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Abstract

Sweetpotato [Ipomoea batatas (L.) Lam.] is an economically and nutritionally important root crop, yet the
application of process-based crop models for its simulation remains limited, particularly when compared
with major cereal crops. Process-based models provide powerful tools for evaluating crop responses to
environmental variability, management strategies, and climate- and policy-driven scenarios. This study
evaluated the applicability and performance of the SPOTCOMS (Sweet Potato Computer Simulation)
model in simulating sweetpotato growth, development, and yield formation. Field experiments were
conducted over two consecutive growing seasons (2022 and 2023) using the widely grown ‘Covington’
cultivar under conventional production practices in Alabama. Comprehensive datasets were collected,
including phenological and growth parameters (vine length, leaf area, branch number, and storage root
development at multiple growth stages), soil physicochemical properties, and daily weather variables.
These data were used to derive cultivar-specific genetic coefficients and to calibrate and validate the
SPOTCOMS model. The SPOTCOMS model successfully captured key phenological stages of sweetpotato
development, demonstrating high predictive accuracy for storage root number and total yield, with greater
than 90% agreement between simulated and observed values. Vine length was also well simulated (R2 =
0.90). In contrast, predictions of leaf number and branching showed moderate agreement with observations
(R? = 0.50), indicating model limitations in simulating vegetative architecture. Sensitivity analysis
identified early-season growth and mid-season leaf expansion as critical drivers of final storage root yield.
Overall, these findings highlight the potential of SPOTCOMS as a decision-support tool for predicting
sweetpotato performance and optimizing production in the southeastern United States. Further calibration
and validation across multiple cultivars, environments, and management systems are recommended to
improve model robustness and broader applicability.

Keywords: Nanourea, conventional urea, growth, LA, yield and wheat

1. Introduction

Sweetpotato [Ipomoea batatas (L.) Lam.] is an important root vegetable crop cultivated in over
100 countries, but predominantly in tropical and subtropical regions 3. Global production
ranged from 88 to 92 million metric tons (Mt), with Asian countries—Iled by China—accounting
for 62%-67% of total production, while African countries contributed 29%-34% . The United
States is among the top global ex-porters by volume, with the annual export value rising from
$14 million to $187 million between 2001 and 2021 B,

In the USA, sweet potato production is concentrated in the South due to favorable growing
conditions, with North Carolina being the leading state, contributing approximately 60% of total
storage roots grown in the country . Although Alabama is not a major sweetpotato producer,
the crop remains an important component of the food system for both household consumption
and commercial sales. Recently, it was certified as an official vegetable of the state of Alabama
5]

Globally, sweetpotato ranks as the seventh most important staple crop, following wheat, rice,
maize, potato, barley, and cassava, and is the fifth most significant food crop in the tropics 1. It
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is an excellent source of carbohydrates, vitamins A (beta-
carotene) and C, fiber, and minerals ® 1. Beyond its nutritional
value, sweetpotato offers numerous health benefits, including
antioxidants, cardioprotective, anti-inflammatory, anti-cancer,
anti-diabetic, antimicrobial, and anti-obesity properties [,
Additionally, the storage roots have various applications in the
food industry, such as making flour, bread, pastries, fries, and
brewing ™, while the leaves can be used for animal feed 4. In
comparison to other food crops, sweetpotatoes are adaptable to
marginal growing conditions (such as high temperatures,
drought, and low soil nutrients), have short production cycles,
and can produce high yield potential under low production costs.
Because of these attributes, the crop has been identified as a
candidate in contrasting environmental conditions, such as
climate change scenarios [ 14

