



# International Journal of Research in Agronomy

E-ISSN: 2618-0618  
P-ISSN: 2618-060X  
© Agronomy  
NAAS Rating (2026): 5.20  
[www.agronomyjournals.com](http://www.agronomyjournals.com)  
2026; 9(1): 29-33  
Received: 07-11-2025  
Accepted: 13-12-2025

**Tejbhan**  
Department of Agronomy, Shri  
Khushal Das University,  
Hanumangarh, Rajasthan, India

**MO Asad**  
Department of Agronomy, Shri  
Khushal Das University,  
Hanumangarh, Rajasthan, India

**Vikas Maurya**  
ICAR- Indian Institute of Pulses  
Research, Kanpur, Uttar Pradesh,  
India

**Kaushik Bajpai**  
School of Advanced Agriculture  
Sciences and Technology, CSJMU,  
Kanpur, Uttar Pradesh, India

**Niranjan**  
School of Advanced Agriculture  
Sciences and Technology, CSJMU,  
Kanpur, Uttar Pradesh, India

## Effect of organic sources and nutrients on growth parameters of Sorghum (*Sorghum Bicolor L.*) crop

**Tejbhan, MO Asad, Vikas Maurya, Kaushik Bajpai and Niranjan**

**DOI:** <https://www.doi.org/10.33545/2618060X.2026.v9.i1a.4622>

### Abstract

The present study evaluated the influence of integrated application of organic and inorganic nutrient sources on key growth parameters of sorghum during two consecutive seasons (2023-24 and 2024-25). Treatments comprising chemical fertilizers, organic manures, and biofertilizers were assessed for their effects on plant height, number of branches, and leaf area at different growth stages. The results clearly indicated that integrated nutrient management significantly enhanced all growth attributes compared to the control. Among the treatments, application of 100% Recommended Dose of Fertilizers (RDF) along with Azotobacter and Phosphate-Solubilizing Bacteria (PSB) consistently recorded the maximum plant height, number of branches, and leaf area at all growth stages and at harvest during both years. The treatment integrating 75% RDF with vermicompost and biofertilizers emerged as the next best option. The control treatment recorded the lowest values for all growth parameters. Improved growth under integrated treatments was attributed to balanced nutrient availability, enhanced microbial activity, and improved nutrient uptake. Overall, the study highlights the effectiveness of integrating organic manures and biofertilizers with inorganic fertilizers in promoting vigorous vegetative growth of sorghum and sustaining crop productivity.

**Keywords:** Sorghum, growth parameters, organic and inorganic fertilizer.

### Introduction

Sorghum (*Sorghum bicolor L.* Moench) is one of the world's most important cereal crops, valued for its versatility, resilience, and critical role in global agriculture. As a staple food for millions, particularly in semi-arid regions of Africa and Asia, sorghum contributes significantly to food security, livestock feed, and industrial applications. Its ability to thrive in harsh environmental conditions, including drought and poor soils, makes it a cornerstone of sustainable agriculture in the face of climate change (Paterson *et al.*, 2009) <sup>[10]</sup>. This introduction explores the origin, botanical characteristics, agricultural significance, environmental adaptability, and socio-economic importance of sorghum, providing a foundation for understanding its role in modern agriculture and the rationale for further research.

Sorghum was domesticated approximately 5,000-8,000 years ago in the region now encompassing Sudan and Ethiopia (Winchell *et al.*, 2017) <sup>[13]</sup>. Archaeological evidence suggests that early farmers selected wild sorghum varieties for traits such as larger grain size and non-shattering heads, leading to the development of cultivated sorghum (Pal *et al.*, 2024) <sup>[9]</sup>. The crop spread across Africa, Asia, and eventually to the Americas and Australia through trade and migration. Today, sorghum is grown in over 100 countries, with major production centers in the United States, Nigeria, Sudan, and India (FAO, 2023). Its historical significance lies in its role as a reliable food source in regions prone to drought and famine, earning it the nickname "camel of crops" due to its resilience (Taylor *et al.*, 2019) <sup>[12]</sup>. State-wise, Maharashtra led the production in the 2023-2024 period with approximately 1.4 million metric tonnes, followed by Karnataka and Rajasthan. In terms of yield, Andhra Pradesh recorded the highest annual yield in 2024, with about 3,493 kilograms per hectare, indicating the potential for enhanced productivity through improved agronomic practices. (Khalifa *et al.*, 2023) <sup>[6]</sup>.

