

International Journal of Research in Agronomy

E-ISSN: 2618-0618
P-ISSN: 2618-060X
© Agronomy
NAAS Rating (2026): 5.20
www.agronomyjournals.com
2026; 9(1): 657-661
Received: 21-11-2025
Accepted: 26-12-2025

D Dev Kumar
Crop Physiology, College of Agriculture, Prof. Jayashankar Telangana Agricultural University (PJTSU), Rajendranagar, Hyderabad, Telangana, India

D Vishnu Vardhan Reddy
Crop Physiology, College of Agriculture, Prof. Jayashankar Telangana Agricultural University (PJTSU), Rajendranagar, Hyderabad, Telangana, India

P Raghuveer Rao
Division of Plant Physiology, Indian Institute Rice Research, Prof. Jayashankar Telangana Agricultural University (PJTSU), Rajendranagar, Hyderabad, Telangana, India

M Sheshu Madhav
Director, Central Tobacco Research Institute (CTR), Rajamundry, Andhra Pradesh, India

V Gouri Shankar
Department of Genetics and Plant Breeding, College of Agriculture, Prof. Jayashankar Telangana Agricultural University (PJTSU), Rajendranagar, Hyderabad, Telangana, India

Corresponding Author:
D Dev Kumar
Crop Physiology, College of Agriculture, Prof. Jayashankar Telangana Agricultural University (PJTSU), Rajendranagar, Hyderabad, Telangana, India

Genomic analysis for the selection of superior donor genotypes in rice improvement

D Dev Kumar, D Vishnu Vardhan Reddy, P Raghuveer Rao, M Sheshu Madhav and V Gouri Shankar

DOI: <https://www.doi.org/10.33545/2618060X.2026.v9.i1i.4762>

Abstract

The field experiment was conducted following a Randomized Block Design (RBD) with three replications, involving 30 advanced breeding lines, with BPT-5204 included as a standard quality check. For molecular characterization, a set of seven genes (*Gs3*, *Gw5*, *Gn2*, *Gn1*, *SCM3*, *SCM2*, and *Spl14*) and three yield-related *QTLs* (*Yld12.1* and *Yld2.1*) associated with grain yield were employed. Among these, *Gn1* and *Gn2* were linked to grain number, *SCM2* and *SCM3* to culm strength, *Gw5* to grain weight, *Gs3* to grain size, and *Spl14* to the number of filled grains per panicle. Genotyping results revealed that only one advanced breeding line, SP-08, possessed all seven yield-associated genes and *QTLs*, suggesting a strong potential for enhanced yield performance. Two breeding lines exhibited the presence of six yield-contributing loci: SP-69, which carried *Gn2*, *Gn1*, *Gw5*, *SCM3*, *Yld2.1*, and *Spl14*, and SP-70, which harbored *Gn1*, *SCM3*, *Gw5*, *Gs3*, *Yld2.1*, and *Yld12.1*. In addition, four advanced breeding lines were identified with 5 yield-related genes/*QTLs*, line SP-37 (*Gn2*, *SCM3*, *Gw5*, *Yld2.1*, *Yld12.1*), SP-55 (*Gn2*, *SCM2*, *SCM3*, *Gw5*, *Yld2.1*), SP-75 (*Gn2*, *Gn1*, *SCM3*, *Gw5*, *Yld12.1*), and SP-61 (*Gn2*, *Gn1*, *SCM2*, *Gw5*, *Yld2.1*).

Keywords: Advanced breeding lines, *Gn2*, *Gn1*, *SCM3*, *SCM2*, *Gs3*, *Gw5*, *Spl14*, *QTLs*, *Yld2.1*, *Yld4.1* and *Yld12.1*

Introduction

Rice (*Oryza sativa* L.) is the family *Poaceae* and the subfamily *Oryzoideae*. As one of the principal cereal crops, rice serves as the primary food source for a large proportion of the global population. In Asia, over two billion people derive nearly 60-70 percentage of their daily food habits intake from rice and rice-based products. Among rice-producing nations, India ranks first in cultivated area (42.27 million hectares) and second in total production (105.24 million tonnes), following China, which produces approximately 144 million tonnes. However, India's average rice productivity (2.49 t ha^{-1}) remains considerably lower than the global mean yield of 4.36 t ha^{-1} (FAOSTAT, 2019). With an annual population growth rate of about 1.9 percentage, India's projected rice demand is expected to reach nearly 125 million tonnes by 2030 ^[1]. Ensuring national food security under such conditions necessitates substantial improvements in rice yield despite constraints on land and water availability. Approximately, increasing grain output per unit number of natural resource has become a critical challenge.

