration 

 Data Collection: High-quality RS data, along with ground-

truth data from field observations, form the foundation of 

ML models for agricultural forecasting (Khilola, 2024) [57]. 

 Preprocessing: The RS data generally needs preprocessing 

such as noise removal, feature extraction, and data 

normalization for the suitability of machine learning 

algorithms (Sishodia et al., 2020) [111]. 

 Model Development: Machine learning models are 

developed using historical and real-time RS data to predict 

various outcomes, such as crop yield and health (El-Omairi 

et al., 2023) [30]. 

 Validation and Deployment: The performance of ML 

models is validated using independent data sets, and the 

models are deployed for real-time predictions. 

 

4.2 Success Stories and Applications 

 Wheat Yield Prediction: Researchers have used Sentinel-2 

imagery with Random Forest models to predict wheat yields 

with high accuracy. This approach helps in forecasting 

regional yields and informs policy decisions (Segarra et al., 

2022) [101]. 

 Rice Yield Estimation: UAV imagery combined with 

CNNs has been used to estimate rice yield in precision 

farming systems. This technique enhances yield forecasting 

at the field level (Yang et al., 2019) [121]. 

 

5. Challenges and Limitations 

5.1 Quality and Availability of Data 

The high-resolution RS data is often costly, and a large amount 

of data requires massive storage and processing capabilities. In 

addition, data quality depends on the platform, sensor type, and 

environmental conditions that may affect the reliability of the 

results. 

 

5.2 Algorithm Complexity 

The selection and calibration of the appropriate ML algorithms 

for specific agricultural applications are difficult. Algorithms 

have to be fine-tuned for the specific difficulties that different 

crops, climates, and regions may pose. 

 

5.3 Environmental and Regional Variability 

Agricultural models that rely on RS data have to take into 

consideration the variability in local climates, soil types, and 

topography. Regional variations can greatly influence the 

performance of predictive models and thus require calibrations 

according to local conditions. 

 

6. Future Directions 

Future perspectives of RS in agriculture 

Advancements in technology are very promising for RS. Several 

developments lie on the horizon. 

 Transfer learning models: With the transfer learning 

model, it would be possible to adapt the data of RS with 

machine learning algorithms of the RS to regions. This way, 

the entire set of the developed technology could easily reach 

the far-off farmers. 

 Integration with IoT: The integration of RS with Internet 

of Things (IoT) technologies will enable real time sensing 

of data collected by sensors in the field, which will help 

farmers attain real-time information regarding crop health, 

soil moisture, and environmental conditions. 

 Hyperspectral imaging advancement: The hyperspectral 

imaging technology captures a larger range of wavelengths 

than the multispectral sensors, thereby providing even more 

detailed insights about crop health, nutrient status, and 

stress factors. This may have the potential to be even more 

precise in crop management and yield prediction. 

 

7. Conclusion 

The integration of machine learning and remote sensing has 

transformative potential for agriculture, especially in improving 

crop yield prediction and precision farming. Challenges remain 

in terms of data resolution, cost, and technical expertise, but 

continuous advancement in technology, data processing, and 

accessibility will overcome these barriers. As these technologies 

evolve, they promise to drive more sustainable and efficient 

agricultural practices, ultimately benefiting farmers, researchers, 

and the global food supply chain. 

The integration of ML and RS offers transformative potential in 

agriculture, particularly for crop yield prediction. While 

challenges exist, continuous advancements in technology and 

data availability are expected to bridge the gaps, paving the way 

for sustainable agricultural practices. 
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