Despite its importance, studies on sweetpotato modelling are
lagging compared to major cereals and grains [%. Crop
modeling has been used worldwide as an efficient and strategic
tool in agricultural research to assess environmental impacts,
make informed decisions about crop management, and optimize
resource allocation with limited time and resources 161, These
models can be classified based on their purpose in-cluding
empirical models (based on the statistical relationship between
crop growth and environmental factors); Stochastic models (use
a probability of inputs and outputs to stimulate plant growth and
environmental interactions); Explanatory models (based on
quantitative description of the mechanisms and processes that
cause the behavior of crop growth systems); Mechanistic models
(explains the relationship between weather parameters and yield
as well as the mechanism which influences yield) and the pro-
cess-based models which simulate the progression of the crop
through over time using differential equations to describe crop
development processes as a function of weather and soil
conditions as well as crop management 17 281,

Process-based simulation models are widely used to predict crop
performance under diverse biotic and abiotic conditions,
providing cost-effective tools for optimizing management
strategies [*¢l, These models play an important role in improving
crop management, breeding programs, and policymaking [,
They are also valuable for analyzing yield gaps % and
optimizing the utilization of resources such as fertilizer and
water/irrigation - 22 Furthermore, they are used to determine
the impact of extreme weather on crop growth, assess the effects
of climate change on crop production, and select potential
adaptation measures % 238, However, the robustness of these
models requires evaluation of their performance under similar or
the same environmental conditions, and establishing specific
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genetic coefficients of the intended crop 24 %,

Process-based models such as Decision Support System for
Agrotechnology Transfer (DSSAT) and APSIM (Agricultural
Production Systems simulator) have been extensively developed
and utilized for grains, cereals, and other commercial crops [?
211 but less so for root and tuber crops 1% 28, The existing
sweetpotato models include SPOTCOMS (Sweetpotato
Computer Simulation), a process-based model °; the Climate-
Crop Modeling System (CLICROP), an empirical/statistical
regression-based model B%: and the International Model for
Policy Analysis of Agricultural Commodities and Trade
(IMPACT), an economic model B4, Each of these models has its
advantages and drawbacks. For instance, SPOTCOMS requires
detailed data on sweet potato growth and development, soil, and
weather conditions, but allows impact assessments at any
location with some calibration. In contrast, CLICROP, uses few
data for analyzing climate-crop yield interactions but is limited
to yield and climate rela-tionship assessments. IMPACT is
designed for large-scale Agriculture policy analysis but cannot
be used in yield assessments under conditions that may lie
outside the range in which the model was developed 171,
SPOTCOMS, an advanced version of MADHURAM has
demonstrated potential in modeling sweetpotato growth in
diverse environmental conditions 2. However, its validation
has been limited to specific regions, such as India and East
Africa, and varieties grown in those areas, restricting its broader
applicability 2. To enhance its adoption, the model must be
tested across a wider range of genotypes, soil types, and climatic
conditions. This study aims to evaluate the applicability of
SPOTCOMS for simulating the growth and development of
sweet potato varieties cultivated in Alabama.

2. Materials and Methods

2.1. Study location

Experiments were conducted at the George Washington Carver
Agricultural  Experiment  Station, Tuskegee University,
Alabama, U.S.A. Prior to the present study, the site had been
under vegetable cultivation. The climate in Tuskegee is humid
subtropical with mild winters and hot, humid summers. The
study was conducted over two consecutive crop seasons,
summer 2022 and 2023. During the period of the experiments,
the mean high and low temperatures ranged between (31.3 and
31.6 °C) and (18.8-19.2 °C) for 2022 and 2023, respectively,
with irregular precipitation patterns and humidity (Figure 1).
The soil was sandy loam, acidic with a pH range of 5.1 to 6.1,
low P and K, and high Mg and Ca concentrations.
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Fig 1: Mean daily weather data, including maximum and minimum temperatures (A and B, respectively), total precipitation (B), and relative
humidity (C), in the study area during the 2022/2023 growing seasons
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2.2. Land Preparation and Soil Analysis

The experimental field was conventionally tilled (plowed and
harrowed) to promote soil aeration and root penetration,
optimizing conditions for sweetpotato vine establishment. Prior
to planting, soil samples were collected from a 15 cm depth
using a zig-zag sampling pattern across the field, homogenized
into composite samples, and analyzed for pH, available P K,
Mg), and Ca. Fertilizer was applied in single bands 15 cm from
the plants 14 days after planting, following soil test
recommendations. A 5-4-3 NPK organic fertilizer was applied at
a rate of 80-120-150 kg/ha based on soil test recommendations.