The closely low yield levels of rice in India pose a serious threat to the food and nutritional security of more than 45 Percentage of the population, who depend heavily on this crops. Moreover, the growing lower of irrigation water is emerging as a major limitation to sustainable rice production, particularly in leading rice-growing countries such as India, USA and China, where escalating comparative for fresh water resources from without agricultural sectors is anticipated in the becoming years ^[2].

Plant height and flowering duration are key detections of rice plant architecture and productivity. In this study, attempts were made to conduct a morphological and molecular characterization of Ethyl Methane sulfonate-induced dwarf and early flowering mutants developed from the rice variety Nagina 22, along with an assessment of their inheritance patterns. A total of 9 stable, true-breeding mutants, previously generated through Ethyl Methane sulfonate mutagenesis, were evaluated for variation in phenotypic traits following the national guidelines for (DUS) ^[3].

Materials and Methods

1. DNA Extraction

Genomic DNA was extracted from fresh leaf samples using Murray's method [4]. Quality and concentration of the isolate DNA was assessed using a Nano Drop spectrophotometer and further verified through agarose gel electrophoresis [5].

2. Gene Profiling

Polymerase Chain Reaction (PCR) assays were performed to

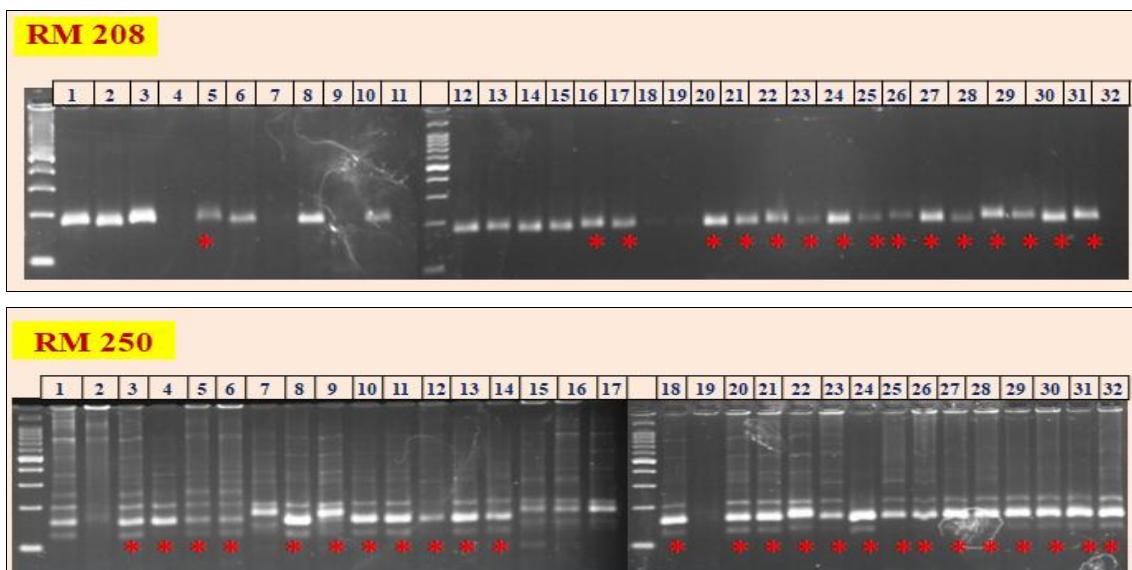
screen for high-yield-associated genes and quantitative trait loci (*QTLs*). The analysis included positive controls and susceptible check genotypes to confirm amplification accuracy. A total of ten major yield-related loci, comprising seven genes (*Gn2*, *Gn1*, *SCM3*, *SCM2*, *Sp114*, *Gs3*, and *Gw5*) and three *QTLs* (*Yld2.1*, *Yld12.1* and *Yld4.1*), were in this study using gene-specific molecular markers following the protocol. Details of the markers used for each gene and *QTL* are provided in Table 1.

