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Abstract 
The advent of high-throughput phenotyping (HTP) technologies has revolutionized crop improvement by 

enabling rapid, non-destructive measurement of multiple plant traits. These advanced methods facilitate the 

efficient collection of phenotypic data, bridging the gap between traditional phenotyping and modern 

genomics. These technologies allow for the comprehensive analysis of complex traits, such as growth, 

yield and stress adaptations, under diverse environmental conditions. By integrating imaging techniques 

like near infrared, far infrared, thermal and hyper spectral imaging techniques with machine learning 

algorithms, high throughput phenotyping enhances the accuracy and efficiency of plant characters 

measurements. This dynamic approach enables the discovery of novel traits and accelerates breeding 

programs by providing deeper insights into genotype-phenotype relationships. Additionally, these 

technologies supports the continuous monitoring of plant development, stress responses and adaptive 

mechanisms, offering a more general perception of plant-environment interactions. The incorporation of 

robotics and automation in this technology not only increases precision but also allows for repeated, non-

invasive measurements, fostering more informed breeding decisions. As these new technologies continue 

to advance, they hold the capacity to significantly accelerate the development of improved crop varieties, 

addressing the challenges of modern agriculture. 

 

Keywords: High-throughput phenotyping, robotics, genomics, thermal imaging, modern agriculture 

 

Introduction  

The collection of phenotypic data for a large number of phenotypic characters in a large 

extensive area is labor-intensive and challenging. Technological advancements have given rise 

to the concept of high-throughput phenotyping methods. High-throughput phenotyping (HTP) 

rapidly measures multiple plant traits without harm. It tracks growth, yield and stress responses 

using non-destructive methods (Abebe et al., 2023; Pabuayon et al., 2019) [2, 6]. Plant 

phenotyping is a more recent and comprehensive definition for plant phenotyping, which 

assesses complex plant traits such as growth, development, tolerance, resistance, architecture, 

physiology, ecology, yield (Cadle-Davidson et al., 2019; Chaitra et al., 2017) [15, 18] and the basic 

measurement of individual quantitative parameters that form the basis for complex trait 

assessment. These technologies enable researchers to collect vast amounts of phenotypic data 

quickly and efficiently, allowing for more comprehensive analyses of plant traits (Sheikh et al., 

2023; He et al., 2024) [87, 45]. These advanced methods can capture subtle differences in plant 

characteristics that may be overlooked by traditional phenotyping approaches. By integrating 

HTP with other cutting-edge technologies, scientists can gain deeper insights into plant biology 

and accelerate crop improvement efforts (Casto et al., 2021; Sheikh et al., 2023) [17, 87].  

High-throughput phenotyping has been implemented primarily to address the following 

challenges: outdated phenotyping tools, accelerated genomics technologies - a large gap between 

genotype and phenotype, deriving new traits that were not previously considered for 

phenotyping on the whole population, dynamic phenotyping, automation and robotics - increase 

accuracy and non-destructive phenotyping (Chen et al., 2015; Choudhury, 2020; Namin et al., 

2017) [21, 23, 65]. The benefits arising from the utilization of HTP technologies facilitate the 

identification of novel traits that may have been overlooked using traditional phenotyping  
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methods, potentially leading to new breeding targets and 

improved crop varieties (Sheikh et al., 2023) [87]. These 

technologies offer a solution to bridge the gap between rapidly 

advancing genomic technologies and traditional phenotyping 

methods. Providing more accurate and detailed phenotypic data 

enables researchers to correlate genotypic information with 

observable plant traits (Kiranmai, 2023; Nuzzo et al., 2009) [11, 

67]. This enhanced understanding of genotype-phenotype 

relationships can lead to more targeted and efficient crop 

breeding strategies, ultimately accelerating the development of 

improved varieties. These advanced techniques also facilitate 

dynamic phenotyping, enabling researchers to monitor plant 

traits over time and in response to various environmental 

conditions (Dalal et al., 2020; Attia et al., 2020) [26, 10]. This 

temporal and contextual information can provide valuable 

insights into plant development, stress responses, and adaptive 

mechanisms, thereby enhancing our understanding of complex 

plant-environment interactions. Advanced phenotyping 

technologies not only improve accuracy through automation and 

robotics but also enable non-destructive measurements, allowing 

for repeated observations on the same plants throughout their 

growth cycle (Van De Zedde, 2022) [97]. This noninvasive 

approach provides a more comprehensive understanding of plant 

development and responses to environmental factors, thereby 

facilitating more informed breeding decisions. The integration of 

these technologies with machine-learning algorithms can further 

enhance data analysis, elucidating subtle patterns and 

relationships that may not be apparent through traditional 

methods (Gupta et al., 2016; Pathak et al., 2023; Pedro, 2023) 
[41, 73, 74]. 

 

High throughput phenotyping 

High-throughput phenotyping (HTP) technologies are 

revolutionizing crop improvement by enabling precise 

measurements of various traits across thousands of field-grown 

plants in diverse environments (Shakoor et al., 2017; Jangra et 

al., 2021; Sheikh et al., 2023) [84, 49, 87]. This approach is critical 

for selecting superior lines based on yield, disease resistance, 

and stress tolerance, thereby accelerating breeding programs 

aimed at enhancing crop performance (Paliwal et al., 2021; 

Sreenivasulu et al., 2006; Subiramani et al., 2020; Thakkar et 

al., 2021) [70, 90, 92]. 

 

Understanding phenomics 

The term "phenomics," introduced by Gerlai in 2002, refers to 

the comprehensive study of phenotypes at multiple biological 

levels, from molecular to organismal scales (Biase, 2023; Chen 

et al., 2013) [14, 22]. High-throughput methods facilitate the 

analysis of plant growth, architecture, performance and 

composition, employing advanced imaging technologies such as 

hyperspectral imaging and 3D scanning. These non-invasive 

techniques allow researchers to capture detailed morphological 

and physiological data, significantly enhancing the 

understanding of plant responses to environmental stimuli 

(Haase, 2012) [42]. 

Applications of high-throughput phenotyping 

High throughput phenotyping technologies support the 

simultaneous analysis of multiple traits across various genetic 

lines and environmental conditions (He et al., 2024; Morota, 

2024) [45, 64]. This capability not only expedites the identification 

of desirable traits but also enriches the understanding of gene 

functions and interactions within the context of plant responses 

to stressors. By integrating phenomic data with other omics 

approaches, researchers can explore the intricate relationships 

between genotype, phenotype and environment, which is 

essential for developing targeted crop improvement strategies 

(Yang et al., 2021; Zaghlool & Attallah, 2022) [103, 105]. 

Moreover, high-throughput phenotyping is vital for evaluating 

mutant populations, mapping populations, breeding populations, 

and germplasm collections. The development of phenotyping 

devices, including local cameras and infrared thermography, has 

enabled the assessment of stomatal opening and osmotic stress, 

providing quantitative data that can detect germplasm resistant 

to abiotic stresses in various plant species, including cereals and 

Arabidopsis. 

