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Abstract 
Sweetpotato [Ipomoea batatas (L.) Lam.] is an economically and nutritionally important root crop, yet the 

application of process-based crop models for its simulation remains limited, particularly when compared 

with major cereal crops. Process-based models provide powerful tools for evaluating crop responses to 

environmental variability, management strategies, and climate- and policy-driven scenarios. This study 

evaluated the applicability and performance of the SPOTCOMS (Sweet Potato Computer Simulation) 

model in simulating sweetpotato growth, development, and yield formation. Field experiments were 

conducted over two consecutive growing seasons (2022 and 2023) using the widely grown ‘Covington’ 

cultivar under conventional production practices in Alabama. Comprehensive datasets were collected, 

including phenological and growth parameters (vine length, leaf area, branch number, and storage root 

development at multiple growth stages), soil physicochemical properties, and daily weather variables. 

These data were used to derive cultivar-specific genetic coefficients and to calibrate and validate the 

SPOTCOMS model. The SPOTCOMS model successfully captured key phenological stages of sweetpotato 

development, demonstrating high predictive accuracy for storage root number and total yield, with greater 

than 90% agreement between simulated and observed values. Vine length was also well simulated (R² = 

0.90). In contrast, predictions of leaf number and branching showed moderate agreement with observations 

(R² = 0.50), indicating model limitations in simulating vegetative architecture. Sensitivity analysis 

identified early-season growth and mid-season leaf expansion as critical drivers of final storage root yield. 

Overall, these findings highlight the potential of SPOTCOMS as a decision-support tool for predicting 

sweetpotato performance and optimizing production in the southeastern United States. Further calibration 

and validation across multiple cultivars, environments, and management systems are recommended to 

improve model robustness and broader applicability. 

 

Keywords: Nanourea, conventional urea, growth, LAI, yield and wheat 

 

1. Introduction  

Sweetpotato [Ipomoea batatas (L.) Lam.] is an important root vegetable crop cultivated in over 

100 countries, but predominantly in tropical and subtropical regions [1]. Global production 

ranged from 88 to 92 million metric tons (Mt), with Asian countries—led by China—accounting 

for 62%-67% of total production, while African countries contributed 29%-34% [2]. The United 

States is among the top global ex-porters by volume, with the annual export value rising from 

$14 million to $187 million between 2001 and 2021 [3].  

In the USA, sweet potato production is concentrated in the South due to favorable growing 

conditions, with North Carolina being the leading state, contributing approximately 60% of total 

storage roots grown in the country [4]. Although Alabama is not a major sweetpotato producer, 

the crop remains an important component of the food system for both household consumption 

and commercial sales. Recently, it was certified as an official vegetable of the state of Alabama 
[5].  

Globally, sweetpotato ranks as the seventh most important staple crop, following wheat, rice, 

maize, potato, barley, and cassava, and is the fifth most significant food crop in the tropics [7]. It  
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is an excellent source of carbohydrates, vitamins A (beta-
carotene) and C, fiber, and minerals [8, 9]. Beyond its nutritional 
value, sweetpotato offers numerous health benefits, including 
antioxidants, cardioprotective, anti-inflammatory, anti-cancer, 
anti-diabetic, antimicrobial, and anti-obesity properties [10]. 
Additionally, the storage roots have various applications in the 
food industry, such as making flour, bread, pastries, fries, and 
brewing [11], while the leaves can be used for animal feed [12]. In 
comparison to other food crops, sweetpotatoes are adaptable to 
marginal growing conditions (such as high temperatures, 
drought, and low soil nutrients), have short production cycles, 
and can produce high yield potential under low production costs. 
Because of these attributes, the crop has been identified as a 
candidate in contrasting environmental conditions, such as 
climate change scenarios [13, 14] 
Despite its importance, studies on sweetpotato modelling are 
lagging compared to major cereals and grains [15]. Crop 
modeling has been used worldwide as an efficient and strategic 
tool in agricultural research to assess environmental impacts, 
make informed decisions about crop management, and optimize 
resource allocation with limited time and resources [16]. These 
models can be classified based on their purpose in-cluding 
empirical models (based on the statistical relationship between 
crop growth and environmental factors); Stochastic models (use 
a probability of inputs and outputs to stimulate plant growth and 
environmental interactions); Explanatory models (based on 
quantitative description of the mechanisms and processes that 
cause the behavior of crop growth systems); Mechanistic models 
(explains the relationship between weather parameters and yield 
as well as the mechanism which influences yield) and the pro-
cess-based models which simulate the progression of the crop 
through over time using differential equations to describe crop 
development processes as a function of weather and soil 
conditions as well as crop management [17, 18]. 
Process-based simulation models are widely used to predict crop 
performance under diverse biotic and abiotic conditions, 
providing cost-effective tools for optimizing management 
strategies [18]. These models play an important role in improving 
crop management, breeding programs, and policymaking [19]. 
They are also valuable for analyzing yield gaps [20] and 
optimizing the utilization of resources such as fertilizer and 
water/irrigation [21, 22]. Furthermore, they are used to determine 
the impact of extreme weather on crop growth, assess the effects 
of climate change on crop production, and select potential 
adaptation measures [21, 23]. However, the robustness of these 
models requires evaluation of their performance under similar or 
the same environmental conditions, and establishing specific 

