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Abstract 
Effective sorghum yield prediction plays a pivotal role in sustainable agricultural planning and food 

security. This research explores the integration of Sentinel-1A synthetic aperture radar (SAR) data and the 

Decision Support System for Agrotechnology Transfer (DSSAT) crop simulation model to map sorghum 

yield spatially in Belagavi district, Karnataka, India. The study processed SAR backscatter to delineate 

crop areas, achieving an overall classification accuracy of 85.2% with a kappa index of 0.70, demonstrating 

the utility of SAR for consistent monitoring under diverse weather conditions. Leaf Area Index (LAI) 

derived from backscatter was integrated with DSSAT outputs to estimate spatial yield, validated against 

Crop Cutting Experiment (CCE) data. The results showed an agreement of 85.4% between observed and 

predicted yields, confirming the robustness of this approach for precision agriculture. Future work will aim 

to refine model parameters and leverage advanced machine learning for enhanced adaptability to climate 

impacts. 

 

Keywords: SAR, sorghum, yield prediction, crop simulation model, remote sensing and backscattering 

value 

 

1. Introduction  

Accurate and scalable agricultural yield estimation is a cornerstone of modern precision 

agriculture. It supports effective resource management, informed decision-making, and strategic 

policy development to address the growing challenges of food security and environmental 

sustainability. While traditional yield estimation methods, such as ground surveys and manual 

sampling, provide accurate results at local scales, they are often labor-intensive, time-

consuming, and lack spatial coverage. The advent of remote sensing technologies and crop 

simulation models has revolutionized agricultural monitoring by providing efficient, scalable, 

and timely solutions for estimating crop yields over large regions. 

Remote sensing offers invaluable geospatial data for monitoring vegetation dynamics, crop 

health, and yield potential (Karmakar et al., 2024) [8]. Optical remote sensing, relying on sensors 

that capture reflectance in the visible and near-infrared (NIR) bands, has been extensively used 

to derive vegetation indices such as the Normalized Difference Vegetation Index (NDVI), 

Enhanced Vegetation Index (EVI), and Normalized Difference Water Index (NDWI). These 

indices are strongly correlated with crop health, leaf area index (LAI), and biomass. Studies such 

as Ma et al. (2022) [10] have demonstrated the integration of optical remote sensing data with 

crop growth models, such as SAFY, for precise wheat yield estimation. Despite its advantages, 

optical remote sensing is highly susceptible to atmospheric interference, particularly cloud 

cover, which limits its effectiveness in regions with persistent cloudy weather during critical 

crop growth stages (Wu et al., 2023) [19]. 

In contrast, microwave remote sensing, specifically Synthetic Aperture Radar (SAR), provides 

an all-weather monitoring capability, unaffected by cloud cover or time of day. SAR data is 

sensitive to biophysical parameters such as surface roughness, soil moisture, and vegetation 

structure, making it particularly effective for crop area mapping and growth monitoring in 

challenging weather conditions (Subbarao et al., 2021) [15]. Yang et al. (2021) [20] emphasized the 

effectiveness of integrating SAR data with crop growth models for biomass yield prediction in  
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sorghum, demonstrating its reliability and robustness under 

diverse agro-climatic conditions. Furthermore, Gumma et al. 

(2022) [6] highlighted the successful use of SAR data in 

combination with crop simulation models for large-scale yield 

estimation in India, showcasing its potential to address spatial 

variability in crop performance. 

The integration of SAR data with crop simulation models 

combines the strengths of remote sensing and biophysical 

modeling. Crop growth models, such as DSSAT-CERES, 

simulate crop development based on site-specific parameters, 

including soil properties, weather, and management practices 

(Chen & Tao 2022) [2]. These models provide detailed insights 

into crop performance and yield potential but require accurate 

spatial inputs for improved predictions (Torre et al., 2021) [4]. 

Remote sensing data serves as a critical input for calibrating and 

validating these models, enhancing their spatial precision and 

predictive accuracy. 

This study focuses on integrating Sentinel-1 SAR data with the 

DSSAT-CERES crop simulation model to estimate spatial yields 

of Rabi sorghum in Belagavi district, Karnataka, India. 