These phenotyping technologies are indispensable for modern 

plant breeding, offering a pathway to enhance crop resilience 

and productivity (Zhou et al., 2021) [109]. By facilitating 

comprehensive analyses of plant traits in varied growth 

conditions, these technologies not only streamline the breeding 

process but also impact the development of crops better suited 

for future agricultural challenges. 

 

Basics to vision-based plant phenotyping 
To know the basics of plant phenotyping we need to consider 
two main aspects, one is the image type acquired and how to 
process it and extract information from it. So, we are covering 
the current and emerging methods of image acquisition and 
processing allowing image-based phenomics. The high 
throughput phenotyping is based on images captured using 
different devices based on different light wavelength ranges and 
processing them and extracting the information (Danilevicz et 
al., 2021; Tiwari et al., 2021) [27, 95]. So, before understanding 
different types of phenotyping methods available it is necessary 
to understand the step-by-step process of extracting this 
phenotypic information from images and different softwares and 
cameras used has to be known to the scientist. 
The process of extracting phenotypic information from images 

involves multiple steps, including image acquisition, 

preprocessing, segmentation, feature extraction, and data 

analysis (Guo et al., 2021; Khobragade et al., 2015; Samanta et 

al., 2018; Zheng, 1994) [39, 51, 82]. Various specialized software 

tools and algorithms have been developed to facilitate these 

steps, enabling researchers to efficiently process large volumes 

of plant images (Knecht et al., 2016) [82]. Understanding the 

capabilities and limitations of different imaging devices, such as 

multispectral cameras, thermal imagers, and hyperspectral 

sensors, is crucial for selecting the most appropriate technology 

for specific phenotyping applications.  
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Source: Yao et al., 2021 [104] 

 

Fig 1: Basic workflow in computer vision-based plant phenotyping: 

 

Steps in the workflow of vision-based plant phenotyping 

It involves five steps from image acquisition to ML 

classification represented in figure 1 and each step is explained 

below in detail: 

 

A. Image acquisition: This process involves obtaining a digital 

representation of a scene. The resulting representation is 

described as image and its constituent elements are known as 

pixels (picture elements). The electronic device used to capture a 

scene is known as an imaging sensor. CCD (charge coupled 

device) and CMOS (complementary metal oxide semiconductor) 

are the most commonly utilized technologies in image sensors 

(Mehta et al., 2015; Ardeshirpour et al., 2006) [60, 8]. Recent 

technological advancements in cameras indicate that 

manufacturers such as IMEC (India-Middle East-Europe 

Economic Corridor), a world leader in nanoelectronics, are 

working to integrate TDI (time delay integration) technology 

with image sensor characteristics within a single device. TDI 

technology is anticipated to be applied to high-throughput 

phenotyping processes in the near future (Bai & Ge, 2021) [12]. 

Image Acquisition Systems Classification: Image acquisition 

systems can be categorized into seven groups that are applicable 

for phenotyping:  

1. Mono-RGB (Red green blue) vision  

2. Stereo vision  

3. Multi and hyper spectral cameras 

4. ToF (Time of flight) cameras 

5. LIDAR (Light Detection and Ranging) technology 

6. Thermography and Fluorescence Imaging 

7. Tomography imaging 

 

Image Analysis: Image analysis covers all stages from 

preprocessing to machine learning in plant image analysis 

(Zhang & Souri, 2022) [107]. The extraction of information from 

images is undertaken through the process of segmentation. The 

objective of a segmentation procedure is to isolate the 

components of an image that are of interest, i.e., the object or 

region of interest, from the remainder of the image, i.e., the 

background or irrelevant components. Consequently, this results 

in a partitioned image with significant regions. 

 

B. Image pre-processing: Image preprocessing is a crucial 

component of image analysis. The objective of image 

preprocessing is to enhance contrast and eliminate noise to 

accentuate the objects of interest in a given image (Ariateja et 

al., 2018; Pandey et al., 2023) [9, 71]. Preprocessing techniques 

can range from basic operations such as image cropping and 

contrast enhancement to more complex procedures such as 

dimensionality reduction via Principal Component Analysis or 

Clustering (Gang & Bajwa, 2021; Zhang et al., 2018) [35, 106]. In 

a comparative study analysing leaf diseases, histogram 

equalization was determined to be the most effective method for 

preprocessing colour images converted to grayscale. 

 

C. Image segmentation: Image segmentation is the core of 

image processing for artificial vision-based plant phenotyping 
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(Choudhury, 2020; Patel, 2024) [23, 72]. Segmentation facilitates 

the isolation and identification of objects of interest from an 

image and it aims to discriminate background or irrelevant 

objects (Patel, 2024) [72]. The objects of interest are defined by 

the internal similarity of pixels in parameters such as texture, 

colour, statistics, etc. One of the fundamental algorithms utilized 

is threshold segmentation, based on creating groups of pixels on 

a grayscale according to the level of intensity, thus separating 

the background from targets. This approach has been 

implemented with Android OS (Ap Leaf) to identify plant leaves 

(Wang et al., 2013) [99]. 

i) Otsu Method: Minimizes within-class variance to 

automatically segment images, frequently employed for 

background subtraction in plant recognition. 

ii) Watershed Transformation: Segments images by treating 

them as topological surfaces, terminating at strong edges. 

iii) Grab cut: Separates foreground from background using 

graph theory, effective with simple backgrounds but 

encounters difficulties with complex ones. 

iv) Snakes: Active contour method that refines segmentation by 

fitting splines to edges, utilized in plant phenotyping with 

features such as colour intensity and texture.  

v) Active Contours: Employed for precise plant recognition by 

combining algorithms for image segmentation, particularly 

effective for flowers.  

 

D. Features extraction: Features extraction constitutes one of 

the fundamental components of object identification and 

classification based on computer vision. The features extracted 

from an image are organized in "feature vectors" (Kumaraguru 

& Chakravarthy, 2017; Qu, 2019) [54, 77]. The primary features 

include edges, pixel intensity, geometries, textures, and image 

transformations. One proposed system utilizes a feature vector 

composed of a combination of RGB and CIE L*a*b* colour 

spaces to segment images captured during daylight hours (Jing 

et al., 2015) [50].  

For night-time image segmentation, a vector comprising 

statistical features over two decomposition levels of the wavelet 

transform using IR images was computed. Numerous algorithms 

exist to identify invariant feature detectors and descriptors. This 

type of image analysis ensures the detection of points of interest 

in a scale- and rotation-independent manner. The Scale Invariant 

Features Transforms (SIFT), Speeded-Up Robust Features 

(SURF), and the Histograms of Oriented Gradients (HoG) are 

algorithms employed to extract characteristics in computer 

vision, and they have been extended to plant phenotyping 

(Agarwal et al., 2017; Bakhshi et al., 2013; Routray et al., 2017) 
[4, 13, 79]. SIFT and SURF algorithms have been evaluated for 

detecting local invariant features to obtain a 3D plant model 

from multi-view stereo images. 