Table 1: Identified genes and *QTLs* relative to yield showed in present study

S. No.	Gene / <i>QTL</i>	Chromosome	Markers
1	<i>Gn2</i>	Chr-2	RM250 RM208
2	<i>Gn1</i>	Chr -1	<i>Gn1A</i> * <i>Gn1A17</i> * <i>Gn1INDEL</i> * RM10499 RM151 RM10382
3	<i>SPL-14</i>	Chr -8	<i>Spl14-12</i> * <i>Spl14-4</i> * RM23237 RM23386
4	<i>SCM-2</i>	Chr -6	<i>SCM2-1</i> * <i>SCM2-2</i> * <i>SCM2-3</i> * <i>SCM2-4</i> * RM20615 RM20458
5	<i>SCM-3</i>	Chr -3	<i>SCM3-1</i> * <i>SCM3-2</i> * <i>SCM3-3</i> * <i>SCM3-4</i> * RM1350
6	<i>Gs-3</i>	Chr -3	DRR-GL
7	<i>Gw-5</i>	Chr -5	RM437 RM18161 RM18089
8	<i>Yld-4.2</i>	Chr -4	RM261 RM16338 RM16373
9	<i>Yld-2.1</i>	Chr -2	RM262 RM263
10	<i>Yld-12.1</i>	Chr -12	RM511 RM28166 RM28163 RM280130 RM28099

* Functional markers.

Results and Discussion


1. Grain Number (*Gn1* and *Gn2*)

Two major genes, *Gn1* and *Gn2*, were targeted. For *Gn1*, the japonica cultivar Habataki was used as a positive control, while BPT-5204 served as the negative control [6]. The allelic variation of *Gn1* among the ABL was examined using 6 molecular markers (Table 1), existing of 3 functional markers (*Gn1A17*, *Gn1INDEL* and *Gn1A*) and 3 closely linked markers (RM10382, RM10499 and RM151). Genotypes with these markers revealed that 7 ABL-SP-351, SP-70, SP-61, SP-69, SP-25, SP-08, and SP-75-carried the positive *Gn1* allele, as confirmed by amplification with more than 2 markers.

The analysis of *Gn2*, the indica genotype H-2-4 was employed as a positive control, whereas BPT-5204 was included as a

negative check. 2 linked markers, RM208 and RM250, were utilized to determine the allelic status of *Gn2* in the ABLs (Table 1; Figure 1). Genotyping results indicated that 13 ABLs- SP-13, SP-03, SP-01, SP-61, SP-69, SP-55, SP-80, SP-25, SP-34, SP-37, SP-08, SP-75, and SP-57-exhibited positive alleles for *Gn2* with both markers (Figure 1).

Grain number is a critical yield-determining trait in rice (*Oryza sativa* L.), governed by a complex genetic network. *Gn2*, originally identified from the wild rice accession *Oryza rufipogon* Griff. ("Yuanjiang"), has been reported to play a significant role in regulating this trait. ABLs over expressing *Grain Number2* observed an increase in GN, accompanied by reduced plant height and delay in flowering compares to control in paddy plants [7].

1a.MTU 10101 (H-2-4), 2a.BPT-5204, 3a.IR-64, 4a.NDR-359, 5a.Jaya, 6a.BPT-5204, 7a.SP-351, 8a.SP-352, 9a.SP-353, 10a.SP-354, 11a.SP-355, 12a.SP-356, 13a.SP-357, 14a.SP-358, 15a.SP-359, 16a.SP-360, 17a.SP-70, 18a.SP-72, 19a.SP-63, 20a.SP-61, 21a.SP-69, 22a.SP-55, 23a.SP-80, 24a.SP- 25, 25a.SP-13, 26a.SP-03, 27a.SP-01, 28a.SP-34, 29a.SP-37, 30a.SP-08, 31a.SP-75, 32a.SP-57. * Genotypes have positive alleles for (*Gn2*).