genetic coefficients of the intended crop [24, 25]. 
Process-based models such as Decision Support System for 
Agrotechnology Transfer (DSSAT) and APSIM (Agricultural 
Production Systems simulator) have been extensively developed 
and utilized for grains, cereals, and other commercial crops [26, 

27], but less so for root and tuber crops [15, 28]. The existing 
sweetpotato models include SPOTCOMS (Sweetpotato 
Computer Simulation), a process-based model [29]; the Climate-
Crop Modeling System (CLICROP), an empirical/statistical 
regression-based model [30]; and the International Model for 
Policy Analysis of Agricultural Commodities and Trade 
(IMPACT), an economic model [31]. Each of these models has its 
advantages and drawbacks. For instance, SPOTCOMS requires 
detailed data on sweet potato growth and development, soil, and 
weather conditions, but allows impact assessments at any 
location with some calibration. In contrast, CLICROP, uses few 
data for analyzing climate-crop yield interactions but is limited 
to yield and climate rela-tionship assessments. IMPACT is 
designed for large-scale Agriculture policy analysis but cannot 
be used in yield assessments under conditions that may lie 
outside the range in which the model was developed [17].  

SPOTCOMS, an advanced version of MADHURAM has 

demonstrated potential in modeling sweetpotato growth in 

diverse environmental conditions [29]. However, its validation 

has been limited to specific regions, such as India and East 

Africa, and varieties grown in those areas, restricting its broader 

applicability [32]. To enhance its adoption, the model must be 

tested across a wider range of genotypes, soil types, and climatic 

conditions. This study aims to evaluate the applicability of 

SPOTCOMS for simulating the growth and development of 

sweet potato varieties cultivated in Alabama. 

 

2. Materials and Methods 

2.1. Study location  

Experiments were conducted at the George Washington Carver 

Agricultural Experiment Station, Tuskegee University, 

Alabama, U.S.A. Prior to the present study, the site had been 

under vegetable cultivation. The climate in Tuskegee is humid 

subtropical with mild winters and hot, humid summers. The 

study was conducted over two consecutive crop seasons, 

summer 2022 and 2023. During the period of the experiments, 

the mean high and low temperatures ranged between (31.3 and 

31.6 °C) and (18.8-19.2 °C) for 2022 and 2023, respectively, 

with irregular precipitation patterns and humidity (Figure 1). 

The soil was sandy loam, acidic with a pH range of 5.1 to 6.1, 

low P and K, and high Mg and Ca concentrations. 

 

 
 

Fig 1: Mean daily weather data, including maximum and minimum temperatures (A and B, respectively), total precipitation (B), and relative 

humidity (C), in the study area during the 2022/2023 growing seasons 
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2.2. Land Preparation and Soil Analysis 

The experimental field was conventionally tilled (plowed and 

harrowed) to promote soil aeration and root penetration, 

optimizing conditions for sweetpotato vine establishment. Prior 

to planting, soil samples were collected from a 15 cm depth 

using a zig-zag sampling pattern across the field, homogenized 

into composite samples, and analyzed for pH, available P K, 

Mg), and Ca. Fertilizer was applied in single bands 15 cm from 

the plants 14 days after planting, following soil test 

recommendations. A 5-4-3 NPK organic fertilizer was applied at 

a rate of 80-120-150 kg/ha based on soil test recommendations. 