 

E. Machine learning in plant image analysis: The 

proliferation of data generated in current and future phenomic 

setups with high-throughput imaging technologies has 

necessitated the utilization of Machine Learning (ML) statistical 

approaches (Hruška et al., 2018; Mayerich et al., 2011; Rehman 

et al., 2018; Singh et al., 2015) [46, 59, 78, 88]. A significant 

advantage of ML is its capacity to explore large datasets to 

identify patterns, employing combinations of factors rather than 

conducting independent analyses. A contemporary concept 

derived from ML is Deep Learning (DL), encompassing a set of 

algorithms designed to model with a high level of abstraction. 

Convolutional Neural Networks (CNN) are an exemplar of DL 

derived from Artificial Neural Networks (ANN) (Dhaka et al., 

2021; Ghongade & Nagpur, 2024) [30, 36]. CNN has been 

employed to detect plant pathogen attacks (Abade et al., 2020; 

Almeida et al., 2019; Tugrul et al., 2022) [1, 81, 96]. 

 

The factors essential for accelerating plant phenomics 

1. High-throughput screens 

2. Advanced imaging techniques and sensor technologies 

3. Machine learning algorithms for data analysis and 

interpretation. 

4. Multiple camera units 

5. Non-destructive measurements 

6. Quantitative analysis 

7. Monitor growth dynamics 

8. Stress assessment 

9. Link to genomics 

 

Different key technologies which enable high throughput 

phenotyping 

There are different technologies available for high throughput 

phenotyping in plants which enables noninvasive and non-

destructive phenotyping which saves time and labour. The 

different key technologies available for phenotyping at field 

level or green or glass house or laboratory level and benefits 

arousing from these technologies were discussed below. 

1. Color imaging (2D and 3D) 

2. Near infrared imaging 

3. Far infrared imaging 

4. Chlorophyll fluorescence imaging 

5. Hyperspectral imaging 

6. SONAR 

7. LIDAR 

8. Computed X ray tomography (CT scan) 

9. MRI scan  

10. Ground penetrating radar imaging or proximal sensing 

principle 

 

Color imaging (2D and 3D) 

2-dimensional imaging 

Color imaging primarily relies on visible light spectra. The 

process involves creating images based on digital 

representations that aim to replicate human visual perception. 

These images provide data for plant phenotyping applications in 

trait-based physiological breeding. The most widespread use of 

visible imaging employs silicon sensors (CCD or CMOS arrays) 

that respond to visible light wavelengths (400-750 nm) and 

capture two-dimensional images (Harvey & Bähr, 2004; 

Waltham, 2013) [44, 99]. This technique represents the most basic 

imaging technology for plant sensing. Typically, raw image data 

is presented as spatial matrices of intensity values corresponding 

to photon fluxes in the red (~600 nm), green (~550 nm), and 

blue (~450 nm) spectral ranges of visible light. Cameras 

operating in the visible spectrum, such as standard digital 

cameras or RGB/CIR cameras, are commonly used due to their 

ability to provide quick measurements and cost-effective 

solutions for plant phenotyping applications (Nijland et al., 

2013) [66]. 

This colour information give estimation of the degree of 

senescence. By examining the colors, we can find the 

senescence of older leaves during drought and then suggest an 

escape or avoidance. Genotypes with stay-green type can be 

detected that would be able to continue photosynthesis under 

water stress. It also measures the aspects of plant architecture 

such as image-based projected biomass, leaf disease severity 

assessments, seed morphology, root architecture, leaf area, 
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colour, growth dynamics, seedling vigour, yield, and fruit 

number and distribution. 

 

3-Dimensional imaging 

In this method firstly the digital photos of the plants on top and 

side views were taken and combined into 3D image (Guo et al., 

2018) [38]. The different measurements taken using 3-D were 

Shoot mass, Leaf number, Shape and angle, Leaf colour and 

Leaf health which are useful for constructing the final image in 

3-dimensional representation. 

 

Near infrared imaging (NIR) 

NIR spectroscopy is a method that makes use of the near-

infrared region of the electromagnetic spectrum (from about 700 

to 2500 nanometers) (Ali et al., 2010; Chapman et al., 2019; 

Engelhardt & Gillam-Krakauer, 2012) [5, 19, 32]. NIR Capable of 

examining irregular surfaces with the same ease as a carefully 

prepared sample. NIR is non-destructive and requires little or no 

sample preparation. It can also be used to analyse multiple 

constituents in a single scan (Chelladurai & Jayas, 2014; 

Cozzolino, 2009) [20, 25]. NIR reflectance can be influenced by 

leaf thickness in addition to leaf water content.  

 

 
Source: https://midopt.com/healthy-crop/ 

 

Fig 2: Near infrared imaging in Plants showing colour variations for a dead leaf, stressed leaf and dead leaf 

 

Benefits of NIR: 

The NIR and short-wave infrared (SWIR) subranges contains 

several major and minor water absorption troughs that can be 

used as an index of leaf relative water content, more the 

presence of chlorophyll more will be reflectance in NIR range, it 

also facilitates estimation of water content and movement within 

leaves and soil and Carbohydrate content of leaves. 

 

Far-infrared imaging (FIR) 
Thermal imaging allows for the visualization of infrared 
radiation, indicating an object as the temperature across the 
object’s surface. Far-infrared (FIR) spectroscopy utilizes the 
electromagnetic spectrum's far-infrared region, ranging from 
approximately 10µm to 1 mm. Thermal cameras typically 
operate within a sensitive spectral range of 3-14 µm (Ozaki, 
2021; Ruan et al., 2001), with the most frequently employed 
wavelengths being 3-5 µm or 7-14 µm. These cameras are 
capable of detecting long-wave infrared (LWIR) radiation 
emitted by objects based on their temperature.  
 

Benefits of FIR 

FIR technology offers several advantages, including the ability 

to measure temperature differences between leaves and plants, 

identify cooler plants that absorb more water, and assess 

individual plants or entire plant systems. The temperature 

variations observed can be used to evaluate photosynthetic 

activity, salinity tolerance, and effective water use efficiency. 

 

Fluorescence imaging 
Plant metabolic status can be assessed by artificially stimulating 
plant photosystems and observing their responses. Fluorescence, 
which is the emission of light during radiation absorption at 
shorter wavelengths, occurs when chloroplasts are exposed to 

blue or actinic light. This re-emitted light serves as an effective 
indicator of a plant's ability to assimilate actinic light. The 
imaging of these fluorescence signals, known as fluorescence 
imaging, typically utilizes charge-coupled device (CCD) 
cameras that can detect fluorescence signals (Colarusso & 
Spring, 2003; Webb & Brown, 2012) [24, 100]. UV (ultraviolet) 
illumination (340-360 nm range) produces two types of 
fluorescence: red to far-red and blue to green. This forms the 
basis of multicolour fluorescence imaging, which allows for the 
simultaneous capture of fluorescence emission from four 
spectral bands (blue (440 nm, F440), green (520 nm, F520), red 
(690 nm, F690), and far-red (740 nm, 740)) using a single 
excitation wavelength.  
The blue and green fluorescence signals (with peaks near 440 

and 520 nm) originate from cinnamic acids, primarily ferulic 

acid, found mostly in cell walls (Fincher, 1976; Lichtenthaler & 

Schweiger, 1998; Morales et al., 1996) [33, 55, 63].  