Fig 1: Genotyping of *GrainNumber2* among lines with markers

2. Spike length (Spl 14)

Spike Length gene, *Spl 14* "Aikava (273)" were selected positive control, whereas BPT-5204 negative control. To detect the allelic status of *Spl 14* 4 markers were used (Table 1). 2 were functional markers (*Spl14-4* and *Spl14-12*) and 2 linked markers (*RM23386* and *RM23237*). Upon genotyping only one ABLs (SP-69) showed positive alleles for *Spl 14* with more than 2 markers.

3. Strong Culm (SCM2 and SCM3)

To assess culm strength, 2 key genes, *SCM2* and *SCM3*, identified. Both loci, the japonica cultivar Habataki was included as a positive control, while BPT-5204 served as the negative check. The allelic variation of *SCM2* among the advanced breeding lines was analyzed using six molecular markers (Table 1), comprising four functional markers (*SCM2-1*, *SCM2-2*, *SCM2-3*, and *SCM2-4*) and two tightly linked markers (*RM20615* and *RM20458*).

Genotyping results indicated that five advanced breeding lines-SP-351, SP-61, SP-55, SP-08, and SP-57-carried the favorable *SCM2* allele, as confirmed by amplification with more than two markers. Previous studies have shown that *near-isogenic lines (NILs)* of Koshihikari carrying the *SCM2* allele introgressed from Habataki exhibited a marked improvement in culm strength, along with increased spikelet number and enhanced grain yield. These findings suggest that *SCM2* is a valuable genetic resource for improving lodging resistance and yield potential, particularly in japonica rice backgrounds.

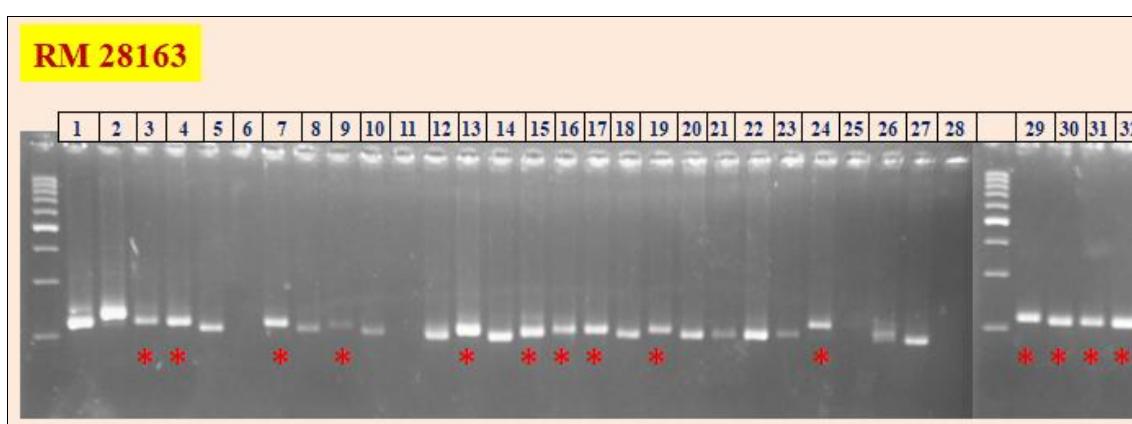
4. Grain Weight (Gw5)

