

International Journal of Research in Agronomy

E-ISSN: 2618-0618
P-ISSN: 2618-060X
© Agronomy
NAAS Rating (2026): 5.20
www.agronomyjournals.com
2026; 9(1): 420-428
Received: 15-11-2025
Accepted: 19-12-2025

Pranjal Pandey
M.Sc. (Horticulture) Scholar, Department of Fruit Science, Pt. K.L.S. College of Horticulture and Research Station (CHRS), Pendri, Rajnandgaon, Chhattisgarh, India

Dr. MS Paikra
Professor and Head, Department of Fruit Science, (MGUVV), Sankra, Durg, Chhattisgarh, India

Ritesh Patel
M.Sc. (Horticulture) Scholar, Department of Fruit Science, Pt. K.L.S. (CHRS), Pendri, Rajnandgaon, Chhattisgarh, India

Vinay Sahu
M.Sc. (Horticulture) Scholar, Department of Fruit Science, Pt. K.L.S. (CHRS), Pendri, Rajnandgaon, Chhattisgarh, India

Pankaj Rathore
M.Sc. (Horticulture) Scholar, Department of Fruit Science, Pt. K.L.S. (CHRS), Pendri, Rajnandgaon, Chhattisgarh, India

Bhavesh Kumar Dhruv
M.Sc. (Horticulture) Scholar, Department of Fruit Science, Pt. K.L.S. (CHRS), Pendri, Rajnandgaon, Chhattisgarh, India

Sanskriti Shukla
M.Sc. (Horticulture) Scholar, Department of Fruit Science, Pt. K.L.S. (CHRS), Pendri, Rajnandgaon, Chhattisgarh, India

Chandrashekhar Ogare
M.Sc. (Horticulture) Scholar, Department of Fruit Science, Pt. K.L.S. (CHRS), Pendri, Rajnandgaon, Chhattisgarh, India

Vinod Ayam
M.Sc. (Horticulture) Scholar, Department of Fruit Science, Pt. K.L.S. (CHRS), Pendri, Rajnandgaon, Chhattisgarh, India

Dr. Dikeshwar Nishad
Assistant Professor, Department of Agricultural Statistics, S.K.S., (CARS), Surgi, Rajnandgaon, Chhattisgarh, India

Corresponding Author:
Pranjal Pandey
M.Sc. (Horticulture) Scholar, Department of Fruit Science, Pt. K.L.S. College of Horticulture and Research Station (CHRS), Pendri, Rajnandgaon, Chhattisgarh, India

Effect of Plant Growth Regulators and Micronutrients on Fruit Yield and Quality of Mango (*Mangifera indica* L.) cv. Dashehri

Pranjal Pandey, MS Paikra, Ritesh Patel, Vinay Sahu, Pankaj Rathore, Bhavesh Kumar Dhruv, Sanskriti Shukla, Chandrashekhar Ogare, Vinod Ayam and Dikeshwar Nishad

DOI: <https://doi.org/10.33545/2618060X.2026.v9.i1f.4690>

Abstract

The present investigation was conducted in 2024-25 at Department of Fruit Science, Pt. K.L.S. CHRS, Pendri, Rajnandgaon (C.G.) India to evaluate the effect of plant growth regulators (GA₃ and NAA) and micronutrients (ZnSO₄ and Borax) on fruit yield and quality of mango (*Mangifera indica* L.) cv. Dashehri. The experiment comprised fifteen treatments and three replications. Individual, and combined applications of growth regulators and micronutrients, laid out in a randomized block design (RBD). Significant variations were observed among treatments for fruit yield, fruit volume, total soluble solids (TSS), reducing and non-reducing sugars, and titratable acidity. The combined application of NAA @ 20 ppm + Borax @ 0.2% (T₈) recorded the highest fruit yield (69 kg/tree), maximum fruit retention at pea, marble, and pre-harvest stages, highest fruit setting percentage (0.7%) and highest number of fruits per panicle (4.93). Whereas maximum fruit weight, TSS, and total sugar content with the lowest acidity recorded under T₁₃ (NAA @ 20 ppm + ZnSO₄ @ 0.5%). In contrast, the treatment T₀ (control) recorded the minimum values for all parameters. The results suggest that the combined use of growth regulators and micronutrients improves fruit yield and quality attributes of mango cv. Dashehri.

Keywords: Mango, GA₃, NAA, ZnSO₄, Borax, Fruit quality, Yield

Introduction

Mango (*Mangifera indica* L.) is one of the most important tropical fruit in India. The diploid chromosome number of mango is 2n = 40. It is called as King of Fruits (Purseglove, 1972). It is originated from the region between Northwestern Myanmar, Bangladesh, and northeastern India. Mango is cultivated widely in India for its delicious taste, high nutritional value, and export potential. Despite its commercial significance, yield and fruit quality are often constrained by irregular flowering, poor fruit set, and fruit drop, which are influenced by hormonal imbalances and micronutrient deficiencies. Plant growth regulators (PGRs) such as gibberellic acid (GA₃) and naphthalene acetic acid (NAA) play vital roles in regulating fruit development, enhancing fruit retention, and improving quality. Similarly, micronutrients like zinc (Zn) and boron (B) are essential for chlorophyll synthesis, pollen viability, and translocation of sugars, all of which influence yield and fruit quality. However, limited studies are available on their combined effect in mango cv. Dashehri under Chhattisgarh conditions. Therefore, the present study was undertaken to assess the effect of PGRs and micronutrients on fruit yield and quality of mango cv. Dashehri.

Materials and Methods

The investigation was carried out during the 2024-25 cropping season at the Horticultural Research Farm, Department of Fruit Science, Mahatma Gandhi University of Horticulture and Forestry, Sankra-Patan (Chhattisgarh). Uniformly healthy 15-year-old mango trees of cv. Dashehri were selected for the study. The experiment was laid out in Randomized Block Design (RBD) with 15 treatments and 3 replications.

Treatments

S.N.	Notations	Treatment Combination
1.	T ₀	Control (water spray)
2.	T ₁	GA ₃ @ 20 ppm
3.	T ₂	GA ₃ @ 40 ppm
4.	T ₃	NAA @ 20 ppm
5.	T ₄	NAA @ 40 ppm
6.	T ₅	Borax @ 0.2%
7.	T ₆	GA ₃ @ 20 ppm + Borax @ 0.2 %
8.	T ₇	GA ₃ @ 40 ppm + Borax @ 0.2 %
9.	T ₈	NAA @ 20 ppm + Borax @ 0.2 %
10.	T ₉	NAA @ 40 ppm + Borax @ 0.2 %
11.	T ₁₀	ZnSO ₄ @ 0.5 %
12.	T ₁₁	GA ₃ @ 20ppm + ZnSO ₄ @ 0.5 %
13.	T ₁₂	GA ₃ @ 40 ppm + ZnSO ₄ @ 0.5%
14.	T ₁₃	NAA @ 20ppm + ZnSO ₄ @ 0.5 %
15.	T ₁₄	NAA @ 40ppm + ZnSO ₄ @ 0.5 %

Results and Discussion: The result of the present investigation on “Effect of plant growth regulators and micronutrients on fruit yield and quality of Mango (*Mangifera indica* L.) cv. Dashehri” was conducted in the year 2024-2025, at Horticulture Farm, Bharregao under Pt. K.L.S. college of Horticulture and Research Station, Rajnandgaon [Mahatma Gandhi University of Horticulture and Forestry Sankra, Durg, (C.G)] are presented

and described in this chapter.