 

2.3. Sweet potato variety 

Covington, a cultivar developed by North Carolina State 

University (NCSU), was used for the study. Fully developed 

leaves of this variety are cordate to triangular with slight lobing, 

while young leaves are purple and green when mature. 

Flowering occurs sporadically during the season, typically 

triggered by stress conditions. Plants reach maturity 100-120 

days after planting, achieving average storage root yields of 45.3 

t ha⁻¹, although storage roots can stay in the ground longer 

without splitting [33]. 

Storage roots are small to medium, long, slender, with slightly 

curved, tapered ends, averaging 5 to 8 cm in diameter, and are 

highly prized for their uniform size, shape, and extended shelf 

life. The flesh is orange, firm, dense, and creamy with a malty 

flavor, great for boiling, roasting, or baking. Nutritionally, they 

are rich in vitamins A, C, and B6, as well as Mg, Fe, and K. 

Since the early 2000s, Covington began dominating the 

sweetpotato industry, even surpassing Beauregard, the standard 

in industry in garden and commercial production due to its 

consistent quality and adaptability [33] 

 

2.4. Experimental design and planting 

The experiments were conducted as a random complete block 

with one treatment factor: harvest time, and four replications. 

Each plot was 3m by 1.2 m, in which 30 cm long stem cuttings 

were planted on ridges at 1.8 m apart and 0.3 m between plants. 

Cuttings were planted on June 3, 2022, and June 6, 2023, and 

harvested at 119 and 120 days after planting, respectively. 

 

2.5. Plant management 

Standard cultural practices were followed, including fertilizer 

application and a combination of cultivation and manual weed 

control until the vines grew out and provided canopy cover. 

Moisture was provided twice per week through drip irrigation. 

 

2.6. Phenological data collection 

Phenological data were measured and recorded at 14-day 

intervals to monitor the growth and development of the crop. 

Four plants were randomly selected from each replication and 

sampled for measurement, including vine length, number of 

branches, leaves, leaves per vine, and leaf area. At harvest, fresh 

storage roots were collected, and 25-g subsamples were taken 

from the middle 10 cm of three US#1 storage roots were dried in 

an oven at 65-72 °C for 48-72 hours, and dry weights were 

estimated using a fresh to dry weight ratio. 

 

2.7. Weather Information 

Daily weather data for maximum and minimum temperature 

(°C), relative humidity (%), day length in hours (Hr), and 

precipitation (mm) were recorded using an onsite weather 

station. Data was exported into Excel and formatted according to 

the data format for the SPOTCOMS model. 

 

2.8. Soil data 

The soil data used to run the model were obtained from the 

initial soil analysis before the establishment of the experiments. 

The parameters used to build soil files for the SPOTCOMS 

model included texture, pH, P, and K. Soil classification 

information was obtained from the existing soil reports from 

previous studies.  

 
Table 1: Soil characteristics of the soil in the experimental field. 

 

Soil property pH N P K Mg Ca 

Unit  % --------------------(lbs/acre)----------------- 

Value 5.1 0.08 14 53 32 186 

 

2.9. Calibration and validation of SPOTCOMS crop model 

2.9.1. Research modeling framework 

The SPOTCOMS (Sweet potato computer Simulation) model 
[29]. The model simulates phenological development in relation 

to photothermal time, net assimilation, resource allocation to 

different plants above and below plant organs, transpiration, and 

soil water dynamics on a daily time step and crop growth as a 

function of growing degree days and divides sweet potato 

growth into three phases. Establishment Phase (0-30 days) 

extends from planting to root development and initial vine 

growth., Storage Root Initiation and Development Phase (30-60 

days) from storage root initiation to the beginning of storage 

root bulking and vigorous vegetative growth, and Storage Root 

Bulking and Maturation Phase (60-120 days) from the beginning 

of storage root enlargement to final harvest. The parameters that 

drive the model were determined using the nine equations 

below: 

Equation 1 describes growing degree days (GDD), which are 

used to estimate sweetpotato growth and development during the 

growing season and are calculated at different growth stages.  