2.3. Sweet potato variety

Covington, a cultivar developed by North Carolina State
University (NCSU), was used for the study. Fully developed
leaves of this variety are cordate to triangular with slight lobing,
while young leaves are purple and green when mature.
Flowering occurs sporadically during the season, typically
triggered by stress conditions. Plants reach maturity 100-120
days after planting, achieving average storage root yields of 45.3
t ha™!, although storage roots can stay in the ground longer
without splitting [,

Storage roots are small to medium, long, slender, with slightly
curved, tapered ends, averaging 5 to 8 cm in diameter, and are
highly prized for their uniform size, shape, and extended shelf
life. The flesh is orange, firm, dense, and creamy with a malty
flavor, great for boiling, roasting, or baking. Nutritionally, they
are rich in vitamins A, C, and B6, as well as Mg, Fe, and K.
Since the early 2000s, Covington began dominating the
sweetpotato industry, even surpassing Beauregard, the standard
in industry in garden and commercial production due to its
consistent quality and adaptability (531

2.4. Experimental design and planting

The experiments were conducted as a random complete block
with one treatment factor: harvest time, and four replications.
Each plot was 3m by 1.2 m, in which 30 cm long stem cuttings
were planted on ridges at 1.8 m apart and 0.3 m between plants.
Cuttings were planted on June 3, 2022, and June 6, 2023, and
harvested at 119 and 120 days after planting, respectively.

2.5. Plant management

Standard cultural practices were followed, including fertilizer
application and a combination of cultivation and manual weed
control until the vines grew out and provided canopy cover.
Moisture was provided twice per week through drip irrigation.

2.6. Phenological data collection

Phenological data were measured and recorded at 14-day
intervals to monitor the growth and development of the crop.
Four plants were randomly selected from each replication and
sampled for measurement, including vine length, number of
branches, leaves, leaves per vine, and leaf area. At harvest, fresh
storage roots were collected, and 25-g subsamples were taken
from the middle 10 cm of three US#1 storage roots were dried in
an oven at 65-72 °C for 48-72 hours, and dry weights were
estimated using a fresh to dry weight ratio.

2.7. Weather Information

Daily weather data for maximum and minimum temperature
(°C), relative humidity (%), day length in hours (Hr), and
precipitation (mm) were recorded using an onsite weather
station. Data was exported into Excel and formatted according to
the data format for the SPOTCOMS model.

https://www.agronomyjournals.com

2.8. Soil data

The soil data used to run the model were obtained from the
initial soil analysis before the establishment of the experiments.
The parameters used to build soil files for the SPOTCOMS
model included texture, pH, P, and K. Soil classification
information was obtained from the existing soil reports from
previous studies.

Table 1: Soil characteristics of the soil in the experimental field.

Soil property [pH| N P | K ] Mg | ca

Unit % (Ibs/acre)

Value 51008 14 | 53 | 32 | 186

2.9. Calibration and validation of SPOTCOMS crop model
2.9.1. Research modeling framework

The SPOTCOMS (Sweet potato computer Simulation) model
(29, The model simulates phenological development in relation
to photothermal time, net assimilation, resource allocation to
different plants above and below plant organs, transpiration, and
soil water dynamics on a daily time step and crop growth as a
function of growing degree days and divides sweet potato
growth into three phases. Establishment Phase (0-30 days)
extends from planting to root development and initial vine
growth., Storage Root Initiation and Development Phase (30-60
days) from storage root initiation to the beginning of storage
root bulking and vigorous vegetative growth, and Storage Root
Bulking and Maturation Phase (60-120 days) from the beginning
of storage root enlargement to final harvest. The parameters that
drive the model were determined using the nine equations
below:

Equation 1 describes growing degree days (GDD), which are
used to estimate sweetpotato growth and development during the
growing season and are calculated at different growth stages.

d
GDDd = Zi=1 TMEAN; _ 4 x 1pase 1)

Where: d= Days after planting (DAP), i=number of days after
planting, TMEANi =the mean temperature on i DAP, and
TBase= = Base temperature

Equation 2 defines the GDD requirement for the first growth
phase of sweet potato.

phsgdd = GDDi 2

Where: GDD= Growing degree days i = 28 days under tropical
conditions and 66 days under non-tropic

Equation 3 defines the GDD requirement for the second growth
phase of sweetpotato. It reflects growing degree days between 4
and 7 weeks after planting for tropical and 9.5 weeks and 16
weeks after planting under nontropical conditions.

phs2gdd = VGDDi 3)

where phs2gdd is the difference between 4 weeks and 7 weeks
after planting for tropical and 9.5 weeks and 16 weeks after
planting under nontropical conditions ie. phs2gdd= GDD49-
GDD28 for tropical conditions and GDD112- GDD66 under non
tropical conditions.

Equation 4 describes the development of vines.
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Vlen= cop: 4)

where: VLi = vine length on the ith DAP; GDDi = GDD on it"
DAP

Equation 5 describes the development of roots.

nTERi
tgrate = GDDi (5)

where: nTBRi = the number of tubers on ith DAP and GDDi =
GDD on ith DAP

Equation 6 defines the branching of the crop.
brgap = BRi X LFi (6)

where: BRi = the number of branches on ith DAP and LFi = the
number of leaves on the branches on i th DAP

Equation 7 specifies the number of leaves on a sweet potato
plant

https://www.agronomyjournals.com

where: LFi = The number of plant leaves on ith DAP and GDDi
= GDD oni th DAP

Equations 8 define the leaf area of sweet potatoes at different
growing stages.

lafactm‘:l':'g LFix arai (8)

where: ALAI =the average leaf area on ith DAP, LFi = The
number of plant leaves on i DAP

Equation 9 defines the leaf area as a cultivar for the whole
growing season.

larea = Average leaf area for a cultivar for the whole
growing season 9)

The initial conditions for the SPOTCOMS model were: (1)
Optimum Temperature for Sweet potato = 25.0 °C, (ii) Base
Temperature for Sweet potato= 8.10 °C, and (iii) Maximum

Lfi Temperature for Sweet potato = 380 °C
Ifactor= cobi @)
'I Max. Temp |
Detailed crop cultivar data inputs
sture
Crop 1 m—
calibration e management
| ‘ I— SPOTCOMS
| validation I 4\
; Soil PH,N, P, K, Ca,
Mg
Sensitivity analysis |
{orinaee |
Fig 2: Summary of SPOTCOMS model framework operation
2.9.2. Calibration and performance evaluation of RI—1_ T (y—x)?
SPOTCOMS model - T (F-¥;)* (10)

Calibration and testing of SPOTCOMS were performed using
data sets from the two experiments of the 2022 and 2023
growing seasons. The suitable crop data were determined from
the average of plant attributes and were then used to calculate
the crop parameters using equations i, ii, iii,., and viii above. The
calculated sets of parameters were then used to run the
SPOTCOMSs model. A descriptive statistical analysis was used
to evaluate the relationship between the simulated and the
observed storage root yields from the two experiments. The
combination with the best fit was chosen for the model
simulations. Two descriptive statistics were used in both model
calibration and evaluation. The first was the coefficient of
determination (R?), derived from the Pearson correlation
coefficient that measured the level of agreement between the
observed and simulated values (equation 11). A R? value of 1
indicates a strong agreement, while a value of 0 implies a weak
agreement. The second is the Bias, which measures the degree
of error between observed and simulated values (equation 12)
The model performance in the simulation of final yield in terms
of weight and number of storage roots was evaluated by
percentage change using the equation below:

Where:yi=observed value, xi=simulated values, and n=Number
of data points

len _
BIAS= 7 Zi=1(Fi ~ 0 (12)