The results pertaining to various characters on yield and yield attributing characters and quality of fruit have been presented in this paper which recorded during the course of investigation and were subjected to statistical analysis. The research results pertaining to each aspect have been presented and described along with statistical inferences under the following heads.

Table 1: Effect of PGRs and micronutrients on fruit yield, fruit set%, Number of fruits per panicle of mango cv. Dashehri

Notations	Yield (kg/ tree)	Fruit Set %	Number of fruits per panicle
T ₀	57.92	0.417	2.833
T ₁	58.40	0.42	2.967
T ₂	60.34	0.46	3.133
T ₃	62.32	0.42	2.9
T ₄	60.39	0.51	3.5
T ₅	64.07	0.49	3.333
T ₆	58.37	0.58	3.933
T ₇	67.15	0.473	3.267
T ₈	69.89	0.707	4.933
T ₉	67.66	0.693	4.8
T ₁₀	67.42	0.62	4.2
T ₁₁	61.50	0.647	3.867
T ₁₂	69.41	0.577	3.933
T ₁₃	66.56	0.56	4.433
T ₁₄	66.90	0.57	4
C.D.	5.77	0.07	0.438
SE(m)	1.982	0.024	0.15
SE(d)	2.802	0.034	0.213
C.V.	5.372	7.635	6.973

From table 1 Comparison between group of combine treatments revealed that maximum fruit set percentage (0.70%) was observed in treatment T₈ i.e. NAA 20 ppm + Borax 0.2% which was at par with treatment T₉ (0.69%) followed by T₁₁ (0.64 %), T₁₀ (0.62%) and T₁₄ (0.57%). While the lowest Fruit set percentage (0.41%) recoded under Treatment T₀ (control). Auxin serves a pivotal role in abscission, the natural process of shedding plant organs like leaves, flowers, or fruits. Its primary function lies in sustaining ongoing physiological and biochemical processes within the plant. By steadily moving from the attachment point (subtending organ) to the abscission zone, auxin maintains a state of relative dormancy, inhibiting premature organ detachment. External application of auxin further reinforces this inhibition, prolonging the retention of plant organs. Additionally, auxin acts as a facilitator for nutrient mobilization, promoting the translocation of essential resources

to developing fruits and other growing parts of the plant. The results were also in accordance with the findings of Naqvi *et al.* (2004) ^[39], Gupta and Brahmachari (2004) ^[8], Vejendla *et. al.* (2008) ^[64], Sondarva (2009) ^[61], Rajput *et. al.* (2013) ^[46] and Dheeraj *et. al.* (2016) ^[16] in mango. Studies have shown that boron supplementation can enhance the pollen-producing capacity of anthers and increase pollen viability, leading to improved fruit set and quality in various crops, including mangoes. Adequate boron supply is essential during critical stages of flowering and fruiting to ensure optimal reproductive development and maximize yield (Singh *et al.*, 2011) ^[68]. Similar results were also obtained by Kanapol *et al.* (2002) ^[2], Bhowmick *et al.* (2011) ^[11], and Gurjar *et. al.* (2015) ^[20] in mango.

The plant treated with various concentrations of plant growth regulators and micronutrients showed total number of fruits per

panicle varied from 2.833 to 4.933. The maximum number of fruits per panicle (4.9) was recorded in treatment T_8 i.e. NAA 20 ppm + Borax 0.2%, which was at par with T_9 (4.8), followed by T_{13} and T_{10} (4.43, and 4.2). All the micronutrients when sprayed alone or in combination involved directly in various physiological processes and enzymatic activity. This might have resulted into better photosynthesis, greater accumulation of starch in fruits. The involvement of zinc in auxin synthesis and boron in translocation of starch to fruits. The balance of auxin in plant regulates the fruit drop or retention in plants, which altered the control of fruit drop and increased the total number of fruits. Similar results were observed by Haidry *et al.* (1997)^[23], Shinde *et al.* (2006)^[54], Baghel *et al.* (2003)^[7], Baghel *et al.* (2004)^[8], and Naqvi *et al.* (2004)^[39] in mango and Kumar *et al.* (2019)^[63] in litchi, Trivedi *et al.* (2012)^[46] and Bhoyar and Ramdevputra (2016)^[12] in guava.

The highest yield (69.891 kg/plant) was recorded in treatment T_8 i.e. NAA @ 20 ppm + Borax @ 0.2 % which was at par with T_{10}