 

𝐺𝐷𝐷𝑑 = 𝑖 − 𝑑 𝑋 𝑇𝐵𝑎𝑠𝑒   (1) 

 

Where: d= Days after planting (DAP), i=number of days after 

planting, TMEANi =the mean temperature on ith DAP, and 

𝑇𝐵𝑎𝑠𝑒= = Base temperature 

 

Equation 2 defines the GDD requirement for the first growth 

phase of sweet potato. 

 
𝑝ℎ𝑠𝑔𝑑𝑑 = 𝐺𝐷𝐷𝑖      (2) 

 

Where: GDD= Growing degree days i = 28 days under tropical 

conditions and 66 days under non-tropic 

 

Equation 3 defines the GDD requirement for the second growth 

phase of sweetpotato. It reflects growing degree days between 4 

and 7 weeks after planting for tropical and 9.5 weeks and 16 

weeks after planting under nontropical conditions. 

  

𝑝ℎ𝑠2𝑔𝑑𝑑 = ∇GDDi     (3) 

 

where phs2gdd is the difference between 4 weeks and 7 weeks 

after planting for tropical and 9.5 weeks and 16 weeks after 

planting under nontropical conditions ie. 𝑝ℎ𝑠2𝑔𝑑𝑑= 𝐺𝐷𝐷49- 

𝐺𝐷𝐷28 for tropical conditions and 𝐺𝐷𝐷112- 𝐺𝐷𝐷66 under non 

tropical conditions. 

 

Equation 4 describes the development of vines. 

https://www.agronomyjournals.com/
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𝑉𝑙𝑒𝑛=       (4) 
 

where: VLi = vine length on the ith DAP; GDDi = GDD on ith 
DAP 
 

Equation 5 describes the development of roots.  
 

𝑡𝑔𝑟𝑎𝑡𝑒 =       (5) 
 

where: nTBRi = the number of tubers on ith DAP and GDDi = 
GDD on ith DAP 
 

Equation 6 defines the branching of the crop. 
 

𝑏𝑟𝑔𝑎𝑝 = 𝐵𝑅𝑖 𝑋 𝐿𝐹𝑖     (6) 
 

where: BRi = the number of branches on ith DAP and LFi = the 
number of leaves on the branches on i th DAP  
 

Equation 7 specifies the number of leaves on a sweet potato 
plant  
 

𝑙𝑓𝑎𝑐𝑡𝑜𝑟=       (7) 

where: LFi = The number of plant leaves on ith DAP and GDDi 

= GDD on i th DAP 

 

Equations 8 define the leaf area of sweet potatoes at different 

growing stages. 

 

𝑙𝑎𝑓𝑎𝑐𝑡𝑜𝑟=  𝑋 𝐴𝐿𝐴𝑖    (8) 

 

where: ALAi =the average leaf area on ith DAP, LFi = The 

number of plant leaves on ith DAP 

 

Equation 9 defines the leaf area as a cultivar for the whole 

growing season.  

 
𝑙𝑎𝑟𝑒a = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑙𝑒𝑎𝑓 𝑎𝑟𝑒𝑎 for a cultivar for the whole 

growing season      (9) 

 

The initial conditions for the SPOTCOMS model were: (1) 

Optimum Temperature for Sweet potato = 25.0 °C, (ii) Base 

Temperature for Sweet potato= 8.10 °C, and (iii) Maximum 

Temperature for Sweet potato = 380 °C 

 

 
 

Fig 2: Summary of SPOTCOMS model framework operation 

 