Sorghum, a staple cereal crop in semi-arid regions, plays a vital 

role in food and fodder security. Belagavi district, with its 

diverse agro-climatic zones and extensive sorghum cultivation, 

presents an ideal case for applying advanced remote sensing and 

modeling techniques. The specific objectives of the study are to 

map sorghum cultivation areas, derive spatial LAI and yield 

estimates, and validate predictions using field-level Crop 

Cutting Experiment (CCE) data. 

 

2. Materials and Methods 

2.1 Study Area 

This research was conducted in the Belagavi district of 

Karnataka, India, a region known for its extensive Rabi sorghum 

cultivation. Belagavi covers approximately 13,415 square 

kilometers and is situated between latitudes 15°23'N to 16°58'N 

and longitudes 74°5'E to 75°28'E (Fig. 1). The district features a 

semi-arid climate with hot summers and mild winters. The 

average annual rainfall varies between 600 mm and 800 mm, 

primarily received during the southwest monsoon from June to 

September. The soils are predominantly black cotton soils with 

good water retention capacity, making them suitable for 

sorghum cultivation. Belagavi’s agricultural landscape is 

characterized by rainfed farming systems, with sorghum being 

one of the principal crops grown during the Rabi season. 

 

 
 

Fig 1: Location of the Stude Area 

 

2.2 Satellite Data 

Sentinel-1 SAR data, obtained from the European Space Agency 

(ESA), was used for this study due to its ability to capture all-

weather, day-and-night backscatter information. The satellite 

operates in the C-band and offers dual polarization (VH and 

VV) data, which are sensitive to soil moisture and vegetation 

structure. The study utilized Interferometric Wide Swath (IW) 

mode Ground Range Detected (GRD) products acquired during 

the Rabi season from October 2022 to March 2023. These data 

were collected at 12-day intervals, enabling temporal analysis of 

crop growth stages. Table 1 provides detail information about 

Sentinel 1A satellite. 
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Table 1: Details of Sentinel 1A (IW-GRD) data 
 

S. No Parameters Characteristics 

1. Pixel value Magnitude detected 

2. Coordinate system Ground range 

3. Polarization options Single (VV or HH) or Dual (HH+HV or VV+VH) 

4. Look overlap (range, azimuth) 0.250, 0.000 

5. Resolution (range x azimuth in meters) 20.4 x 21.7 

6. Bits per pixel 16 

7. Pixel spacing (range x azimuth in meters) 10 x 10 

8. Radiometric resolution 1.7 dB 

9. Incidence angle (degree) 32.9 

10. Ground range coverage (km) 251.8 

11. Equivalent Number of Looks (ENL) 4.4 

12. Absolute location accuracy (m) 7 

13. Number of looks (range x azimuth) 5 x 1 

14. Azimuth look bandwidth (Hz) 327 

15. Range look bandwidth (Hz) 14.1 

Source: (De Zan and Guarnieri, 2006) [5] 

 

2.3 SAR Data Preprocessing 

The Sentinel-1 SAR data were preprocessed using Mapscape 

software and other geospatial tools to ensure accurate analysis. 

Key preprocessing steps included: 

• Strip Mosaicking: Individual SAR image frames from the 

same orbit and acquisition date were mosaicked to generate 

continuous strips, facilitating seamless data management 

and processing. 

• Co-registration: Multi-temporal images were 

geometrically aligned using co-registration, which is a 

prerequisite for effective time-series analysis and speckle 

filtering (Raman et al., 2019) [14]. 

• Time-Series Speckle Filtering: A multi-temporal filter by 

De Grandi et al. (1997) [3] was applied to reduce speckle 

noise while preserving the reflectivity of stable objects. 

• Terrain Geocoding and Radiometric Calibration: Digital 

Elevation Model (DEM) data were used to convert the SAR 

data into geocoded σ° values in a cartographic reference 

system. Radiometric normalization was applied to correct 

for range and angle dependencies (Ramalingam et al., 2019; 

Venkatesan et al., 2019; Karthikkumar et al., 2019) [13, 18, 9] 

• ANLD Filtering and Atmospheric Correction: Adaptive 

Non-Local Means filtering (ANLD) was employed to 

smooth homogeneous areas and enhance feature boundaries. 