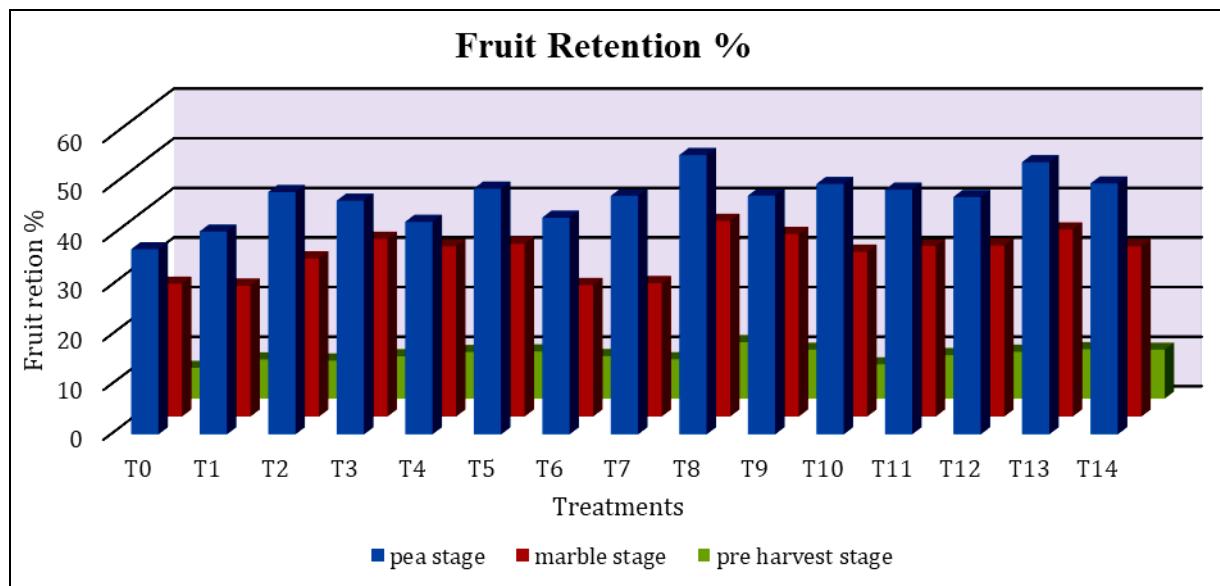
and T_{14} (68.78, 68.601), followed by T_9 , and T_7 (67.66 and 67.15 kg/plant). While lowest yield (57.92 kg/plant) was recorded in treatment T_0 (control). The significant increase in fruit yield per tree is a cumulative effect of increase in number of fruits because of reduction in fruit drop by the direct and indirect effect of foliar spray of plant growth regulators and micronutrients in mango Nkansah *et al.* Promotion of starch formation followed by rapid transportation of carbohydrates in plants activated by micronutrients like zinc and boron are also well established (Nehete *et al.* 2019)^[40]. Foliar spray of NAA and borax significantly increased the fruit set in mango which helps in increasing the number of fruits per panicle resulting in higher fruit yield due to the more rapid translocation of sugars from leaves to developing fruits (Dutta. Similar findings were also observed by Banik *et al.* (1997)^[71], Banik and Sen (1997)^[71], Sanna and Abd-El-Migeed, Nehete *et al.* (2019)^[40], Bhowmick *et al.* (2011)^[11], Jarande *et al.*, Singh *et al.* (2015)^[62], Gurjar *et al.* (2015)^[20] and Oosthuyse (2015)^[42] in mango.

Table 2: Effect of PGRs and micronutrients on fruit retention percentage of mango cv. Dashehri

Notations	Pea stage*	Marble stage*	Pre harvest stage*
T_0	37.63 (37.31)	29.36 (26.78)	14.44 (6.23)
T_1	39.72 (40.87)	30.88 (26.37)	16.34 (7.93)
T_2	44.31 (48.83)	34.35 (31.86)	16.10 (7.70)
T_3	43.32 (47.10)	36.75 (35.63)	17.0 (8.56)
T_4	40.85 (42.82)	35.85 (34.37)	17.86 (9.42)
T_5	44.70 (49.51)	36.14 (34.82)	17.98 (9.54)
T_6	41.34 (43.66)	30.97 (26.50)	17.04 (8.60)
T_7	43.87 (48.06)	31.21 (26.89)	16.37 (7.95)
T_8	48.60 (56.29)	38.88 (39.44)	19.73 (11.41)
T_9	43.89 (48.10)	37.33 (36.80)	18.29 (9.88)
T_{10}	45.25 (50.46)	35.16 (33.22)	15.25 (6.94)
T_{11}	44.59 (49.32)	35.87 (34.37)	17.23 (8.79)
T_{12}	43.73 (47.83)	35.94 (34.49)	17.91 (9.47)
T_{13}	47.75 (54.83)	37.86 (37.70)	18.40 (9.99)
T_{14}	45.30 (50.57)	35.83 (34.30)	18.31 (9.89)
C.D.	2.856	1.876	0.966
SE(m)	0.981	0.644	0.332
SE(d)	1.387	0.911	0.469
C.V.	3.891	3.205	3.337

1. The Symbol (*) indicates arcsine transformed values.

2. Values in parenthesis () are inverse transformed values, in percent unit corresponding to the arcsine transformed values.


From table 2 it is observed that at pea stage maximum fruit retention percentage (48.60) was recorded in treatment T_8 i.e. NAA @ 20 ppm + Borax @ 0.2 % which was at par with T_{13} (47.75), followed by T_{14} , T_{10} and T_{11} (45.30, 45.25, and 44.59%). While lowest Fruit retention percentage (37.63) was observed in treatment T_0 (Control).

At marble stage maximum fruit retention percentage (38.89) was recorded in treatment T_8 i.e. NAA @ 20 ppm + Borax @ 0.2 %, followed by T_{13} (37.86) which was at par with T_9 (37.33), followed by T_3 (36.75). While lowest Fruit retention percentage (29.36) observed in treatment T_0 (Control).

At pre harvest stage maximum fruit retention percentage (19.74) was recorded in treatment T_8 i.e. NAA @ 20 ppm + Borax @ 0.2 %, followed by T_{13} (18.41) which was at par with T_{14} (18.32) and T_9 (18.30). While lowest Fruit retention percentage (14.45 %) observed in treatment T_0 (Control).

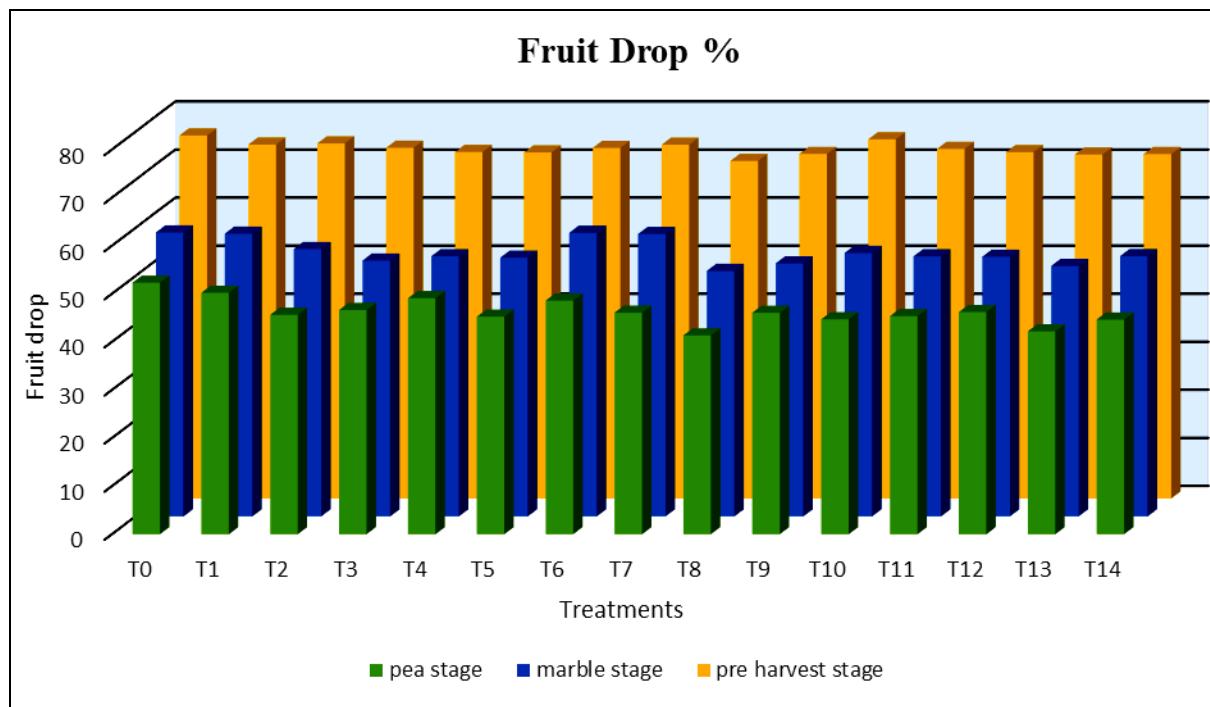
The increase in fruit retention by using different growth regulators and micronutrients showed that the combined application of growth regulators and micronutrients was found better rather than applying these chemicals individually.