Sorghum (*Sorghum bicolor L.*), a vital cereal crop, is predominantly cultivated in arid and semi-arid regions due to its resilience to drought and adaptability to diverse agro-climatic conditions.

### Corresponding Author:

**Vikas Maurya**  
ICAR- Indian Institute of Pulses  
Research, Kanpur, Uttar Pradesh,  
India

Globally, between 2001 and 2020, the average harvested area for sorghum was approximately 40.9 million hectares, with major contributions from countries like India, Sudan, and Nigeria. During this period, the global average production stood at nearly 58.7 million tonnes annually, and the average yield was about 2.5 tonnes per hectare. However, yields varied significantly across regions, with North America achieving higher averages compared to South Asia and sub-Saharan Africa, where yields were notably lower. In India, sorghum cultivation has seen a decline over the years. The area under sorghum reduced from 10.25 million hectares in 1999-2000 to 6.36 million hectares in 2022-23. Despite this reduction in area, certain regions have reported higher productivity. For instance, in the rice fallows of coastal Andhra Pradesh, sorghum cultivation under zero-tillage practices achieved a productivity of 5.32 tonnes per hectare in 2022-23, significantly surpassing the national average yield, which remains below 1.0 tonne per hectare.

Integrated nutrient management in sorghum refers to the judicious and combined application of organic manures, chemical fertilizers, and biofertilizers to supply balanced nutrients, improve soil fertility, enhance microbial activity, increase nutrient use efficiency, and achieve sustainable improvement in sorghum growth, productivity, and soil health (Kumari *et. al.*, 2024 and Shukla *et al.*, 2024) [7, 11].

## Materials and Methods

This research entitled "Effect of organic sources and nutrients on yield, quality and nutrient uptake by Sorghum (*Sorghum bicolor* L.)" was strategically executed during the *Kharif* seasons of 2023-24 and 2024-25. Hanumangarh is a notable district located in the northern expanse of Rajasthan, India, geographically situated between 25°46' to 29°57' N latitude and 74°43' to 75°31' E longitude. It occupies a strategic position, sharing borders with Punjab to the north, Haryana to the east, Churu to the south, and Bikaner and Ganganagar to the west. In RBD design total 13 treatments with 3 replications was applied in this research. The treatments details like- T<sub>1</sub> (Control), T<sub>2</sub> (100% RDF (120:60:60:40: N:P:K:S, kg ha<sup>-1</sup>), T<sub>3</sub> (100% RDF + Bio-fertilizers (Azotobacter + PSB), T<sub>4</sub> (75% RDF + FYM 5 t ha<sup>-1</sup>), T<sub>5</sub> (75% RDF + FYM 5 t ha<sup>-1</sup> + Bio-fertilizers), T<sub>6</sub> (75% RDF+Vermicompost 2 t ha<sup>-1</sup>), T<sub>7</sub> (75% RDF + Vermicompost 2 t ha<sup>-1</sup> + Bio-fertilizers), T<sub>8</sub> (50% RDF + FYM 10 t ha<sup>-1</sup>), T<sub>9</sub> (50% RDF + FYM 10 t ha<sup>-1</sup> + Bio-fertilizers), T<sub>10</sub> (50% RDF + Vermicompost 4 t ha<sup>-1</sup>), T<sub>11</sub> (50% RDF + Vermicompost 4 t ha<sup>-1</sup> + Bio-fertilizers), T<sub>12</sub> (50% RDF+ FYM 5 t ha<sup>-1</sup> + Vermicompost 2 t ha<sup>-1</sup>), T<sub>13</sub> (50% RDF + FYM 5 t ha<sup>-1</sup> + Vermicompost 2 t ha<sup>-1</sup> + Bio-Fertilizers). The plant height was measured within each designated experimental plot, a total of five plants were randomly chosen to ensure unbiased sampling of the crop population. The number of branches per plant was counted in every experimental plot established for the study, five individual plants were carefully chosen using a randomized selection method to ensure unbiased sampling. Leaf area estimation was conducted by recording the total number of leaves from five randomly selected plants at three different intervals- specifically at 30, 60, and 90 days after planting.