The red and far-red fluorescence emissions (with peaks near 690 

and 740 nm) come from chlorophyll α molecules in the antenna 

and reaction centre of photosynthetic photosystem II, located in 

chloroplasts within mesophyll cells (Van Dorssen et al., 1987). 

 

Benefits of FI 

It measures photosynthesis rate, biotic and abiotic stress 

responses and chlorophyll content.  

 

Hyperspectral imaging 

Hyperspectral imaging combines spectral (λ) and spatial (x, y) 

data into a three-dimensional structure known as a 'hyperspectral 

data cube' or 'hypercube' (Sharma et al., 2021; Xu et al., 2016) 
[21, 102]. This 3D hypercube consists of two dimensions of spatial 

information and one spectral dimension, which contains data for 

numerous spectral bands.  
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Source: Mishra et al., 2017 

 

Fig 3: Hyperspectral imaging in plants 

 

Benefits of Hyperspectral imaging: This technology has been 

utilized to identify abiotic, biotic, and quality characteristics in 

plants under both indoor and outdoor growing conditions. It can 

be employed across various scales, from cellular to landscape 

levels, to determine plant traits. The tools for data processing 

and mining are continuously evolving, with scientists employing 

machine learning and deep learning algorithms to aid in trait 

prediction. Imaging spectroscopy creates new opportunities for 

extracting spectral features associated with plant health and 

disease status. Spectral reflectance refers to the proportion of 

light reflected by a non-transparent surface. Scientists utilize this 

spectral reflectance to detect plants under stress from saline soil 

or drought, often before such stress becomes visible to the naked 

eye. 

 

Sonar 

An ultrasonic sensor is an electronic device that determines the 

distance to a target object by sending out ultrasonic sound waves 

and transforming the reflected sound into an electrical signal 

(Canali et al., 1982; Kulkarni et al., 2019; Punia, 2014; Srijith, 

2021; Tanaka, 1987) [16, 53, 76, 91]. A CTFM ultrasonic sensor 

generates a signal containing information about the geometric 

structure of plants (Darwito et al., 2019; Dorr, 1991; Gupta & 

Agarwal, 2018) [28, 31, 40]. By correlating echoes from various 

angles, plants can be identified with enough precision for 

navigation purposes (Magori et al., 1995; Olayinka et al., 2021) 
[57, 3]. 

 

LIDAR 

Lidar, also known as 'laser radar', 'laser scanner', 'laser profiler', 

'range finder', or 'laser ranger' (Archibald & Petriu, 1993; Iman 

& Rashid, 2016; Schwarte & Singh, 2004) [7, 47, 83], has emerged 

as an innovative active sensing technology for three-dimensional 

measurement of plant morphology and canopy structures. This 

technology accurately determines the distance between the 

sensor and a target by measuring either the time elapsed between 

laser pulse emission and return (the 'time of flight' method) or 

through trigonometric calculations (the 'optical probe' or 'light 

section' methods) (Fu et al., 2011; Hardesty, 1991) [34, 43]. 

Airborne lidar systems typically achieve accuracies of ∼0.1-1 m, 

while ground-based systems offer precision ranging from ∼0.05-

10 cm, making lidar a superior alternative to traditional passive 

3D measurement techniques. Various categories of lidar systems 

exist, classified according to their specific characteristics. 

 

Computed tomography (CT) 

X-ray digital radiography serves as the foundation for this 

imaging technique. It is commonly employed to evaluate tissue 

density, count tiller numbers, and assess grain quality, among 

other applications. Nevertheless, the processes of CT scanning, 

reconstruction, and extracting roots from X-ray CT volumes are 

time-consuming (Michael, 2001) [61]. For genetic studies, such as 

quantitative trait locus mapping, which necessitate large 

population sizes, a method that can visualize RSA rapidly and 

efficiently is essential. 

 

Magnetic resonance imaging (MRI) 

This imaging method aims to display metabolites, offer 

structural insights, and track internal physiological activities 

occurring within living organisms (Wirestam, 2021) [101]. This 

innovative approach allows researchers to visualize and analyse 

the distribution of various biochemical compounds within the 

body. By providing detailed metabolic mapping, it enables a 

deeper understanding of tissue composition and physiological 

processes. Moreover, this technique offers the potential to 

monitor real-time changes in metabolic activity, which could be 

invaluable for diagnosing and tracking disease progression. 

 

Ground penentrating RADAR 
Ground Penetrating Radar (GPR) is a non-invasive geophysical 

method that uses electromagnetic waves to detect subsurface 

objects, structures, and changes in material properties (Ismail et 

al., 2016; Slob et al., 2010) [48, 89]. It is commonly used in 

archaeology, geology, and civil engineering to map underground 

features without excavation. GPR systems emit high-frequency 

radio waves into the ground, which reflect back upon hitting 

different materials, creating detailed images of subsurface 

layers. Its applications range from locating buried utilities to 

assessing soil conditions and detecting hidden artifacts. 

 

Future prospects: The future of high-throughput phenotyping 

(HTP) in plant science holds great promise, propelled by rapid 

advancements in sensor technologies, artificial intelligence, and 

data analytics, which are transforming the way we assess plant 

traits on a large scale (Ma et al., 2022; Sharma & Shivandu, 

2024) [56, 86]. These innovations, including mobile phenotyping 
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platforms, UAVs, and satellite imaging, are enhancing the 

precision and efficiency of phenotypic data collection across 

diverse environments. As HTP methods evolve, the integration 

of multi-omics data, including genomic and metabolomic 

information, is expected to provide deeper insights into plant 

responses to environmental challenges, aiding the development 

of more resilient crop varieties. However, to fully harness the 

potential of HTP, the field must address key challenges, such as 

standardizing phenotyping protocols, managing the vast amounts 

of data generated, and overcoming the high costs of 

infrastructure, particularly for researchers in resource-limited 

settings. Addressing these challenges will be crucial in 

leveraging HTP to advance crop breeding, especially in the face 

of climate change. 

 

Conclusion 

In conclusion, the future of high-throughput phenotyping is 

bright, with technological advancements and innovative 

approaches paving the way for improved agricultural practices. 

Addressing existing challenges and focusing on integration and 

automation will be key to unlocking the full potential of these 

methods in plant science. 

 

References 

1. Abade A, Ferreira P, Vidal F. Plant diseases recognition on 

images using convolutional neural networks: A systematic 

review. Cornell University; c2020. Available from: 

https://doi.org/10.48550/arxiv.2009.04365 

2. Abebe AM, Baek J, Kim Y, Kim J, Kim SL. Image-based 

high-throughput phenotyping in horticultural crops. Plants. 

2023;12(10):2061. Available from:  

https://doi.org/10.3390/plants12102061 

3. Adebola Olayinka A, Adewale Oluwadamilare A, Femi 

Emmanuel A. Distance measurement and energy 

conservation using Arduino Nano and ultrasonic sensor. 

American Journal of Electrical and Computer Engineering. 