2.9.2. Calibration and performance evaluation of 

SPOTCOMS model  

Calibration and testing of SPOTCOMS were performed using 

data sets from the two experiments of the 2022 and 2023 

growing seasons. The suitable crop data were determined from 

the average of plant attributes and were then used to calculate 

the crop parameters using equations i, ii, iii,., and viii above. The 

calculated sets of parameters were then used to run the 

SPOTCOMs model. A descriptive statistical analysis was used 

to evaluate the relationship between the simulated and the 

observed storage root yields from the two experiments. The 

combination with the best fit was chosen for the model 

simulations. Two descriptive statistics were used in both model 

calibration and evaluation. The first was the coefficient of 

determination (R2), derived from the Pearson correlation 

coefficient that measured the level of agreement between the 

observed and simulated values (equation 11). A R2 value of 1 

indicates a strong agreement, while a value of 0 implies a weak 

agreement. The second is the Bias, which measures the degree 

of error between observed and simulated values (equation 12)  

The model performance in the simulation of final yield in terms 

of weight and number of storage roots was evaluated by 

percentage change using the equation below: 

 

     (10) 

 

Where:yi=observed value, xi=simulated values, and n=Number 

of data points 

 

BIAS=      (11) 

 

Where: Pi = simulated value; 0i = observed value; and n is the 

number of observations 

  

% change    (12) 

 

Where: y0= observed value and yi simulated value 

 

2.10. Data Analysis 

2.10.1. Trend analysis for the field data collected 

Trend analysis was performed on the eight variables, including 

vine length, number of leaves, total leaf area, number of 

branches and number of storage roots, and fresh and dry weight 

of shoots and storage roots.  
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2.10.2. Sensitivity analysis of cultivar coefficients in 

SPOTCOMS 

The purpose of performing a sensitivity analysis on cultivar 

coefficients was to generate output responses associated with the 

variation in input and to assign the simulated output variability 

to the model coefficients that affect it most [34]. Sensitivity was 

used to provide a normalized measure in comparing all model 

coefficients. The sensitivity of the final yield output (t ha-1) to 

the perturbations in each plant parameter was computed using 

the base and the ±5% changes in the base values. The relative 

change in output and the change in parameter were used to 

calculate the sensitivity indices, such that all eight coefficients 

determined were individually used to determine the sensitivity 

indices using the equation proposed by Pathak et al. [35] as 

shown below: 

coefficients determined were individually used to determine the 

sensitivity indices using the equation proposed by [35] below: 

 

= -      (13) 

where i represent individual coefficients: phsgdd, phs2gdd, 

Vlen, tgrate, brgap, lfactor, lafactor, or larea, Y is the simulated 

storage root yield using the initial set of determined coefficients 

and Yi is the simulated storage root yield obtained for each level 

of an individual model parameter (βi) while keeping all other 

model parameters at their base values. 

 

3. Results 

3.1. Trend of growth parameter 

Trends of plant attributes including vine length, number of 

branches, number of leaves, and total leaf area for the entire 

growing season are presented in Figure 3. Vine length increased 

steadily from transplanting to the maturity stage (Fig. 3a). 

Increases were quite substantial up to about day 55 but the 

magnitude declined thereafter to maturity. Secondary and 

tertiary branching of the vines began around 35 DAP and 

increased sharply 60-100 days after planting and declined 

thereafter towards maturity (Figure 3b). Similarly, the number of 

leaves and total leaf area increased with time to 100 days after 

planting and then declined marginally towards maturity (Figure 

3 c&d). 

 

 
 

Fig 3: Mean values of vine length (a), number of branches (b), number of leaves (c), and total leaf area (d) during the growing seasons. 

 

3.2. Cultivar coefficients  

The mean cultivar coefficients (Table 2) were determined from 

four replications, from which a mean coefficient and the 

maximum and minimum values were also determined. Among 

the variables, Vlen, Ifactor, and brgap showed a high variation, 

all of which are functions of foliage growth for vine length, 

number of leaves, and number of branches, respectively. 

 
Table 2: Summary of cultivar parameters determined from field experiments. 

 

Cultivar coefficients Vlen Tgrate br_gap lfactor lafactor Larea 

Mean 0.1989 0.0022 196.7781 0.0346 82.4947 38 

Minimum 0.0901 0.00094 53.3333 0.00217 56.1603 35.2 

Maximum 0.2776 0.00299 282.8571 0.0505 96.1329 49.3 

Note: the summary of cultivar genetic coefficient for the Covington cultivar planted at the spacing of when phsgdd = 377 and phs2gdd = 779. 