Corrections for atmospheric attenuation due to water vapor 

and heavy rainfall were applied using temporal signature 

anomaly detection techniques (Aspert et al., 2007) [1]. 

 

2.4 Crop Area Mapping 

SAR backscatter data were classified into crop and non-crop 

categories using a rule-based classification approach based on 

temporal signatures (Fig. 2). Site-specific parameters, such as 

minimum and maximum backscatter values, were derived for 

sorghum fields. These parameters guided the classification 

process, and the results were validated using ground truth data 

collected from stratified random sampling points across the 

study area. Accuracy metrics, including overall accuracy and the 

kappa coefficient, were calculated to assess the reliability of the 

classification. 

 

 
 

Fig. 2: Methodology for crop area mapping 
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2.5 DSSAT-CERES Crop Simulation Model 

The DSSAT-CERES Sorghum model was used to simulate crop 

growth and yield under specific environmental conditions (Fig. 

3). Key input data included: 

• Weather Data: Daily maximum and minimum 

temperatures, solar radiation, and rainfall, sourced from 

local meteorological stations. 

• Soil Data: Soil texture, organic carbon content, and

moisture availability were derived from local soil surveys. 

• Crop Management Data: Information on planting dates, 

row spacing, fertilizer application, and irrigation schedules 

was collected through field surveys. 

 

The model was calibrated using observed field data and 

validated with Crop Cutting Experiment (CCE) yields collected 

from representative locations in the study area. 

 

 
 

Fig. 3: Schematic diagram illustrating the methodology of the DSSAT CERES-Sorghum crop simulation model 

 

2.6 Leaf Area Index (LAI) Estimation 

LAI values were derived from SAR backscatter data using a 

regression model developed by correlating field-measured LAI 

with SAR backscatter values. These spatially estimated LAI 

values served as critical inputs for the DSSAT-CERES model to 

simulate sorghum growth and yields across the district. 

 

2.7 Yield Estimation and Validation 

Spatial yield estimation was conducted by integrating SAR-

derived LAI with DSSAT-simulated yields (Fig 4). The results 

were validated using CCE data collected at 30 representative 

locations across the district. Statistical metrics, including Root 

Mean Square Error (RMSE), Normalized RMSE (NRMSE), and 

percentage agreement, were used to evaluate the accuracy of the 

predictions. 

 

2.8 Statistical Analysis 

The reliability of the classified sorghum area and yield estimates 

was assessed using accuracy metrics such as overall 

classification accuracy, kappa coefficient, RMSE, and NRMSE. 

Agreement percentages were calculated to quantify the degree of 

similarity between observed and predicted values. 

 

 
 

Fig. 4: A schematic representation of crop yield estimation integrating SAR satellite-derived products with the DSSAT crop simulation model 
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3. Results and Discussion 

3.1 Sorghum Area Estimation 

The classified Rabi sorghum area in Belagavi district, 

Karnataka, was estimated to be 141,756 hectares during the Rabi 

season of 2023 (Table 2). The analysis revealed significant 

spatial variability in sorghum cultivation across the district. 

Among the ten administrative blocks, Gokak recorded the 

highest sorghum area at 26,743 hectares, followed by Athni and 

Raybag, with 25,737 and 17,933 hectares, respectively. These 

regions benefit from favorable agro-climatic conditions and 

relatively higher soil fertility, supporting extensive sorghum 

cultivation. Conversely, blocks such as Khanapur (1,309 

hectares) and Belgaum (4,941 hectares) had comparatively 

lower sorghum cultivation, potentially due to their focus on 

alternative crops or limitations in irrigation infrastructure. 