Where: P; = simulated value; 0i = observed value; and n is the
number of observations

9% change— (V@ — ¥i) / y0)100 (12)
Where: yo= observed value and y; simulated value

2.10. Data Analysis

2.10.1. Trend analysis for the field data collected

Trend analysis was performed on the eight variables, including
vine length, number of leaves, total leaf area, number of
branches and number of storage roots, and fresh and dry weight
of shoots and storage roots.
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2.10.2. Sensitivity analysis of cultivar coefficients in
SPOTCOMS

The purpose of performing a sensitivity analysis on cultivar
coefficients was to generate output responses associated with the
variation in input and to assign the simulated output variability
to the model coefficients that affect it most [, Sensitivity was
used to provide a normalized measure in comparing all model
coefficients. The sensitivity of the final yield output (t ha® to
the perturbations in each plant parameter was computed using
the base and the +5% changes in the base values. The relative
change in output and the change in parameter were used to
calculate the sensitivity indices, such that all eight coefficients
determined were individually used to determine the sensitivity
indices using the equation proposed by Pathak et al. ¥ as
shown below:

coefficients determined were individually used to determine the
sensitivity indices using the equation proposed by B below:

(y—vid,
Fae

¥
B(&)="""s.
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where i represent individual coefficients: phsgdd, phs2gdd,
Vlen, tgrate, brgap, Ifactor, lafactor, or larea, Y is the simulated
storage root yield using the initial set of determined coefficients
and Yi is the simulated storage root yield obtained for each level
of an individual model parameter (i) while keeping all other
model parameters at their base values.

3. Results

3.1. Trend of growth parameter

Trends of plant attributes including vine length, number of
branches, number of leaves, and total leaf area for the entire
growing season are presented in Figure 3. Vine length increased
steadily from transplanting to the maturity stage (Fig. 3a).
Increases were quite substantial up to about day 55 but the
magnitude declined thereafter to maturity. Secondary and
tertiary branching of the vines began around 35 DAP and
increased sharply 60-100 days after planting and declined
thereafter towards maturity (Figure 3b). Similarly, the number of
leaves and total leaf area increased with time to 100 days after
planting and then declined marginally towards maturity (Figure
3 c&d).

(13)
(a) Vine length
450
00—
350
-
g 300
g, 250 ¥ 280275 +54.308
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Fig 3: Mean values of vine length (a), number of branches (b), number of leaves (c), and total leaf area (d) during the growing seasons.

3.2. Cultivar coefficients

The mean cultivar coefficients (Table 2) were determined from
four replications, from which a mean coefficient and the
maximum and minimum values were also determined. Among

the variables, Vlen, Ifactor, and brgap showed a high variation,
all of which are functions of foliage growth for vine length,
number of leaves, and number of branches, respectively.

Table 2: Summary of cultivar parameters determined from field experiments.

Cultivar coefficients Vlen Tgrate br_gap Ifactor lafactor Larea
Mean 0.1989 0.0022 196.7781 0.0346 82.4947 38
Minimum 0.0901 0.00094 53.3333 0.00217 56.1603 35.2
Maximum 0.2776 0.00299 282.8571 0.0505 96.1329 49.3

Note: the summary of cultivar genetic coefficient for the Covington cultivar planted at the spacing of when phsgdd = 377 and phs2gdd = 779.

3.3. Sensitivity of cultivar coefficients from field data

Table 3 shows the results of the sensitivity analysis at 5% of the
variety coefficient on final yields. The findings indicated that the
sensitivity analysis of cultivar coefficients, which are a function
of growing degree days, phsgdd, and phs2gdd were the most

sensitive at a 5% increase. And phs2gdd, and lafactor, were
more sensitive than at the 5% decrease range. On average
phsgdd, and lafactor were the most sensitive followed by vlen
and larea while br_gap was the least sensitive (Figure 4)
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Table 3: Summary of genetic coefficients of cultivar parameters sensitivity to final yield.