 

3.3. Sensitivity of cultivar coefficients from field data 

Table 3 shows the results of the sensitivity analysis at 5% of the 

variety coefficient on final yields. The findings indicated that the 

sensitivity analysis of cultivar coefficients, which are a function 

of growing degree days, phsgdd, and phs2gdd were the most 

sensitive at a 5% increase. And phs2gdd, and lafactor, were 

more sensitive than at the 5% decrease range. On average 

phsgdd, and lafactor were the most sensitive followed by vlen 

and larea while br_gap was the least sensitive (Figure 4)  
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Table 3: Summary of genetic coefficients of cultivar parameters sensitivity to final yield. 
 

Parameter Optimum coefficients 
5%increase 

in parameter 

Simulated yield 

(tha-1) 

β_5% 

increase 
5% decrease in parameter 

Simulated 

yield (tha-1) 

β_5% 

decrease 
Av β 

phsgdd 335.000 351.75 25.780 -2.870 318.250 28.700 0.930 -0.970 

phs2gdd 779.000 808.50 29.100 -0.880 731.000 27.790 1.250 0.190 

vlen 0.300 0.315 30.580 0.320 0.285 29.380 0.480 0.400 

tgrate 0.018 0.018 30.100 0.000 0.017 29.360 0.490 0.250 

br_gap 186.000 195.300 30.330 0.150 176.700 30.600 -0.330 -0.090 

lfactor 0.030 0.032 31.190 0.720 0.029 31.720 -1.080 -0.180 

lafactor 130.000 136.500 29.110 -0.660 123.500 30.690 -0.390 -0.530 

larea 49.000 51.450 30.750 0.430 46.550 29.890 0.140 0.290 

Note: Summary of cultivar sensitivity influence on final yield(tha-1), calculated at 5% increase or decrease (β_5%) and respective average (Av β) 

values. Calculations are based on the baseline/optimal simulated yield of 30.1 t ha⁻¹. 

 

 
 

Fig 4: Summary of sensitivity analysis showing mean cultivar 

coefficients (β)of 5% increase and decrease of the mean values 

3.4. Model evaluation 

The SPOTCOMS model simulation results for growth variables, 

including vine length, number of branches, leaves, storage roots, 

and yield, are shown in Figure 5a-c. The simulated values for 

vine length are reasonably close to the observed value, with an 

R2 of 0.90. Predicted values of the number of branches and 

number of leaves deviated considerably from the observed 

values, with R2 values of 0.48 and 0.51, respectively. Thus, in 

the case of the number of branches and leaves, only 

approximately half of the observed variation in branch and leaf 

number can be explained by the inputs into the modelIn terms of 

bias measurement, the model underestimated vine length and 

number of branches compared to the observed values by an 

average of 51 and 9.7 units, respectively. Additionally, the 

model overestimated the number of leaves by an average of 15 

units (Table 4). 

 

 
 

Fig 5: Plots showing observed vs predicted values of vine length (A), number of branches (B), and number of leaves (C) collected throughout the 

growing season. 
 

Table 4: Coefficient of determination and bias estimates for vine length, number of branches and number of leaves 
 

Parameter Vine length Number of branches Number of leaves 

Coefficient of determination (R2) 0.9 0.47 0.5 

Bias -51 -9.7 15 
 

Predicted values for the number and yield of storage roots are 

presented in Table 5. Simulated values are very close to 

observed values with a small deviation of 0.4 (storage 

root/plant) and 2.4 for the number of storage roots and yield, 

respectively. 

 

Table 5: Observed vs predicted values of the number of storage roots per plant and storage root final yield (T/ha). 
 