Auxin acts as a facilitator for nutrient mobilization, promoting the translocation of essential resources to developing fruits and other growing parts of the plant. Studies have also shown that boron supplementation can enhance the pollen-producing capacity of anthers and increase pollen viability, leading to improved fruit set, retention and quality in various crops, including mangoes. Adequate boron supply is essential during critical stages of flowering and fruiting to ensure optimal reproductive development and maximize yield (Singh *et al.*, 2015)^[62]. Similar results were also obtained by Kanapol *et al.* (2002)^[2], Bhowmick *et al.* (2011)^[11], and Gurjar *et al.* (2015)^[20] in mango.

Fig 1: Effect of foliar application of PGR's and micronutrients on fruit retention percentage of mango c.v. Dashehri**Table 3:** Effect of PGRs and micronutrients on fruit drop percentage of mango cv. Dashehri

Notations	Pea stage*	Marble stage*	Pre harvest stage*
T ₀	52.34 (62.69)	59.07 (73.62)	75.51 (93.76)
T ₁	50.23 (59.12)	58.81 (73.22)	73.61 (92.07)
T ₂	45.65 (51.17)	55.61 (68.13)	73.86 (92.30)
T ₃	46.64 (52.90)	53.21 (64.16)	72.95 (91.43)
T ₄	49.10 (57.17)	54.11 (65.67)	72.09 (90.57)
T ₅	45.26 (50.48)	53.81 (65.17)	71.97 (90.45)
T ₆	48.62 (56.33)	58.99 (73.49)	72.91 (91.40)
T ₇	46.09 (51.93)	58.74 (73.11)	73.59 (92.04)
T ₈	41.36 (43.70)	51.07 (60.55)	70.22 (88.58)
T ₉	46.07 (51.90)	52.63 (63.20)	71.66 (90.11)
T ₁₀	44.71 (49.53)	54.80 (66.77)	74.71 (93.05)
T ₁₁	45.37 (50.68)	54.09 (65.63)	72.72 (91.20)
T ₁₂	46.22 (52.17)	54.01 (65.51)	72.05 (90.53)
T ₁₃	42.20 (45.16)	52.1 (62.30)	71.55 (90.01)
T ₁₄	44.65 (49.43)	54.13 (65.69)	71.64 (90.11)
C.D.	2.856	1.656	0.966
SE(m)	0.981	0.569	0.332
SE(d)	1.387	0.804	0.469
C.V.	3.669	1.79	0.79

1. The Symbol (*) indicates arcsine transformed values.


2. Values in parenthesis () are inverse transformed values, in percent unit corresponding to the arcsine transformed values.

At pea stage minimum fruit drop percentage (41.36%) was recorded in treatment T₈ i.e. NAA @ 20 ppm + Borax @ 0.2 %, which was at par with T₁₃ (42.21), followed by T₂, T₁₄ and T₁₀ (45.65, 44.71 and 44.65%) and the maximum fruit drop percentage (52.34) % was recorded in Control T₀.

At marble stage minimum fruit drop percentage (51.07) was recorded in treatment T₈ i.e. NAA @ 20 ppm + Borax @ 0.2 % followed by T₁₃ (52.1) which was at par with T₉, T₃ and T₅ (52.63, 53.21, 53.81%) and the maximum fruit drop percentage (59.07) % was recorded in Control T₀.

At pre harvest stage minimum fruit drop percentage (70.22) was recorded in treatment T₈ i.e. NAA @ 20 ppm + Borax @ 0.2 % followed by T₅, T₁₃, T₁₄, T₉ (71.97, 71.55, 71.64, 71.66) and the maximum fruit drop percentage (75.51) % was recorded in Control T₀.

From results it can be observed that fruit drop percentage significantly reduced by the application of various plant growth regulators and micronutrients. Auxin acts as a facilitator for nutrient mobilization, promoting the translocation of essential resources to developing fruits and other growing parts of the plant. Studies have also shown that boron supplementation can enhance the pollen-producing capacity of anthers and increase pollen viability, leading to improved fruit set, retention and quality in various crops, including mangoes. Adequate boron supply is essential during critical stages of flowering and fruiting to ensure optimal reproductive development and maximize yield (Singh *et al.*, 2020) [60]. Similar results were also obtained by Kanapol *et al.* (2002) [2], Bhowmick *et al.* (2011) [11], and Gurjar *et. al.* (2015) [20] in mango.

Fig 2: Effect of foliar application of PGR's and micronutrients on fruit drop percentage of mango c.v. Dashehri**Table 4:** Effect of PGRs and micronutrients on fruit weight, fruit volume and specific gravity of mango cv. Dashehri

Notations	Fruit weight (g)	Fruit volume (cc)	Specific gravity (g/cc)
T ₀	135.74	134.75	1.01
T ₁	142.79	137.47	1.04
T ₂	143.22	140.44	1.02
T ₃	147.13	144.98	1.02
T ₄	150.14	147.20	1.02
T ₅	146.23	144.17	1.01
T ₆	153.66	150.65	1.02
T ₇	153.82	152.44	1.01
T ₈	159.73	153.61	1.04
T ₉	161.65	154.46	1.04
T ₁₀	163.37	157.16	1.04
T ₁₁	167.93	162.52	1.03
T ₁₂	169.49	162.97	1.04
T ₁₃	179.06	171.08	1.04
T ₁₄	171.46	162.79	1.05
C.D.	2.897	10.921	N/A
SE(m)	0.995	3.75	0.024
SE(d)	1.407	5.304	0.034
C.V.	1.102	4.28	3.983

The maximum fruit weight (179.06 g) was recorded in T₁₃ i.e. NAA @ 20ppm + ZnSO₄ @ 0.5 % followed by T₁₄ (171.46), which was at par with T₁₂ and T₁₁ (169.49 and 167.93). While lowest fruit weight (135.74) was observed under control T₀. This increment in fruit weight due to application of growth regulators NAA can be attributed to the involvement of PGRs in cell division, cell expansion and increased volume of intercellular spaces in mesocarpic cells. It could also be due to higher mobilization of food and minerals from other plant parts towards the developing fruits that are extremely active metabolic sink. The application of NAA might have a role in increasing the auxin level of fruits which in turn helped in the development of fruit components as there is direct correlation between auxin content and fruit growth in several plants. The involvement of zinc in auxin synthesis and boron in translocation of starch to fruits improves fruit length and diameter. The results were also in accordance with the findings of Tsomu T. *et al.* (2019)^[72], Haidry *et al.* (1997)^[23], Shinde *et al.* (2006)^[54] in mango.