2021;5(2):40. Available from:  

https://doi.org/10.11648/j.ajece.20210502.11 

4. Agarwal A, Samaiya D, Gupta KK. A comparative study of 

SIFT and SURF algorithms under different object and 

background conditions. Institute of Electrical and 

Electronics Engineers; c2017. Available from: 

https://doi.org/10.1109/icit.2017.48 

5. Ali J, Ansari S, Pramod K. Near-infrared spectroscopy for 

nondestructive evaluation of tablets. Systematic Reviews in 

Pharmacy. 2010;1(1):17. Available from:  

https://doi.org/10.4103/0975-8453.59508 

6. Araus JL, Kefauver SC, Zaman-Allah M, Olsen MS, Cairns 

JE. Translating high-throughput phenotyping into genetic 

gain. Trends in Plant Science. 2018;23(5):451-166. 

Available from:  

https://doi.org/10.1016/j.tplants.2018.02.001 

7. Archibald C, Petriu E. Robot skills development using a 

laser range finder. Institute of Electrical and Electronics 

Engineers; c1993. Available from: 

https://doi.org/10.1109/imtc.1993.382601 

8. Ardeshirpour Y, Deen MJ, Shirani S. Evaluation of 

complementary metal-oxide semiconductor based 

photodetectors for low-level light detection. Journal of 

Vacuum Science and Technology A. 2006;24(3):860-865. 

Available from: https://doi.org/10.1116/1.2190652 

9. Ariateja D, Soesanti I, Ardiyanto I. A review of contrast 

enhancement techniques in digital image processing. 

Institute of Electrical and Electronics Engineers; 2018. 

Available from: https://doi.org/10.1109/icstc.2018.8528579 

10. Attia Z, Grunwald Y, Shenhar I, Bourstein R, Averbuch N, 

Wallach R, et al. A telemetric, gravimetric platform for 

real-time physiological phenotyping of plant-environment 

interactions. Journal of Visualized Experiments. 2020;(162). 

Available from: https://doi.org/10.3791/61280 

11. B Kiranmai EA. Comparative analysis association and 

prediction of various phenotypic traits of Oryza sativa. 

International Journal of Recent Innovations in Computing 

and Communication. 2023;11(10):1471-1480. Available 

from: https://doi.org/10.17762/ijritcc.v11i10.8697 

12. Bai G, Ge Y. Cable suspended large-scale field phenotyping 

facility for high-throughput phenotyping research. Springer; 

2021. p. 39-53. Available from: https://doi.org/10.1007/978-

3-030-73734-4_3 

13. Bakhshi Y, Kaur S, Verma P. An efficient approach in face 

recognition for invariant faces using SIFT, SURF and PCA. 

International Journal of Signal Processing, Image 

Processing and Pattern Recognition. 2016;9(5):99-108. 

Available from: https://doi.org/10.14257/ijsip.2016.9.5.10 

14. Biase F. Molecular phenomics—a multi-omics approach to 

understanding complex traits in cattle. Journal of Animal 

Science. 2023;101(Suppl 3):53. Available from: 

https://doi.org/10.1093/jas/skad281.066 

15. Cadle-Davidson L, Sapkota S, Gutierrez B, Martinez D, 

Londo J. From phenotyping to phenomics: Present and 

future approaches in grape trait analysis to inform grape 

gene function. Springer; 2019. p. 199-222. Available from: 

https://doi.org/10.1007/978-3-030-18601-2_10 

16. Canali C, De Cicco G, Prudenziati M, Taroni A, Morten B. 

A temperature compensated ultrasonic sensor operating in 

air for distance and proximity measurements. IEEE 

Transactions on Industrial Electronics. 1982;IE-29(4):336-

41. Available from: https://doi.org/10.1109/tie.1982.356688 

17. Casto AL, Tovar JC, Schuhl H, Wang Q, Fahlgren N, Bart 

RS, et al. Picturing the future of food. Plant Phenomics 

Journal. 2021;4(1). Available from: 

https://doi.org/10.1002/ppj2.20014 

18. Chaitra N, Veena S, Raj T, Parinitha J. A survey on plant 

phenotype. Indian Journal of Science and Technology. 

2017;10(4). Available from:  

https://doi.org/10.17485/ijst/2017/v10i4/110713 

19. Chapman J, Elbourne A, Truong VK, Cozzolino D. Shining 

light into meat—a review on the recent advances in in vivo 

and carcass applications of near infrared spectroscopy. 

International Journal of Food Science and Technology. 

2019;55(3):935-941. Available from:  

https://doi.org/10.1111/ijfs.14367 

20. Chelladurai V, Jayas DS. Near-infrared imaging and 

spectroscopy. Springer Berlin Heidelberg; c2014. p. 87-127. 

Available from: https://doi.org/10.1007/978-3-642-54888-

8_6 

21. Chen CY, Wang ML, Dang PM, Butts CL. Advances in 

phenotyping of functional traits. Springer India; 2015. p. 

163-80. Available from: https://doi.org/10.1007/978-81-

322-2226-2_11 

22. Chen D, Altmann T, Chen M, Klukas C. Bridging genomics 

and phenomics. Springer Berlin Heidelberg; c2013. p. 299-

333. Available from: https://doi.org/10.1007/978-3-642-

41281-3_11 

23. Choudhury SD. Segmentation techniques and challenges in 

plant phenotyping. CRC; c2020. p. 69-92. Available from: 

https://doi.org/10.1201/9781315177304-6 

24. Colarusso P, Spring KR. Imaging at low light levels with 

https://www.agronomyjournals.com/


International Journal of Research in Agronomy  https://www.agronomyjournals.com  

~ 640 ~ 

cooled and intensified charge-coupled device cameras. 

Methods in Enzymology. 2003;360:383-394. Available 

from: https://doi.org/10.1016/s0076-6879(03)60120-5 

25. Cozzolino D. Near infrared spectroscopy in natural products 

analysis. Planta Medica. 2009;75(7):746-756. Available 

from: https://doi.org/10.1055/s-0028-1112220 

26. Dalal A, Bourstein R, Mayo A, Shenhar I, Wallach R, 

Grunwald Y, et al. A high-throughput gravimetric 

phenotyping platform for real-time physiological screening 

of plant-environment dynamic responses. Cold Spring 

Harbor Laboratory; c2020. Available from: 

https://doi.org/10.1101/2020.01.30.927517 

27. Danilevicz MF, Edwards D, Nestor BJ, Bayer PE, 

Bennamoun M. Resources for image-based high-throughput 

phenotyping in crops and data sharing challenges. Plant 

Physiology. 2021;187(2):699-715. Available from: 

https://doi.org/10.1093/plphys/kiab301 

28. Darwito PA, Sa’Diyah H, Aditya W, Cikadiarta A, Raditya 

M. Comparative study of burst and beams types ultrasonic 

sensor for distance measurements. Institute of Electrical and 

Electronics Engineers; c2019. Available from: 

https://doi.org/10.1109/isitia.2019.8937133 

29. Das Choudhury S. Time series modeling for phenotypic 

prediction and phenotype-genotype mapping using neural 

networks. Springer Science+Business Media; c2020. p. 228-

43. Available from: https://doi.org/10.1007/978-3-030-

65414-6_17 

30. Dhaka VS, Ijaz MF, Sinwar D, Woźniak M, Meena SV, 

Kavita K, et al. A survey of deep convolutional neural 

networks applied for prediction of plant leaf diseases. 