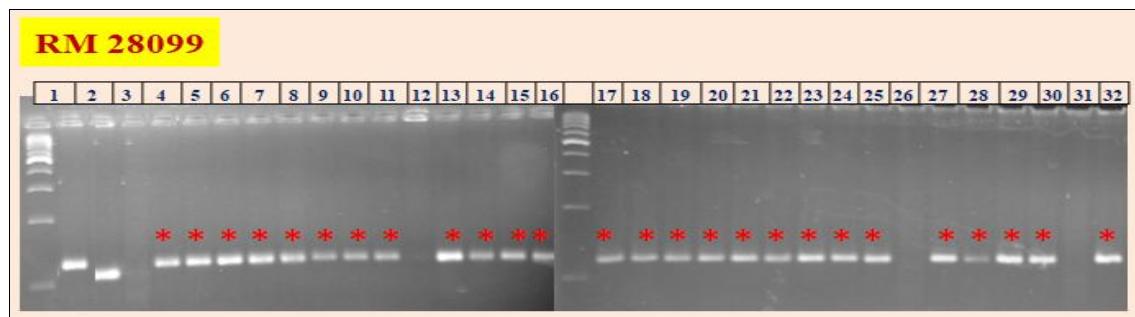
Grain WeighT₅ gene was targeted to evaluate variation in grain weight among the ABLs. Line of Swarna (272), an indica genotype, was used as the positive control, while BPT-5204 served as the negative check. To determine the allelic status of *Gw5*, 4 closely linked molecular markers- *RM18065*, *RM18089*, *RM437* and *RM18161*-were employed (Table 1). Genotyping results showed that twenty breeding lines (SP-70, SP-72, SP-63, SP-61, SP-69, SP-55, SP-25, SP-01, SP-37, SP-08, SP-75, SP-351, SP-352, SP-353, SP-354, SP-355, SP-356, SP-357, SP-359 and SP-360,) carried the favorable *Grain WeighT₅* allele, as confirmed by amplification with more than 2 markers.

The grain weight-associated *QTL* *qGw5* was initially identified using *Asominori/IR24 recombinant inbred lines* and *chromosome segment substitution line* populations. Subsequent fine mapping localized this *QTL* to a 59.7 kb genomic interval, enabling its effective utilization in rice improvement programs

globally [8].

5. Grain Size (Gs3)


To assess grain size, the *Gs3* gene was selected for analysis. The long-grain aromatic cultivar Basmati 370 was used as a positive control, whereas BPT-5204, characterized by medium-slender grains, was included as the negative control. The allelic variation of *Gs3* was detected using a single linked functional marker (*DRR-GL*) (Table 1). Genotyping revealed that four advanced breeding lines SP-70, SP-63, SP-80 and SP-360, possessed the favorable *Gs3* allele.


Conventional cleaved amplified polymorphic sequence (CAPS) markers used earlier for this gene were found to be labor-intensive. As an alternative, the functional marker *DRR-GL*, designed to target a C/A *single nucleotide polymorphism* within the *Gs3* gene, was developed and extensively validated across diverse rice germplasm, proving its effectiveness for grain size selection [9].

6. Grain Yield (Yld12.1, Yld2.1, and Yld4.1)

Three key quantitative trait loci associated with grain yield-*Yld12.1*, *Yld2.1*, and *Yld4.1*-were selected for molecular analysis. Among these, *Yld12.1* was examined in detail using of Vandana as the positive control, while Varalu was included as the negative control. The allelic status of *Yld12.1* in the experimental genotypes was assessed using five closely linked *SSR* markers (*RM28163*, *RM511*, *RM28166*, *RM28099* and *RM28130*) (Table 1; Figure 2). Marker analysis indicated that twelve advanced breeding lines- SP-70, SP-63, SP-25, SP-37, SP-08, SP-75, SP-57 SP-351, SP-353, SP-357, SP-359 and SP-360 -carried the favorable *Yld12.1* allele, as confirmed by amplification with more than 2 markers.

Previous studies have shown that a large proportion of grain yield-related *QTLs* under stress conditions are clustered near the centromeric region of *chromosome 12*, particularly around the *qtl12.1* locus. *Composite interval mapping* conducted over 2 consecutive years using a population of 566 lines localized this *QTL* within the interval flanked by *RM28048* (47.2 cM) and *RM511* (55.5 cM). The rare allele at *qtl12.1* exhibited an additive effect of 172 kg ha⁻¹ and accounted for nearly 33% of the phenotypic variation in grain yield under stress conditions. In addition to grain yield, significantly associations were also observed in this genomic region for biomass production, final plant height, flowering delay, harvest index, flowering time, panicle number and drought-response index highlighting the pleiotropic influence of *qtl12.1* [10].