Haidry *et al.* (1997), Shinde *et al.* (2006) in mango. The maximum fruit volume (171.08 cc) was recorded in T₁₃ i.e. NAA @ 20ppm + ZnSO₄ @ 0.5 % followed by T₁₂ (162.97), which was at par with T₁₄ (162.80) and T₁₁ (162.52). While the lowest fruit volume recorded (134.75 cc.) in control T₀. The reason behind this is NAA can be attributed to the involvement of PGRs in cell division, cell expansion and increased volume of intercellular spaces in mesocarpic cells. It could also be due to higher mobilization of food and minerals from other plant parts towards the developing fruits that are extremely active metabolic sink. The application of NAA might have a role in increasing the auxin level of fruits which in turn helped in the development of fruit components as there is direct correlation between auxin content and fruit growth in several plants. The results were also in accordance with the findings of Tsomu T. *et al.* (2019)^[72], Haidry *et al.* (1997)^[23], Shinde *et al.* (2006)^[54] in mango. From the observations it can be concluded that the specific

gravity of mango fruits was not significantly influenced by any treatment under investigation. highest specific gravity (1.05

g/cc) was found under T_{13} (NAA @ 20ppm + $ZnSO_4$ @ 0.5 %) and lowest (1.01 g/cc) was noticed under T_0 (control).

Table 4: Effect of PGRs and micronutrients on Quality parameters of mango cv. Dashehri

Notations	TSS	Acidity %	Ascorbic acid (mg/100 g)	Reducing Sugar %	Non Reducing Sugar %	Total Sugar %
T_0	15.8	0.34	39.11	4.46	9.89	14.42
T_1	17.3	0.33	43.08	4.75	10.96	15.72
T_2	17.5	0.32	41.79	4.92	10.16	15.09
T_3	19.03	0.31	40.34	5.5	10.94	16.44
T_4	17.36	0.31	47.09	5.15	9.62	14.77
T_5	18.33	0.28	45.86	4.65	11.52	16.17
T_6	16.83	0.28	44.70	4.55	10.9	15.45
T_7	19.16	0.27	48.01	5.62	11.05	16.68
T_8	19.7	0.25	50.75	4.82	12.22	17.04
T_9	16	0.24	49.62	5.7	12.72	18.42
T_{10}	17.4	0.24	51.85	5.32	12.41	17.74
T_{11}	18.33	0.22	54.12	5.04	13.03	18.08
T_{12}	16.46	0.22	54.60	5.4	11.95	17.35
T_{13}	20.06	0.20	57.19	5.8	13.31	19.11
T_{14}	19.33	0.20	55.84	5.25	13.56	18.81
C.D.	0.362	0.014	0.756	0.045	0.138	0.118
SE(m)	0.124	0.005	0.26	0.015	0.047	0.04
SE(d)	0.176	0.007	0.367	0.022	0.067	0.057
C.V.	1.203	3.105	0.932	0.523	0.704	0.418

From table 4 the highest TSS recorded (20.06) in treatment T_{13} i.e. NAA @ 20ppm + $ZnSO_4$ @ 0.5 % which was at par with treatment T_8 and T_{14} (19.7, 19.3), followed by T_7 which is similar to T_3 (19). While lowest TSS (15.8) was recorded in treatment T_0 (control). The increase in TSS may be assigned to hydrolysis of starch content of the fruits in the presence of enzymes, viz., α -amylase, β -amylase and starch phosphorylase, resulting in general increase in TSS (Salisbury and Ross,) and Bhullar *et al.*

The highest acidity percentage (0.34%) was recorded in treatment T_0 (Control). The lowest acidity percentage (0.20) was found in T_{13} i.e. NAA @ 20ppm + $ZnSO_4$ @ 0.5 %. Which is similar to T_{14} i.e. NAA @ 40ppm + $ZnSO_4$ @ 0.5 %. The reason behind is that utilizing plant growth regulators and micronutrients reduced the titratable acidity content of fresh fruits. This could result from an increase in the metabolic conversion of acids to sugars by the reversal reaction of the glycolytic pathway, which is used in numerous physiological functions, as well as an increase in the translocation of photosynthates (carbohydrates). The similar results were reported by Gupta *et al.* (2022) ^[69] in litchi, Tripathi (2020) ^[36] in Aonla.

Ascorbic acid (57.17 mg/100g) was recorded highest under the treatment in T_{13} i.e. NAA @ 20ppm + $ZnSO_4$ @ 0.5 %. lowest ascorbic acid content found in T_0 (Control) that is 39.11 mg/100g, which is statistically par with T_3 (40.34) and T_2 (41.79). All other treatments were significantly different from each other. The increase in ascorbic acid might be due to the catalytic influence of growth regulators on its bio-synthesis from its precursor glucose-6-phosphates throughout the development of fruit which is thought to be the precursor of vitamin C. During ripening ascorbic acid in general progressively decreases with an increase in the storage period on account of oxidation of ascorbic acid. The higher value of ascorbic acid content with treatment boron 0.2% might be due to higher level of sugars in boron treated fruit, which increased the content of ascorbic acid, since ascorbic acid is synthesized from sugar. Similar result was observed by Sankar *et al.* (2013) ^[73] in mango. The results are in accordance with findings of Srivastava and Jain (2013) ^[46] in mango, Shukla *et al.*

The maximum reducing sugar percentage (5.8) was recorded under treatment T_{13} i.e. NAA @ 20ppm + $ZnSO_4$ @ 0.5 %. followed by T_9 , T_7 , T_3 and T_{12} (5.7, 5.623, 5.5 and 5.4). while lowest reducing sugar percentage (4.46%) recorded under T_0 (Control). Kahlon and Uppal suggested that conversion of starches and polysaccharides into simple sugars with the advancement of storage was responsible for the increase of reducing sugar and onward decline was due to the utilization of sugar in evapotranspiration and other bio chemical activities in mango fruits. These results are in conformity with the findings of Banik *et al.* (1997) ^[71], Negi and Nkansah *et al.* in mango.