Parameter Observed Simulated Difference %change 

Number of storage roots/plant 3.6 4.0 +0.4 11.1 

Storage root yield (tha-1) 32.5 30.1 -2.4 -7.3 
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4. Discussion 

The trends observed in the growth parameters and calculated 

cultivar coefficients show the relationship between 

environmental variables, sweet potato growth and development, 

and final yield. Initially, vine length exhibited elongation 

steadily until the mid-growth stage, followed by a slight rise 

towards the maturity phase, likely this response aligns with 

resource allocation theory, where plants prioritize vegetative 

growth early to establish photosynthetic capacity before 

transitioning to storage root development. The secondary 

branching of the vines initiated at 35 DAP and peaking between 

60-100 DAP, is probably associated with the plant's strategy to 

expand its architecture during the middle phase to optimize light 

interception and photosynthesis capacity during the critical 

storage root bulking phase [36]. Similarly, the number of leaves 

and total leaf area increased consistently until 100 days after 

planting and declined thereafter due to senescence. This 

physiological response is potentially linked to source-sink 

relationships, where resource remobilization (eg. N and 

carbohydrates) tends to be re-translocated from senescing leaves 

to sustain storage root bulking to development as the plant 

approaches maturity [37,38]. Harvesting at 119-120 DAP 

corresponded to a cumulative growing degree day (GDD) of 

1324, aligning closely with established GDD-based yield 

prediction models for sweet potato. This value is consistent with 

prior studies using GDD-based yield prediction models, hence 

validating its utility for yield prediction [39]. 

The cultivar-specific coefficients, particularly vlen, lafactor, and 

larea, were within the range reported on other sweet potato 

cultivars such as NASPOT1, SPK004, and NASPOT10 that are 

common in East Africa [40]. Additionally, the coefficients for 

br_gap and lfactor were within a range reported from other 

cultivars common in Asia [29]. This observation suggests 

conserved developmental strategies within sweet potato species. 

In contrast, the coefficient for tgrate (description of root 

development) was unique for the assessed variety, Covington. 

This implies that even though there were similarities among 

cultivars from different locations because they are the same 

genus and species, the root development traits have shown 

distinctness to the Convington cultivar; this may probably be 

due to genotype-environment-specific interaction, which 

influences traits such as root expansion and dry matter 

allocation. 

Sensitivity analyses revealed that changes in cultivar coefficients 

such as phsgdd, Vlen, lafactor, and tgrate that determine root 

initiation, vine length, leaf, and storage root development, 

respectively, had a significant influence on simulated yields. 

Notably, the sensitivity of these coefficients to change at 5% 

increments or decrements shows their influence on final yield, 

emphasizing the importance of adjusting these variables during 

yield simulation. A similar trend of sensitivity of phsgdd, and 

lafactor was reported in the estimation of a coefficient of other 

sweetpotato cultivars [29, 40]. 

The SPOTCOMS model demonstrated strong mechanistic 

accuracy in simulating sweetpotato storage root yields and vine 

elongation with predictions falling within the error margins 

similar to other studies using crop models [41]. However, for 

other variables such as the branching of vines and the number of 

storage roots, SPOTCOMS was less precise, likely due to its 

limited parameterization of stochastic processes governing 

branching initiation. Future versions of this model may require 

adjustments to the algorithms used for estimating the number of 

branches and storage roots. 

Like most models, SPOTCOMS showed some limitations that 

will need to be addressed in future studies. For example, 

SPOTCOMS needs to be set such that it has a threshold beyond 

which if the temperature is exceeded, sweetpotato growth would 

be inhibited. This has not yet been set in the model and 

therefore, the researcher is mandated to remove locations with 

average high temperatures exceeding 380C. Also, the model does 

not account for the effects of weeds, pests, and diseases and 

therefore tends to overestimate yield. Finally, the model 

currently uses topsoil data and does not account for the variation 

of soil nutrients in the soil profiles as has been significantly 

developed in other crop models such as the DSSAT crop 

models. 

 

5. Conclusion 

Overall, the SPOTCOMS sweet potato model simulated storage 

root yield and number, number of leaves, and vine length very 

precisely for Covington. However, it demonstrated limitations in 

predicting the number of branches and roots, emphasizing the 

need for improved parameterization of these variables in future 

studies. 

The generated genetic coefficients for the Covington variety are 

readily available for future reference and for any impact 

assessment studies on Covington and related varieties. However, 

to improve the model's robustness in Alabama and other states, 

there is a need for further calibration and validation are needed 

in diverse regions to account for variations in weather, soil 

conditions, and the common sweetpotato varieties grown in 

those areas. This will help improve the model's applicability and 

robustness. 
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