1b.Vandana, 2b.BPT-5204, 3b.IR-64, 4b.NDR-359, 5b.Jaya, 6b.BPT-5204, 7b.SP-351, 8b.SP-352, 9b.SP-353, 10b.SP-354, 11b.SP-355, 12b.SP-356, 13b.SP-357, 14b.SP-358, 15b.SP-359, 16b.SP-360, 17b.SP-70, 18b.SP-72, 19b.SP-63, 20b.SP-61, 21b.SP-69, 22b.SP-55, 23b.SP-80, 24b.SP- 25, 25b.SP-13, 26b.SP-03, 27b.SP-01, 28b.SP-34, 29b.SP-37, 30b.SP-08, 31b.SP-75, 32b.SP-57.

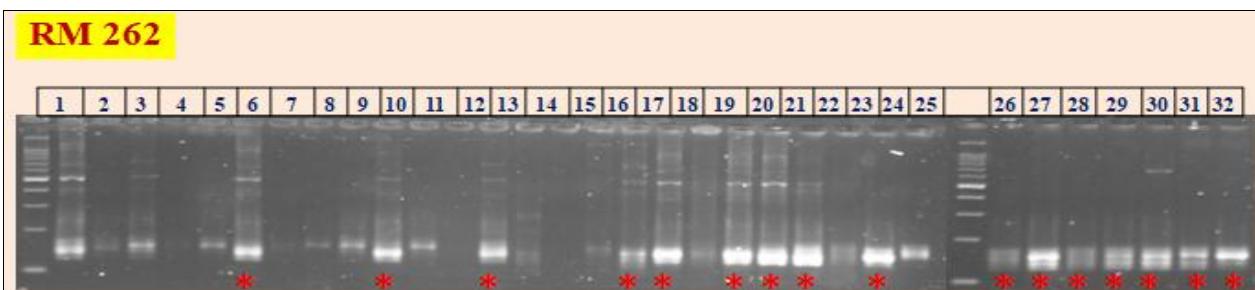
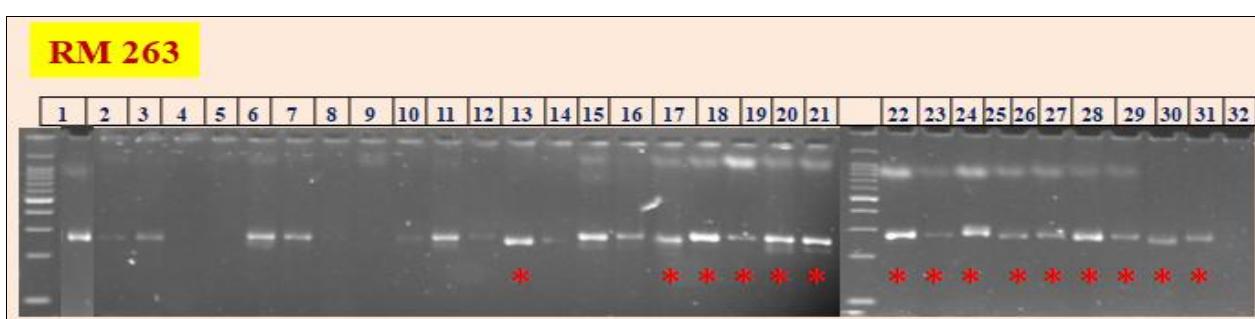


* Genotypes have positive alleles for *Grain Yield (Yld2.1)*.

Fig 2: Genotyping of *Yld2.1* among ABLs with markers

For the analysis of *Yld2.1*, the genotype *DRR-50-7* was used as a positive reference, while *BPT-5204* served as the susceptible control. The allelic composition of *Yld2.1* in the evaluated breeding lines was determined using two closely linked SSR markers, *RM262* and *RM263* (Table 1; Figure 3). Marker-based screening revealed that eleven advanced lines-, *SP-70*, *SP-72*, *SP-357*, *SP-03*, *SP-01*, *SP-34*, *SP-37*, *SP-61*, *SP-69*, *SP-55* and *SP-08*-carried the favorable *Yld2.1* allele, as indicated by

consistent amplification with morethan one markers.

Earlier efforts to identify this *QTL* employed a marker-assisted selection strategy using three peak markers, with one diagnostic marker assigned to each *qDTY* locus. During foreground selection, previously reported peak markers, *RM520*, *RM511*, were utilized to validate the presence of *qDTY3.1* and *qDTY12.1*, respectively^[11].