Non-reducing sugar percentage (13.56) was recorded highest under T_{14} (NAA @ 40ppm + $ZnSO_4$ @ 0.5 %). Which was at par with T_{13} and T_{11} (13.31, 13.03), followed by T_9 and T_8 (12.72, 12.22). The lowest non-reducing sugar percentage 9.89 was reported under T_0 (control). Sugar content might be Increased due to degradation of polysaccharides into simple sugars by metabolic activities, conversion of organic acids into sugars, and loss of moisture which subsequently increases total soluble solids. The observations showed that the non-reducing sugar was significantly influenced by various concentration of plant growth regulators as compared with control. The observations are similar with the research work done by Maurya *et al.* (1973) ^[34] and Singh *et al.* (1979) ^[63] and Shrivastava and Jain (2013) ^[46].

The highest Total sugar percentage (19.11) was recorded under treatment T_{13} i.e. NAA @ 20ppm + $ZnSO_4$ @ 0.5 %. Which was at par with treatment T_{14} , (18.81%) followed by T_{11} , T_9 and T_{10} (18.42, 18.08 and 17.74). While lowest total sugar percentage (14.42) was recorded under treatment T_0 (control). Sugar content might be Increased due to degradation of polysaccharides into simple sugars by metabolic activities, conversion of organic acids into sugars, and loss of moisture which subsequently increases total soluble solids. The observations showed that the non-reducing sugar was significantly influenced by various concentration of plant growth regulators as compared with control. The observations are similar with the research work done by Maurya *et al.* (1973) ^[34] and Singh *et al.* (1979) ^[63] and Shrivastava and Jain (2013) ^[46].

Conclusion

Conclusions of the present research work are drawn on the basis of results obtained, which is summarized below: The foliar application of NAA @ 20 ppm + Borax @ 0.2 % at full bloom, pea and marble stage of mango fruit growth and development significantly enhanced fruit set percentage, fruit retention percentage, minimized the fruit drop percentage and known to gave maximum fruits per panicle and maximized the total yield. The foliar application of NAA @ 20ppm + ZnSO₄ @ 0.5 % enhanced fruit length, diameter, weight, and volume of fruit. NAA @ 20ppm + ZnSO₄ @ 0.5 % also enhanced pulp weight, peel weight and stone weight of mango cv. Dashehri. Different qualitative characters like Total soluble solids and ascorbic acid, reducing sugar % and total sugar % enhanced with foliar application of NAA @ 20ppm + ZnSO₄ @ 0.5 %. Whereas acidity % of fruit found to be minimum with the spray of NAA @ 20ppm + ZnSO₄ @ 0.5 %. By all investigations it can be concluded that the foliar application of NAA @ 20 ppm + Borax @ 0.2 % and NAA @ 20ppm + ZnSO₄ @ 0.5 % were found to be optimum concentrations which showed best results by increasing yield and physico-chemical properties of mango fruit cv. Dashehri.

References

- Anonymous. Directorate of Horticulture and Farm Forestry, Chhattisgarh. Statistics on area and production of horticultural crops 2022-2023.
- Ali S, Rehman RNU, Hassant N, Nawaz A, Naz S, Ejaz S. Preharvest conditions affecting quality and postharvest losses of mango fruit. In: Handbook of research on mango. Multan (Pakistan): Department of Horticulture, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University; 2025. p. 347-355.
- Aravindakshan RK, Ramachandran C, Pynadath JS. Effect of planofix on fruit set in mango cv. Neelum. Agric Res J Kerala. 1979;17(1):105-107.
- Attalla ALI, Abdel-Rahman MM, El-Wasfy MM, El-Khawaga AS. Physical response of Ewais mango cultivar to foliar spraying of growth regulators and micronutrients. SVU-International Journal of Agricultural Sciences. 2025;7(1):145-158.
- Bayarri S, Calvo C, Costell E, Duran L. Influence of color perception on sweetness and fruit flavor of fruit drinks. Food Sci Technol Int. 2001;7:399-404.
- Bains KS, Bajwa GS, Singh Z. Abscission of mango fruitlets in relation to endogenous concentrations of IAA, GA₃ and ABA in pedicels and fruitlets. Indian Journal of Horticulture. 1997;52:159-165.
- Baghel BS, Sharma PK, Nair PKR. Influence of pre-flowering spray of urea and NAA on fruit retention of mango (*Mangifera indica* L.). Progressive Horticulture. 2003;19(3-4):200-202.
- Baghel BS, Tiwari R, Gupta N. Effect of cultar and NAA on flowering and fruiting of mango (*Mangifera indica* L.) cv. Langra. South Indian Horticulture. 2004;52(1-6):302-304.
- Beyer EM Jr. A potent inhibitor of ethylene action in plants. Plant Physiology. 1976;58:268-271.
- Bhausaheb G. Effect of plant growth regulators and chemicals on fruit setting, yield and quality of mango (*Mangifera indica* L.) var. Kesar [MSc thesis]. Aurangabad (India): Fruit Research Station; 2021. p. 30-39.
- Bhowmick N, Banik BC. Response of pre-harvest foliar application of zinc and boron on mango cv. Amrapali under new alluvial zone of West Bengal. Indian Journal of Horticulture. 2011;69(3):428-431.
- Bhoyer G, Ramdevputra MV. Effect of foliar spray of zinc, iron and boron on growth, yield and sensory characters of guava (*Psidium guajava* L.) cv. Sardar L-49. Journal of Applied and Natural Science. 2016;8(2):701-704.
- Candolle AD. Origin of cultivated plants. London: Trench and Company; 1904. p. 1-67.
- Chauhan A, Bisen B, Veera Nagaveni S, Reddy S, Kumar L. Effect of potassium nitrate (KNO₃) and gibberellic acid (GA₃) on fruit retention and yield of mango (*Mangifera indica* L.) cv. Amrapali. Journal of Experimental Agriculture International. 2025;47(4):340-346.
- Chhetri BP, Ghirmire S. Post-harvest treatment of different concentrations of gibberellic acid on physicochemical characteristics and shelf life of mango (*Mangifera indica* L.) cv. Malda. Nepal Horticulture Society. 2023. p. 251-261.
- Dheeraj G, Bhagwan A, Raj Kumar M, Venkatlaxmi A. Studies on the effect of bioregulators on flowering and yield of mango (*Mangifera indica* L.) cv. Banganpalli. International Journal of Agricultural Science and Research. 2016;6(3):55-64.
- El-Motaium RAE, Shaban ES, Hassan ES, Badawy I, Ibrahim AS. The potential role of nano-calcium and boron in increasing mango fruit productivity, quality and antioxidant content. 2025;48(9):1529-1546.
- Elsheery NI, Wilske B, Zhang C, Cao KF. Seasonal variations in gas exchange and chlorophyll fluorescence in the leaves of five mango cultivars in southern Yunnan, China. Horticulture Science & Biotechnology. 2007;82:855-862.
- Gangadhar P, Yadav RK, Singh S. Influence of foliar application of GA₃ with and without NAA on fruit drop, growth, yield and quality of ber (*Ziziphus mauritiana* Lamk.) cv. Banarasi Karaka [MSc thesis]. Kanpur (India): CS Azad University of Agriculture and Technology; 2018.
- Gurjar TD, Patel NL, Panchal B, Chaudhari D. Effect of foliar spray of micronutrients on flowering and fruiting of Alphonso mango (*Mangifera indica* L.). The Bioscan. 2015;10(3):1053-1056.
- Ghosh SN. Effect of plant growth regulators on fruit retention and physicochemical properties of mango cv. Amrapali grown in laterite soil at close spacing. Journal of Crop and Weed. 2016;12(3):83-85.
- Hageman MH, Roemer MG, Kofler J, Hegele M, Wünsche JN. A new approach for analyzing and interpreting data on fruit drop in mango. HortScience. 2014;49:1498-1505.
- Haidery GA, Jalal-Ud-Din B, Ghaffoor A, Munir M. Effect of naphthalene acetic acid (NAA) on fruit drop, yield and quality of mango (*Mangifera indica* L.) cv. Langra. Scientific Khyber. 1997;10(1):13-20.
- Huong PT. Some measures for rehabilitation of neglected mango orchards in Yên Châú, Son La. Journal of Agricultural Science and Technology. 2010;8:69-75.
- Kacha HL, Patel HC, Paradava DR. Response of mango to micronutrients through soil and foliar applications on fruit quality and shelf life. International Journal of Current Microbiology and Applied Sciences. 2020;9(11):2316-2326.
- Kaleeswaran M, Senthivel T, Soundarapandian M. Consumer preference and marketing strategies of mango varieties in the western zone of Tamil Nadu. International Journal of Current Microbiology and Applied Sciences. 2019;8(12):2448-2457.
- Kanapol J, Supatip E, Aussanee P, Krisana K, Lop P.