Sensors (Basel). 2021;21(14):4749. Available from: 

https://doi.org/10.3390/s21144749 

31. Dorr JA. Ultrasonic measuring system. The Journal of the 

Acoustical Society of America. 1991;90(1):622.  

https://doi.org/10.1121/1.401218 

32. Engelhardt B, Gillam-Krakauer M. Use of Near-Infrared 

Spectroscopy in the Management of Patients in Neonatal 

Intensive Care Units - An Example of Implementation of a 

New Technology. Institute for New Technologies. 2012. 

https://doi.org/10.5772/37994 

33. Fincher GB. Ferulic acid in barley cell walls: a fluorescence 

study. Journal of the Institute of Brewing. 1976;82(6):347-

349. https://doi.org/10.1002/j.2050-0416.1975.tb06961.x 

34. Fu R, Cheng Y, Su C, Li M, Chang B, Guo Y. The research 

of the laser facula of laser ranger finder in the far distance. 

Society of Photo Optical Instrumentation Engineers. 

2011;7912. https://doi.org/10.1117/12.873565 

35. Gang A, Bajwa W. FAST-PCA: A Fast and Exact 

Algorithm for Distributed Principal Component Analysis. 

Cornell University. 2021.  

https://doi.org/10.48550/arxiv.2108.12373 

36. Ghongade MA, Nagpur D. Plant Disease Detection Using 

Deep Learning-Based Convolutional Neural Networks With 

Transfer Learning Algorithms. International Journal of 

Scientific Research in Engineering And Management. 

2024;08(05):1-5. https://doi.org/10.55041/ijsrem34775 

37. Gill T, Gill SK, Saini DK, Chopra Y, de Koff JP, Sandhu 

KS. A comprehensive review of high throughput 

phenotyping and machine learning for plant stress 

phenotyping. Frontiers in Plant Science. 2022;13:959050. 

https://doi.org/10.3389/fpls.2022.959050 

38. Guo J, Zhang X, Cheng Z, Jaeger M, Xu S, Yan D-M. 

Realistic Procedural Plant Modeling from Multiple View 

Images. IEEE Transactions on Visualization and Computer 

Graphics. 2018;26(2):1372-1384.  

https://doi.org/10.1109/tvcg.2018.2869784 

39. Guo X, Gao G, An J, Cheng J. Research Algorithm on the 

Wheat Phenotypic Feature Extraction based on Image 

Processing. Journal of Physics: Conference Series. 

2021;2010(1):012002. 

https://doi.org/10.1088/1742-6596/2010/1/012002 

40. Gupta N, Agarwal AK. Object Identification using Super 

Sonic Sensor: Arduino Object Radar. Institute of Electrical 

Electronics Engineers. 2018.  

https://doi.org/10.1109/sysmart.2018.8746951 

41. Gupta P, Jindal R, Sharma A. Scalable machine-learning 

algorithms for big data analytics: a comprehensive review. 

WIREs Data Mining and Knowledge Discovery. 

2016;6(6):194-214. https://doi.org/10.1002/widm.1194 

42. Haase DL. Using Nomograms for Evaluating Plant 

Morphological and Physiological Data. Western Journal of 

Applied Forestry. 2012;27(1):42-45.  

https://doi.org/10.1093/wjaf/27.1.42 

43. Hardesty RM. Recent Advances in Coherent Laser Radar. 

Optica. 1991. https://doi.org/10.1364/orsa.1991.omc2 

44. Harvey SGP, Bähr JL. A temperature-controlled 

complementary metal oxide semiconductor camera. 

Proceedings of the Institution of Mechanical Engineers, Part 

B: Journal of Engineering Manufacture. 2004;218(9):1217-

1222. https://doi.org/10.1243/0954405041897112 

45. He S, Yang W, Liu W, Chen M, Xu X, Gong T, et al. Crop 

HTP Technologies: Applications and Prospects. 

Agriculture. 2024;14(5):723.  

https://doi.org/10.3390/agriculture14050723 

46. Hruška J, Morais R, Adão T, Marques P, Cunha A, Peres E, 

et al. Machine learning classification methods in 

hyperspectral data processing for agricultural applications. 

Association for Computing Machinery. 2018. 

https://doi.org/10.1145/3220228.3220242 

47. Iman HB, Md Rashid NKA. Probabilistic model of laser 

range finder for three dimensional grid cell in close range 

environment. IIUM Engineering Journal. 2016;17(1):63-82. 

https://doi.org/10.31436/iiumej.v17i1.570 

48. Ismail NA, Mohd Muztaza N, Saad R. Reflectivity of 

electromagnetic (EM) wave in shallow ground penetrating 

radar (GPR) survey. Jurnal Teknologi. 2016;78(7-3). 

https://doi.org/10.11113/jt.v78.9500 

49. Jangra S, Yadav NR, Yadav RC, Chaudhary V. High-

Throughput Phenotyping: A Platform to Accelerate Crop 

Improvement. Phenomics. 2021;1(2):31-53.  

https://doi.org/10.1007/s43657-020-00007-6 

50. Jing J, Liu S, Li P, Zhang L. The fabric defect detection 

based on CIE Lab* color space using 2-D Gabor filter. The 

Journal of The Textile Institute. 2015;107(10):1305-1313. 

https://doi.org/10.1080/00405000.2015.1102458 

51. Khobragade S, Mor DD, Chhabra A. A method of ear 

feature extraction for ear biometrics using MATLAB. 

Institute of Electrical Electronics Engineers. 2015. 

https://doi.org/10.1109/indicon.2015.7443344 

52. Knecht AC, Swanson DR, Campbell MT, Walia H, Caprez 

A. Image Harvest: an open-source platform for high-

throughput plant image processing and analysis. Journal of 

Experimental Botany. 2016;67(11):3587-3599.  

https://doi.org/10.1093/jxb/erw176 

53. Kulkarni AU, Hegde S, Potdar AM, Baligar VP. RADAR 

based Object Detector using Ultrasonic Sensor. Institute of 

Electrical Electronics Engineers; c2019.  

https://doi.org/10.1109/icait47043.2019.8987259 

https://www.agronomyjournals.com/


International Journal of Research in Agronomy  https://www.agronomyjournals.com  

~ 641 ~ 

54. Kumaraguru PV, Chakravarthy VJ. An Image Feature 

Extraction and Image Representation Strategies for the 

Analysis of Image Processing. Indian Journal of Forensic 

Medicine & Toxicology. 2017;11(2):642.  

https://doi.org/10.5958/0973-9130.2017.00202.x 

55. Lichtenthaler HK, Schweiger J. Cell wall bound ferulic 

acid, the major substance of the blue-green fluorescence 

emission of plants. Journal of Plant Physiology. 