H H 1 o, H o,
Parameter | Optimum coefficients iﬁ?;?;:ﬁ:f:r Slmu(lte:gg)yleld ir?a'se:;e 5% decrease in parameter ySi;rlr&u(lte;]tzg) dggrsegose Av B
phsgdd 335.000 351.75 25.780 -2.870 318.250 28.700 0.930 |[-0.970
phs2gdd 779.000 808.50 29.100 -0.880 731.000 27.790 1.250 |0.190
vlen 0.300 0.315 30.580 0.320 0.285 29.380 0.480 |0.400
tgrate 0.018 0.018 30.100 0.000 0.017 29.360 0.490 |0.250
br_gap 186.000 195.300 30.330 0.150 176.700 30.600 -0.330 |-0.090
Ifactor 0.030 0.032 31.190 0.720 0.029 31.720 -1.080 |-0.180
lafactor 130.000 136.500 29.110 -0.660 123.500 30.690 -0.390 |-0.530
larea 49.000 51.450 30.750 0.430 46.550 29.890 0.140 |0.290

Note: Summary of cultivar sensitivity influence on final yield(tha™), calculated at 5% increase or decrease (B_5%) and respective average (Av B)
values. Calculations are based on the baseline/optimal simulated yield of 30.1 t ha™'.

- o larea
| o lafactor

. m Ifactor

mbr_gap

tgrate

mvlen
mphs2gdd

12 1 08 06 04 02 0 02 04 06

AV p

Fig 4: Summary of sensitivity analysis showing mean cultivar
coefficients (B)of 5% increase and decrease of the mean values

3.4. Model evaluation

The SPOTCOMS model simulation results for growth variables,
including vine length, number of branches, leaves, storage roots,
and yield, are shown in Figure 5a-c. The simulated values for
vine length are reasonably close to the observed value, with an
R? of 0.90. Predicted values of the number of branches and
number of leaves deviated considerably from the observed
values, with R? values of 0.48 and 0.51, respectively. Thus, in
the case of the number of branches and leaves, only
approximately half of the observed variation in branch and leaf
number can be explained by the inputs into the modelln terms of
bias measurement, the model underestimated vine length and
number of branches compared to the observed values by an
average of 51 and 9.7 units, respectively. Additionally, the
model overestimated the number of leaves by an average of 15
units (Table 4).

@) Vine Length
250

y = 0.4862x + 33.761
R* = 0.9046

Simulated
- D
w 2 @2
S & & &

e

0 100 200 400
Observed

300

Number of leaves

.
y = 2.0068x + 5.3509
R*=0.514

0 5 10 15 20
Observed

Number of branches

8 y = 0.4213x - 1.6794
R* = 0.4782 *:

Simulated

CRSEES

6 8 10 12 14 16 18 20 22 24
Observed

0 2 4

Fig 5: Plots showing observed vs predicted values of vine length (A), number of branches (B), and number of leaves (C) collected throughout the
growing season.

Table 4: Coefficient of determination and bias estimates for vine length, number of branches and number of leaves

Parameter Vine length | Number of branches | Number of leaves
Coefficient of determination (R?) 0.9 0.47 0.5
Bias -51 -9.7 15

Predicted values for the number and yield of storage roots are
presented in Table 5. Simulated values are very close to
observed values with a small deviation of 0.4 (storage

root/plant) and 2.4 for the number of storage roots and yield,
respectively.

Table 5: Observed vs predicted values of the number of storage roots per plant and storage root final yield (T/ha).