- Effects of calcium, boron and sorbitol on pollination and fruit set in mango cv. Namdokmai. *Acta Horticulturae*. 2002;575:829-834.
28. Khan AU, Tripathi VK, Gautam RKS, Dwivedi AK. Effect of GA₃, NAA and zinc sulphate on fruit retention, drop, yield and quality of mango (*Mangifera indica* L.) cv. Dashehari. *Biological Forum - An International Journal*. 2022;14(4):320-325.
29. Kumar A, Singh P, Sharma R. Effect of foliar application of calcium chloride (CaCl₂), naphthalene acetic acid (NAA) and gibberellic acid (GA₃) on yield and quality of mango. *Plant Archives*. 2025;25:1113-1120.
30. Kumar R, Sharma R, TR, Pandey SK, Pandey CS, Singh D, Thakur S. Influence of foliar application of NAA, urea, nano-urea and Biofertilis on fruit drop and retention of mango (*Mangifera indica* L.) cv. Langra. *Pharma Innovation*. 2023;12(11):308-312.
31. Kundu AK, Tarai RK, Nayak A, Senapati B. Influence of plant growth regulators on fruit drop, fruit retention and fruit yield of mango (*Mangifera indica* L.) cv. Amrapali under west central table land zone of Odisha. *Plant Science Today*. 2024;11(2):79-88.
32. Lokhare SV, Jadhav RR, Pawar DS. Effect of weather factors, micronutrients, growth regulators and polyamines on mango (*Mangifera indica* L.) yield and quality cv. Kesar [MSc thesis]. Parbhani (India): College of Horticulture, VNMKV; 2023.
33. Mandal BK, Rani R, Ray RN. Effect of foliar spray of urea and growth regulators on marketable yield and quality of mango cv. Amrapali. *International Journal of Agricultural Sciences*. 2010;7(7):554-558.
34. Maurya AN, Singh SM, Singh AR. Effect of plant growth regulators on fruit retention and quality of Dashehari mango. *Punjab Horticultural Journal*. 1973;13:117-121.
35. Maurya AN, Singh JN. Effect of three growth regulators on fruit retention and quality of mango (*Mangifera indica* L.) cv. Langra. *Journal of the National Agricultural Society, Ceylon*. 1979;16:53-56.
36. Maurya PK, Tripathi VK, Gupta S. Effect of pre-harvest application of GA₃, naphthalene acetic acid and borax on fruit drop, yield and quality of mango cv. Amrapali. *Journal of Pharmacognosy and Phytochemistry*. 2020;9(6):2123-2127.
37. Mukherjee SK. Origin, distribution and phylogenetic affinity of the species of *Mangifera* L. *Transactions of the Linnean Society of London*. 1953;55:65-83.
38. Naleo S, Sema A, Maiti C. Effect of plant growth regulators and packaging on flowering, fruit quality and shelf life in mango cv. Amrapali. *Journal of Experimental Agriculture International*. 2018;20(6):1-8.
39. Naqvi SSM, Alam SM, Mumtaz S. Effect of cobalt and silver ions and naphthalene acetic acid on fruit retention in mango (*Mangifera indica* L.). *Australian Journal of Experimental Agriculture*. 2004;30(3):433-435.
40. Nehete DS, Jadav RG. Influence of biofertilizers in combination with chemical fertilizers on growth, flowering and yield of mango (*Mangifera indica* L.) cv. Amrapali. *International Journal of Agricultural Sciences*. 2019;15(2):233-238.
41. Oksher AK, Ramachandran C, Pyhodath JS. Effect of planofix on fruit set in mango. *Agricultural Research Journal of Kerala*. 1980;17(1):105-105.
42. Oosthuysen SA. Spray application of KNO₃, low-biuret urea and growth regulators during and after flowering on fruit retention, fruit size and yield of mango. *Acta Horticulturae*. 2015;1075:135-142.
43. Pandit DL, Mehta DK, Rukhsar S, Lahutiya V, Yadav PK, Shah SK, Timilsina U. Effect of gibberellic acid concentrations on physicochemical attributes and shelf life of different mango (*Mangifera indica* L.) varieties. *International Journal of Agriculture, Environment and Food Sciences*. 2025;9(1):174-189.
44. Paruha S, Pandey SK. Influence of plant growth regulators and nutrients on fruit retention, yield and quality attributes of mango (*Mangifera indica* L.) cv. Amrapali. *Journal of Pharmacognosy and Phytochemistry*. 2019;8(2):550-555.
45. Pokhare NP, Gurung P, Kharel GP, Parajuli A. Effect of foliar application of growth regulators and micronutrients on fruit yield and quality of mango (*Mangifera indica* L.) cv. Mallika. *International Journal of Agriculture, Environment and Biotechnology*. 2024;16(3):181-186.
46. Rajput V, Rajput BS, Dhakad S, Trivedi HK, Jain R. Effect of foliar sprays of growth regulators and micronutrients on incidence of mango malformation. *International Journal of Agricultural Sciences*. 2013;9(1):104-107.
47. Ram S. Hormonal control of fruit growth and fruit drop in mango cv. Dashehari. *Acta Horticulturae*. 1983;134:169-178.
48. Ram S. Naturally occurring hormones of mango and their role in growth and fruit drop. *Acta Horticulturae*. 1992;321:400-411.
49. Reddy KH, Ahlawat TR, Chawla SL, Patel B, Koti S. Interaction effect of mango varieties and chemical spray applications on post-harvest quality parameters. *Journal of Advances in Biology and Biotechnology*. 2025;28(2):66-72.
50. Abd El-Rahman EIE, El-Amary IE, Shaddad AMG. Effect of foliar sprays of GA₃, NAA and algae extract on vegetative growth, yield, fruit quality and fruit retention of mango cv. Hindi. *Current Science International*. 2017;6(3):578-588.
51. Sahu C. Effect of plant growth regulators on fruit retention, fruit drop, yield and physicochemical composition of mango (*Mangifera indica* L.) cv. Dashehari [MSc thesis]. Raipur (India): Indira Gandhi Krishi Vishwavidyalaya; 2019. p. 21-23.
52. Samant D, Kishore K, Behera S, Acharya GC. Influence of naphthalene acetic acid, gibberellic acid and triacontanol on fruit retention, yield and quality of mango (*Mangifera indica* L.) cv. Banganpalli. *Plant Science Today*. 2025;12(1):1-7.
53. Shainika S, Tambe DT. Effect of plant growth regulators and micronutrients on flower and fruit retention in mango (*Mangifera indica* L.) cv. Kesar. *International Journal of Chemical Studies*. 2020;8(4):3716-3719.
54. Shinde AK, Patil BP, Pujari KH, Jadhav BB, Chandelkar AB, Kandalkar MP. Investigations on the control of fruit drop in Alphonso mango. *Indian Journal of Plant Physiology*. 2006;11:93-99.
55. Sharma LK, Sood P, Yadav DS. Effect of foliar application of nutrients on growth, yield and quality of mango under rain-fed conditions of Himachal Pradesh. *Journal of Krishi Vigyan*. 2020;9(1):84-87.
56. Singh D, Pratap M. Impact of foliar micronutrient application on yield and physical traits of Amrapali mango (*Mangifera indica* L.). *Plant Cell Biotechnology and Molecular Biology*. 2024;25(11-12):40-45.
57. Singh RN, Majumder PK, Sharma DK. Sex expression in mango (*Mangifera indica* L.) with reference to prevailing