The spatial distribution of sorghum cultivation areas was 

visually represented in a Fig. 5 thematic map, highlighting the 

variability across blocks. Such detailed spatial information can 

support targeted agricultural interventions, such as optimized 

resource allocation, strategic irrigation planning, and adaptive 

crop management practices, especially in high-producing 

regions like Gokak and Athni. These insights align with findings 

from Yang et al. (2021) [20], who highlighted the utility of remote 

sensing for spatially explicit biomass mapping, aiding precision 

agriculture. Crop area mapping using SAR data is unaffected by 

cloud cover and rainfall, enabling image acquisition both day 

and night (Kannan et al., 2021; Poompavai et al., 2024) [7, 12]. 

 
Table 2: Block-wise Crop area statistics  

 

S. No Block Name Area (ha) 

1.  Athni 25737 

2.  Bail Hongal 9161 

3.  Belgaum 4941 

4.  Chikodi 14282 

5.  Gokak 26743 

6.  Hukeri 12376 

7.  Khanapur 1309 

8.  Ramdurg 12917 

9.  Raybag 17933 

10.  Saundatti 16356 

Total 141756 

 

 
 

Fig. 5: Sorghum crop area map 
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3.2 Accuracy assessment of crop area  

The reliability of the sorghum area map was assessed using 
ground truth data collected through stratified random sampling. 
A total of 169 points, including 82 from sorghum fields and 87 
from non-sorghum fields, were used for validation (Table 3). 
The overall classification accuracy was 85.2%, with a kappa 
coefficient of 0.70, reflecting good agreement between the 
classified map and the ground truth data. 
The average reliability of the classification was calculated to be 
85.2%. These results underscore the effectiveness of integrating 
Sentinel-1 SAR data with a rule-based parameterized 
classification approach for crop mapping (Pazhanivelan et al., 
2022, Thirumeninathan et al., 2024) [11, 16]. 
 

Table 3: Accuracy assessment of sorghum crop area 
 

Actual class 
from survey 

Predicted class from the map 

Class Sorghum 
Non-

Sorghum 
Accuracy 

(%) 

Sorghum  70 12  85.4% 

Non-Sorghum  13 74  85.1% 

Reliability  84.3%  86.0%  85.2% 

Average accuracy 85.20%  

Average reliability 85.20%  

Overall accuracy 85.2% Good Accuracy 

Kappa index 0.70 Good Accuracy 

3.3 Estimation of Leaf Area Index 

The spatial Leaf Area Index for Rabi sorghum in Belagavi 

district was developed by integrating Sentinel-1 SAR 

backscatter values with DSSAT-simulated LAI values. A 

regression model was established to correlate field-measured 

LAI with SAR-derived backscatter (σ°) values. The resulting 

spatial LAI map revealed significant variations in LAI across the 

district, reflecting differences in crop health and growth stages 

among blocks (Fig. 6). 

The LAI ranged from 0.8 to 4.2, with the highest values 

observed in blocks such as Gokak and Athni, where favorable 

agro-climatic conditions and better management practices were 

prevalent. In contrast, blocks like Khanapur and Belgaum 

recorded lower LAI values, likely due to less favorable 

conditions or lower inputs. This spatial variability in LAI 

underscores the importance of site-specific crop management 

strategies to optimize sorghum productivity. 

The accuracy of LAI estimation was validated against field data, 

with high agreement percentages across the study area. These 

results align with previous studies, such as Yang et al. (2021) [20] 

and Ma et al. (2022) [10], which demonstrated the efficacy of 

combining SAR data with crop simulation models for reliable 

LAI estimation in sorghum and wheat, respectively. 

 

 
 

Fig. 6: Spatial Leaf Area Index for Belagavi district 
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3.4 Sorghum Yield Estimation 

The spatial yield of Rabi sorghum was estimated by integrating 

the DSSAT-CERES Sorghum model with Sentinel-1 SAR-

derived LAI values. The DSSAT model simulated yields based 

on soil, weather, and crop management inputs, while SAR-

derived LAI values provided spatially explicit observations to 

calibrate the model. Figure 7 shows spatial yield across Belagavi 

district. 

The estimated average yield 1028 kg/ha across Belagavi district. 