Parameter Observed | Simulated | Difference | %change
Number of storage roots/plant 3.6 4.0 +0.4 11.1
Storage root yield (tha™) 32.5 30.1 -2.4 -7.3
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4. Discussion
The trends observed in the growth parameters and calculated
cultivar  coefficients show the relationship  between

environmental variables, sweet potato growth and development,
and final yield. Initially, vine length exhibited elongation
steadily until the mid-growth stage, followed by a slight rise
towards the maturity phase, likely this response aligns with
resource allocation theory, where plants prioritize vegetative
growth early to establish photosynthetic capacity before
transitioning to storage root development. The secondary
branching of the vines initiated at 35 DAP and peaking between
60-100 DAP, is probably associated with the plant's strategy to
expand its architecture during the middle phase to optimize light
interception and photosynthesis capacity during the critical
storage root bulking phase [, Similarly, the number of leaves
and total leaf area increased consistently until 100 days after
planting and declined thereafter due to senescence. This
physiological response is potentially linked to source-sink
relationships, where resource remobilization (eg. N and
carbohydrates) tends to be re-translocated from senescing leaves
to sustain storage root bulking to development as the plant
approaches maturity 738 Harvesting at 119-120 DAP
corresponded to a cumulative growing degree day (GDD) of
1324, aligning closely with established GDD-based vyield
prediction models for sweet potato. This value is consistent with
prior studies using GDD-based yield prediction models, hence
validating its utility for yield prediction [,

The cultivar-specific coefficients, particularly vlen, lafactor, and
larea, were within the range reported on other sweet potato
cultivars such as NASPOT;, SPK004, and NASPOT, that are
common in East Africa U, Additionally, the coefficients for
br_gap and Ifactor were within a range reported from other
cultivars common in Asia . This observation suggests
conserved developmental strategies within sweet potato species.
In contrast, the coefficient for tgrate (description of root
development) was unique for the assessed variety, Covington.
This implies that even though there were similarities among
cultivars from different locations because they are the same
genus and species, the root development traits have shown
distinctness to the Convington cultivar; this may probably be
due to genotype-environment-specific interaction, which
influences traits such as root expansion and dry matter
allocation.

Sensitivity analyses revealed that changes in cultivar coefficients
such as phsgdd, Vlen, lafactor, and tgrate that determine root
initiation, vine length, leaf, and storage root development,
respectively, had a significant influence on simulated yields.
Notably, the sensitivity of these coefficients to change at 5%
increments or decrements shows their influence on final yield,
emphasizing the importance of adjusting these variables during
yield simulation. A similar trend of sensitivity of phsgdd, and
lafactor was reported in the estimation of a coefficient of other
sweetpotato cultivars 2% 40,

The SPOTCOMS model demonstrated strong mechanistic
accuracy in simulating sweetpotato storage root yields and vine
elongation with predictions falling within the error margins
similar to other studies using crop models ™. However, for
other variables such as the branching of vines and the number of
storage roots, SPOTCOMS was less precise, likely due to its
limited parameterization of stochastic processes governing
branching initiation. Future versions of this model may require
adjustments to the algorithms used for estimating the number of
branches and storage roots.

Like most models, SPOTCOMS showed some limitations that
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will need to be addressed in future studies. For example,
SPOTCOMS needs to be set such that it has a threshold beyond
which if the temperature is exceeded, sweetpotato growth would
be inhibited. This has not yet been set in the model and
therefore, the researcher is mandated to remove locations with
average high temperatures exceeding 38°C. Also, the model does
not account for the effects of weeds, pests, and diseases and
therefore tends to overestimate yield. Finally, the model
currently uses topsoil data and does not account for the variation
of soil nutrients in the soil profiles as has been significantly
developed in other crop models such as the DSSAT crop
models.

5. Conclusion

Overall, the SPOTCOMS sweet potato model simulated storage
root yield and number, number of leaves, and vine length very
precisely for Covington. However, it demonstrated limitations in
predicting the number of branches and roots, emphasizing the
need for improved parameterization of these variables in future
studies.

The generated genetic coefficients for the Covington variety are
readily available for future reference and for any impact
assessment studies on Covington and related varieties. However,
to improve the model's robustness in Alabama and other states,
there is a need for further calibration and validation are needed
in diverse regions to account for variations in weather, soil
conditions, and the common sweetpotato varieties grown in
those areas. This will help improve the model's applicability and
robustness.
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