- temperature. Proceedings of the American Society for Horticultural Science. 1966;89:228-229.
58. Singh RS, Ram S. Studies on the use of plant growth substances for fruit retention in mango cv. Dashehari. Indian Journal of Horticulture. 1983;40(3-4):188-188.
59. Singh SS, Tripathi AK, Awasthi M. Influence of pre-harvest application of gibberellic acid and borax on fruit retention, yield and quality of mango (*Mangifera indica* L.) cv. Dashehari. Biological Forum - An International Journal. 2023;15(9):287-291.
60. Singh TK, Singh D, Kumar A, Patel B, Bose US. Effect of micronutrients on growth, yield and fruit quality of mango (*Mangifera indica* L.) cv. Dashehari. International Journal of Chemical Studies. 2020;8(6):2055-2058.
61. Sondarva NR. Influence of pre-harvest application of different plant growth regulators on fruit retention, maturity and quality of mango (*Mangifera indica* L.) cv. Kesar [MSc thesis]. Navsari (India): Navsari Agricultural University; 2009.
62. Tiwari P, Tripathi VK, Singh A. Effect of foliar application of plant bioregulators and micronutrients on fruit retention, yield and quality attributes of aonla. Progressive Research. 2015;12(4):2565-2568.
63. Tripathi VK, Singh S, Kumar Y. Influence of GA₃ and naphthalene acetic acid alone and in combination on fruit drop, yield and quality of mango cv. Amrapali. Progressive Research. 2019;14(1):10-13.
64. Vejendla MV, Maity PK, Banik PK. Effects of chemicals and growth regulators on fruit retention, yield and quality of mango cv. Amrapali. Journal of Crop and Weed. 2008;4(2):45-46.
65. Verma M, Tripathi VK, Awasthi M, Pandey S, Tiwari S. Influence of pre-harvest foliar application of naphthalene acetic acid and zinc sulphate on fruit retention, yield and quality parameters of mango. Plant Archives. 2025;25(1):2075-2079.
66. Vijayvargiya V, Singh G. Maximizing fruit quality and production of mango cv. Dashehari: impact of micronutrient treatments. Agricultural Science Digest. 2024;5872:1-6.
67. Vishwakarma G, Rabbani S, Soni S, Zaman F. Effect of foliar feeding of nutrients and gibberellic acid on yield and quality of mango (*Mangifera indica* L.) cv. Dashehari. Indian Journal of Agricultural Research. 2024;58(6):1271-1274.
68. Yadav AK, Singh JK, Singh HK. Integrated nutrient management in flowering, fruiting, yield and quality of mango cv. Amrapali under high-density orcharding. Indian Journal of Horticulture. 2011;68(4):453-460.
69. Yadav S, Yadav SPS, Adhikari N, Sah RP, Gupta S. Effects of gibberellic acid (GA₃) on shelf life and physicochemical properties of mango (*Mangifera indica* L.) var. Bombay Green. Archives of Agriculture and Environmental Science. 2022;7(4):541-548.
70. Zonayet M, Paul AK, Ahmed M. Effects of integrated nutrient management on the performance of mango on hills in Bangladesh. 2020;6(3):1-7.
71. Banik M, Li CD, Langridge P, Fincher GB. Structure, hormonal regulation, and chromosomal location of genes encoding barley (1 α 4)- β -xylan endohydrolases. Molecular and General Genetics MGG. 1997 Feb;253(5):599-608.
72. Tsomu T, Patel HC. Influence of plant growth regulators and micronutrients on yield and quality attributes of mango CV. mallika. Journal of Pharmacognosy and Phytochemistry. 2019;8(4):1240-7.
73. Lipsman N, Schwartz ML, Huang Y, Lee L, Sankar T, Chapman M, Hyynnen K, Lozano AM. MR-guided focused ultrasound thalamotomy for essential tremor: a proof-of-concept study. The Lancet Neurology. 2013 May 1;12(5):462-8.