1998;152(2-3):272-282.  

https://doi.org/10.1016/s0176-1617(98)80142-9 

56. Ma Z, Liu Z, Xiao G, Ruan Y, Rayhana R, Feng K, Sangha 

JS. A Review on Sensing Technologies for High-

Throughput Plant Phenotyping. IEEE Open Journal of 

Instrumentation and Measurement. 2022;1:1-21. 

https://doi.org/10.1109/ojim.2022.3178468 

57. Magori V, Vossiek M, Ruser H, Eccardt PC. Direction-

sensitive ultrasonic distance sensor using multimode 

stimulation of a single transducer; c1995.  

https://doi.org/10.1109/ultsym.1995.495742 

58. Mahlein AK, Steiner U, Dehne HW, Oerke EC. High-

throughput field-phenotyping tools for plant breeding and 

precision agriculture. Agronomy. 2019;9(5):258. 

https://doi.org/10.3390/agronomy9050258 

59. Mayerich D, Keyser J, Choe Y, Kwon J, Panchal A. Fast 

cell detection in high-throughput imagery using GPU-

accelerated machine learning. Institute of Electrical 

Electronics Engineers; c2011.  

https://doi.org/10.1109/isbi.2011.5872507 

60. Mehta S, Patel A, Mehta J. CCD or CMOS Image sensor for 

photography. Institute of Electrical Electronics Engineers. 

2015. https://doi.org/10.1109/iccsp.2015.7322890. 

61. Michael G. X-ray computed tomography. Physics 

Education. 2001;36(6):442-51.  

https://doi.org/10.1088/0031-9120/36/6/301. 

62. Mishra P, Asaari MSM, Herrero-Langreo A, Lohumi S, 

Diezma B, Scheunders P. Close range hyperspectral 

imaging of plants: A review. Biosystems Engineering. 

2017;164:49-67. 

https://doi.org/10.1016/j.biosystemseng.2017.09.009. 

63. Morales F, Cerovic ZG, Moya I. Time-resolved blue-green 

fluorescence of sugar beet (Beta vulgaris L.) leaves. 

Spectroscopic evidence for the presence of ferulic acid as 

the main fluorophore of the epidermis. Biochimica et 

Biophysica Acta (BBA) - Bioenergetics. 1996;1273(3):251-

62. https://doi.org/10.1016/0005-2728(95)00153-0. 

64. Morota G. 123 Phenomics enabled quantitative genetic 

modeling of complex traits. Journal of Animal Science. 

2024;102(Suppl 2):26. 

https://doi.org/10.1093/jas/skae102.032. 

65. Namin ST, Borevitz JO, Najafi M, Esmaeilzadeh M, Brown 

TB. Deep Phenotyping: Deep Learning for Temporal 

Phenotype/Genotype Classification. Cold Spring Harbor 

Laboratory; c2017. https://doi.org/10.1101/134205. 

66. Nijland W, De Jong R, De Jong SM, Wulder MA, Bater 

CW, Coops NC. Monitoring plant condition and phenology 

using infrared sensitive consumer grade digital cameras. 

Agricultural and Forest Meteorology. 2013;184:98-106. 

https://doi.org/10.1016/j.agrformet.2013.09.007. 

67. Nuzzo A, Bellazzi R, Riva A. Phenotypic and genotypic 

data integration and exploration through a web-service 

architecture. BMC Bioinformatics. 2009;10(S12). 

https://doi.org/10.1186/1471-2105-10-s12-s5. 

68. Ozaki Y. Infrared Spectroscopy-Mid-infrared, Near-

infrared, and Far-infrared/Terahertz Spectroscopy. 

Analytical Sciences. 2021;37(9):1193-212.  

https://doi.org/10.2116/analsci.20r008. 

69. Pabuayon ILB, Ritchie GL, Sun Y, Guo W. High-

throughput phenotyping in cotton: a review. Journal of 

Cotton Research. 2019;2(1).  

https://doi.org/10.1186/s42397-019-0035-0. 

70. Paliwal R, Singh G, Mir RR, Gueye B. Chapter 7 - 

Genomic-assisted breeding for abiotic stress tolerance in 

horticultural crops. In: Stress Tolerance in Horticultural 

Crops. Elsevier; 2021. p. 91-118.  

https://doi.org/10.1016/b978-0-12-822849-4.00007-3. 

71. Pandey AK, Singh SP, Chakraborty C. Retinal image 

preprocessing techniques: Acquisition and cleaning 

perspective. Internet Technology Letters; c2023.  

https://doi.org/10.1002/itl2.437. 

72. Patel D. Computer Vision and Image Segmentation. 

International Journal for Research in Applied Science and 

Engineering Technology. 2024;12(2):915-925.  

https://doi.org/10.22214/ijraset.2024.58479. 

73. Pathak S, Taware S, Pawar A, Kulkarni S, Akkalkot A. A 

Survey on Machine Learning Algorithms for Risk-

Controlled Algorithmic Trading. International Journal of 

Scientific Research in Science and Technology. 2023;1069-

89. https://doi.org/10.32628/ijsrst523103163. 

74. Pedro F. A Review of Data Mining, Big Data Analytics and 

Machine Learning Approaches. Journal of Computing and 

Natural Science. 2023;169-81.  

https://doi.org/10.53759/181x/jcns202303016. 

75. Peng S, Wang J, Guo X, Yang W, Zhao C. High-throughput 

phenotyping: Breaking through the bottleneck in future crop 

breeding. Plant Science. 2021;311:110993.  

https://doi.org/10.1016/j.plantsci.2021.110993. 

76. Punia S. Ultra sonic range finding for distance measuring in 

coal mining. International Journal of Research in 

Engineering and Technology. 2014;03(11):313-5.  

https://doi.org/10.15623/ijret.2014.0311051. 

77. Qu Y-H. Application of the Computer Vision Technology 

in the Image Feature Extraction. In: Springer Nature; 2019. 

p. 351-6. https://doi.org/10.1007/978-3-030-15235-2_53. 

78. Rehman TU, Mahmud MS, Chang YK, Jin J, Shin J. 

Current and future applications of statistical machine 

learning algorithms for agricultural machine vision systems. 

Computers and Electronics in Agriculture. 2018;156:585-

605. https://doi.org/10.1016/j.compag.2018.12.006. 

79. Routray S, Ray AK, Mishra C. Analysis of various image 

feature extraction methods against noisy image: SIFT, 

SURF and HOG. Institute of Electrical Electronics 

Engineers. 2017.  

https://doi.org/10.1109/icecct.2017.8117846. 

80. Ruan HD, Frost RL, Kloprogge JT, Duong L. Far-infrared 

spectroscopy of alumina phases. Spectrochimica Acta Part 

A: Molecular and Biomolecular Spectroscopy. 

2001;58(2):265-72.  

https://doi.org/10.1016/s1386-1425(01)00532-7. 

81. de Almeida AS, Abade A, Vidal F. Plant Diseases 

Recognition from Digital Images using Multichannel 

Convolutional Neural Networks. Scitepress Science 

Technology. 2019;2. 

https://doi.org/10.5220/0007383904500458. 

82. Samanta S, Tiwari VK, Gour B, Utkarsha S. Fast Character 

Recognition Using Kohonen Neural Network. 2018. 

https://doi.org/10.1109/icacat.2018.8933627. 