1c.DRR-50-7, 2c.BPT-5204, 3c.IR-64, 4c.NDR-359, 5c.Jaya, 6c.BPT-5204, 7c.SP-351, 8c.SP-352, 9c.SP-353, 10c.SP-354, 11c.SP-355, 12c.SP-356, 13c.SP-357, 14c.SP-358, 15c.SP-359, 16c.SP-360, 17c.SP-70, 18c.SP-72, 19c.SP-63, 20c.SP-61, 21c.SP-69, 22c.SP-55, 23c.SP-80, 24c.SP- 25, 25c.SP-13, 26c.SP-03, 27c.SP-01, 28c.SP-34, 29c.SP-37, 30c.SP-08, 31c.SP-75, 32c.SP-57.

* Genotypes have positive alleles for *Grain Yield (Yld2.1)*.

Fig 3: Genotyping of *Yld2.1* among ABLs with markers

Conclusion

- Among the evaluated materials, *SP-08* emerged as the most promising advanced breeding line, as it harbored seven key genes/*QTLs* associated with grain yield. these genotypes therefore represents a valuable donor source for use in future rice improvement and molecular breeding programs.
- The breeding lines *SP-69* and *SP-70* were also notable, as they possessed the panicle length-related gene (*Spl14*) along with six yield-enhancing genes/*QTLs*, indicating their potential contribution to yield improvement.
- In addition, the advanced breeding lines *SP-37*, *SP-55*, *SP-*

75, and *SP-61* were found to carry five yield-related genes/*QTLs*, suggesting moderate but consistent potential for inclusion in breeding strategies aimed at yield enhancement.

References

- Kumar MS, Yakadri M, Shaik-Mohammad. Evaluation of genotypic response for system of rice intensification—a novel technology. Plant Archives. 2009;6(1):329-331.
- Choudhary RL, Kumar D, Shivay YS, Lata, Singh G, Singh N. Performance of rice (*Oryza sativa*) hybrids grown by the system of rice intensification with plant growth-promoting

rhizobacteria. Indian Journal of Agricultural Sciences. 2010;80(10):917-920.

3. Kulkarni KP, Vishwakarma C, Sahoo SP, Lima JM, Nath N, Dokku P. Phenotypic characterization and genetic analysis of dwarf and early flowering mutants of rice variety Nagina22. Rice. 2013;6:18-25.
4. Devi SJSR, Kuldeep S, Umakanth B, Vishalakshi B, Renuka P, Sudhakar KV. Development and identification of novel rice blast resistant sources and their characterization using molecular markers. Rice Science. 2015;22:300-308.
5. Murray MG, Thompson WF. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research. 1980;8:4321-4325.
6. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, *et al.* Cytokinin oxidase regulates rice grain production. Science. 2005;309(5735):741-745.
7. Chen S, Krinsky BH, Long M. New genes as drivers of phenotypic evolution. Nature Reviews Genetics. 2013;14:645-660.
8. Wan XY, Wan JM, Jiang L, Wang JK, Zhai HQ. QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects. Theoretical and Applied Genetics. 2006;112:1258-1270.
9. Kumar MS, Yakadri M, Shaik-Mohammad. Evaluation of genotypic response for system of rice intensification—a novel technology. Plant Archives. 2010;6(1):329-331.
10. Bernier J, Kumar A, Spaner D, Verulkar S, Mandal NP, Sinha PK, *et al.* Characterization of the effect of rice drought tolerance QTL qt12.1 over a range of environments in the Philippines and eastern India. Euphytica. 2009;166:207-217.
11. Venuprasad R, Bool ME, Dalid CO, Zhao D, Espiritu M, Cruz MTS, *et al.* Genetic loci responding to two cycles of divergent selection for grain yield under drought stress in a rice breeding population. Euphytica. 2009;167:261-269.
12. Sandhu N, Kumar A. Bridging the rice yield gaps under drought: QTLs, genes, and their use in breeding programs. Agronomy. 2017;7(2):27.