Blocks with higher yields, such as Gokak and Athni, 

corresponded to areas with higher LAI values, reflecting better 

crop health and favorable growing conditions. The yield 

estimates were validated using Crop Cutting Experiment (CCE) 

data collected from 30 representative locations across the district 

(Table 5). The validation revealed a strong agreement of 85.4% 

between predicted and observed yields, with an RMSE of 92.5 

kg/ha and a Normalized RMSE (NRMSE) of 8.6%. These 

metrics indicate a high level of accuracy in yield prediction, 

demonstrating the reliability of integrating SAR data with the 

DSSAT-CERES model. 

The results align with findings by Gumma et al. (2022) [6], who 

reported similar levels of agreement when combining remote 

sensing data with crop growth models for yield estimation in 

India. Additionally, the spatial yield map generated in this study 

provides actionable insights for precision agriculture, enabling 

farmers and policymakers to identify high- and low-productivity 

areas for targeted interventions. 

 

 
 

Fig. 7: Spatial yield for Belagavi district 
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Table 5: The Table shows agreement between Remote Sensing yield and Observed yield 
 

S .No Longitude Latitude Remote Sensing Yield (kg/ha) CCE (kg/ha) Agreement (%) 

1 15.99485 75.13859 1145 1480 77.4 

2 16.2105 74.59584 1485 1275 83.5 

3 15.71664 74.92572 865 950 91.1 

4 15.71686 74.93779 926 910 98.2 

5 15.72686 74.93767 845 800 94.4 

6 15.9297 74.82475 921 950 96.9 

7 15.92547 74.80901 614 580 94.1 

8 15.93266 74.81438 453 326 61.0 

9 15.77061 74.64319 765 850 90.0 

10 15.78462 74.64774 856 950 90.1 

11 15.77361 74.64076 1121 1450 77.3 

12 16.35244 74.50611 1121 1310 85.6 

13 16.22001 74.59898 1235 1490 82.9 

14 16.35229 74.50072 1058 1240 85.3 

15 15.7596 74.65035 854 720 81.4 

16 16.35892 74.50651 1017 800 72.9 

17 15.87995 74.68652 1005 900 88.3 

18 15.88215 74.67919 988 1130 87.4 

19 15.87603 74.67892 988 1170 84.4 

20 15.86901 74.79382 987 1260 78.3 

21 15.85763 74.79295 785 610 71.3 

22 15.86667 74.77582 985 978 99.3 

23 15.717 75.19993 1329 1550 85.7 

24 16.00864 75.03388 962 1280 75.2 

25 15.72766 75.18973 1069 1295 82.5 

26 15.70572 75.19919 1485 1210 77.3 

27 15.7705 74.6507 1485 1318 87.3 

28 15.77148 74.64009 1365 1320 96.6 

29 15.78343 74.64443 987 870 86.6 

30 16.10932 75.15255 1140 1130 99.1 

Agreement 85.4 

 

4. Conclusion 

This study demonstrated the integration of Sentinel-1 SAR data 

with the DSSAT-CERES crop simulation model for spatial 

estimation of Leaf Area Index (LAI) and yield of Rabi sorghum 

in Belagavi district, Karnataka. The spatial sorghum average 

yield 1028 kg/ha, with the highest yields in Gokak and Athni 

blocks, highlighting optimal growing conditions. The 

classification accuracy of sorghum areas was 85.2%, with a 

kappa coefficient of 0.70, validating SAR data's reliability for 

crop mapping in semi-arid regions. Integrating SAR-derived 

LAI with DSSAT simulations achieved 85.4% agreement 

between predicted and observed yields, demonstrating the 

synergy of remote sensing and modeling. 

The all-weather capability of SAR ensured consistent data 

acquisition, critical for agricultural monitoring in regions with 

variable climates. The spatial maps generated provide actionable 

insights for precision agriculture, enabling targeted interventions 

to optimize productivity and resource use. Future efforts should 

focus on integrating optical and SAR data, advanced machine 

learning techniques, and multi-crop models to further enhance 

prediction accuracy. This approach supports sustainable 

agriculture and food security, particularly in resource-limited 

semi-arid regions. 
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