83. Schwarte RM, Singh UN. Breakthrough in multichannel 

laser-radar technology providing thousands of high-

https://www.agronomyjournals.com/


International Journal of Research in Agronomy  https://www.agronomyjournals.com  

~ 642 ~ 

sensitive lidar receivers on a chip. Society of Photo Optical 

Instrumentation Engineers. 2004;5575.  

https://doi.org/10.1117/12.573727. 

84. Shakoor N, Lee S, Mockler TC. High throughput 

phenotyping to accelerate crop breeding and monitoring of 

diseases in the field. Current Opinion in Plant Biology. 

2017;38:184-92. https://doi.org/10.1016/j.pbi.2017.05.006. 

85. Sharma G, Singh K, Parmar A, Naveed SK. Chromatic 

Dispersion Based Wide-Band, Fiber-Coupled, Tunable 

Light Source for Hyperspectral Imaging. IEEE Access. 

2021;9:50538-45. 

https://doi.org/10.1109/access.2021.3068617. 

86. Sharma K, Shivandu SK. Integrating artificial intelligence 

and Internet of Things (IoT) for enhanced crop monitoring 

and management in precision agriculture. Sensors 

International. 2024;5:100292.  

https://doi.org/10.1016/j.sintl.2024.100292. 

87. Sheikh M, Iqra F, Ambreen H, Pravin KA, Ikra M, Chung 

YS. Integrating artificial intelligence and high-throughput 

phenotyping for crop improvement. Journal of Integrative 

Agriculture. 2023;23(6):1787-1802.  

https://doi.org/10.1016/j.jia.2023.10.019. 

88. Singh A, Ganapathysubramanian B, Sarkar S, Singh AK. 

Machine Learning for High-Throughput Stress Phenotyping 

in Plants. Trends in Plant Science. 2015;21(2):110-124. 

https://doi.org/10.1016/j.tplants.2015.10.015. 

89. Slob E, Olhoeft G, Sato M. Ground-Penetrating Radar. 

Society of Exploration Geophysicists; 2010. p. 141-60. 

https://doi.org/10.1190/1.9781560802273.ch7 

90. Sreenivasulu N, Sopory SK, Kavi Kishor PB. Deciphering 

the regulatory mechanisms of abiotic stress tolerance in 

plants by genomic approaches. Gene. 2006;388(1-2):1-13. 

https://doi.org/10.1016/j.gene.2006.10.009 

91. Srijith B. Arduino based Distance Measurement Sensor 

using Ultrasonic Sensor. Int J Res Appl Sci Eng Technol. 

2021;9(6):1789-1799. 

https://doi.org/10.22214/ijraset.2021.35346 

92. Subiramani S, Nile SH, Ramalingam S, Venkidasamy B, 

Muthu T. Development of Abiotic Stress Tolerance in 

Crops by Plant Growth-Promoting Rhizobacteria (PGPR). 

Springer Singapore; c2020. p. 125-45. 

https://doi.org/10.1007/978-981-15-2576-6_8 

93. Tanaka H. Ultra-sonic distance sensor system and method 

with correction feature for sensor value. J Acoust Soc Am. 

1987;82(1):404. https://doi.org/10.1121/1.395464 

94. Thakkar S, Banerjee A, Goel S, Roy S, Bansal KC. 

Genomics-based approaches to improve abiotic stress 

tolerance in plants: Present status and future prospects. In: 

Plant Perspectives to Global Climate Changes. Elsevier; 

c2021. p. 195-219. https://doi.org/10.1016/b978-0-323-

85665-2.00016-9 

95. Tiwari JK, Singh B, Changan SS, Luthra SK, Buckseth T, 

Rawat S, et al. High-Throughput Phenotyping in Potato 

Breeding. Springer; c2021. p. 165-82.  

https://doi.org/10.1007/978-3-030-73734-4_8 

96. Tugrul B, Elfatimi E, Eryigit R. Convolutional Neural 

Networks in Detection of Plant Leaf Diseases: A Review. 

Agriculture. 2022;12(8):1192.  

https://doi.org/10.3390/agriculture12081192 

97. Van De Zedde R. Field robots for plant phenotyping. 

Burleigh Dodds Science; 2022. p. 153-78.  

https://doi.org/10.19103/as.2022.0102.08 

98. Waltham N. CCD and CMOS sensors. Springer New York; 

2013. p. 423-42. https://doi.org/10.1007/978-1-4614-7804-

1_23 

99. Wang B, Brown D, Gao Y, Salle JL. Mobile plant leaf 

identification using smart-phones. Institute of Electrical and 

Electronics Engineers; c2013.  

https://doi.org/10.1109/icip.2013.6738910 

100. Webb DJ, Brown CM. Epi-fluorescence microscopy. 

Methods Mol Biol. 2012;931:29-59.  

https://doi.org/10.1007/978-1-62703-056-4_2 

101. Wirestam R. Principles behind Magnetic Resonance 

Imaging (MRI). CRC; c2021. p. 605-39. 

https://doi.org/10.1201/9780429489556-32 

102. Xu M, Wu Z, Qiao Y, Zhang Q, Zhou L, Shi X. Near-

infrared chemical imaging for quantitative analysis of 

chlorpheniramine maleate and distribution homogeneity 

assessment in pharmaceutical formulations. J Innov Opt 

Health Sci. 2016;09(06):1650002.  

https://doi.org/10.1142/s1793545816500024 

103. Yang Y, Li J, Zhang J, Wu Y, Abdelaal WB, Saand MA, et 

al. Applications of Multi-Omics Technologies for Crop 

Improvement. Front Plant Sci. 2021;12(Suppl 1). 

https://doi.org/10.3389/fpls.2021.563953 

104. Yao L, Van De Zedde R, Kowalchuk G. Recent 

developments and potential of robotics in plant eco-

phenotyping. Emerg Top Life Sci. 2021;5(2):289-300. 

https://doi.org/10.1042/ETLS20200275 

105. Zaghlool SB, Attallah O. A review of deep learning 

methods for multi-omics integration in precision medicine. 

Institute of Electrical and Electronics Engineers; 2022. 

https://doi.org/10.1109/bibm55620.2022.9995099 

106. Zhang R, Qu S, Du T. A principal component analysis 

algorithm based on dimension reduction window. IEEE 

Access. 2018;6:63737-47.  

https://doi.org/10.1109/access.2018.2875270 

107. Zhang X, Souri A. Application of artificial intelligence 

recognition technology in digital image processing. 

Wireless Commun Mob Comput. 2022;2022:1-10. 

https://doi.org/10.1155/2022/7442639 

108. Zheng YJ. Self-organization grouping for feature extraction 

and image segmentation. 1994.  

https://doi.org/10.1109/sipnn.1994.344977 

109. Zhou J, Zhou J, Nguyen HT, Ye H. High-throughput crop 

phenotyping systems for controlled environments. Springer; 

2021. p. 183-208.  

https://doi.org/10.1007/978-3-030-73734-4_9. 

https://www.agronomyjournals.com/