## Results and Discussion

### Plant height

Table 1 presents the data on plant height as influenced by different organic and inorganic nutrient sources. A detailed assessment of the results shows that integrated applications of organic manures, chemical fertilizers, and biofertilizers significantly enhanced sorghum plant height. During the first

year (2023-24), at 30 DAS, the tallest plants (88.34 cm) were produced under treatment T<sub>3</sub> (100% RDF + Azotobacter + PSB), followed closely by T<sub>7</sub> (75% RDF + 2 t/ha vermicompost + biofertilizers), which recorded 81.23 cm. Other integrated nutrient treatments also resulted in marked improvements, whereas the control (T<sub>1</sub>) recorded the shortest plants. This trend continued at 60 DAS, with T<sub>3</sub> producing the highest plant height (130.35 cm), followed by T<sub>7</sub> (121.79 cm), while T<sub>1</sub> again recorded the minimum height (64.08 cm). At 90 and 120 DAS, treatment T<sub>3</sub> maintained its superiority with heights of 158.23 cm and 173.02 cm, respectively. At harvest, T<sub>3</sub> recorded the tallest plants (177.90 cm), followed by T<sub>7</sub> (169.30 cm), whereas the control treatment had the lowest height (111.50 cm).

A similar pattern was observed during the second year (2024-25). At 30 DAS, the maximum plant height (89.82 cm) was again achieved under T<sub>3</sub>, with T<sub>7</sub> following at 82.04 cm. At 60 DAS, T<sub>3</sub> recorded 131.78 cm, while T<sub>7</sub> achieved 123.19 cm. Treatment T<sub>3</sub> continued to outperform all others at 90 DAS (161.03 cm), 120 DAS (174.87 cm), and at harvest (179.95 cm), whereas T<sub>1</sub> consistently recorded the minimum height (113.58 cm). Overall, the combined application of organic and inorganic nutrient inputs along with biofertilizers significantly enhanced sorghum plant height at every growth stage. The superior performance of T<sub>3</sub> can be attributed to the application of the full recommended dose of fertilizers, which ensured adequate nutrient availability, particularly nitrogen, a key component of chlorophyll essential for photosynthesis and subsequent plant growth. Likewise, the integration of 75% RDF with vermicompost and biofertilizers, as in T<sub>7</sub>, supplied nutrients more steadily over time, thereby improving plant height compared to most other treatments. Previous studies also support these findings: Bijarnia *et al.*, (2020) [11] noted improved sunflower emergence with urea application, while Dharaviya *et al.*, (2023) [3] reported significant increases in forage sorghum height when FYM was combined with biofertilizer seed treatment.

### Number of branches

Table 2 presents the data on the number of branches in sorghum as influenced by various organic and inorganic nutrient sources. A detailed evaluation of the results clearly shows that the integration of these nutrient inputs had a highly significant effect on the branching behavior of the crop. During the 2023-24 growing season, observations at 30 DAS revealed that treatment T<sub>3</sub> consisting of 100% RDF along with biofertilizers (Azotobacter and PSB) produced the highest number of branches (4.52). This was closely followed by treatment T<sub>7</sub> (75% RDF + 2 t/ha vermicompost + biofertilizers), which recorded 4.32 branches.

Similar trends continued at later growth stages (60, 90, and 120 DAS), with T<sub>7</sub> performing prominently among the integrated nutrient treatments. At harvest, the maximum number of branches (7.83) was again observed under T<sub>3</sub>, with T<sub>7</sub> remaining a close second. In every observation period, the lowest branch counts were consistently recorded in the control plot (T<sub>1</sub>), which received no nutrient inputs. A comparable pattern was noted during 2024-25. Throughout all growth stages 30, 60, 90, and 120 DAS, treatment T<sub>3</sub> maintained its superiority, producing 4.82, 7.63, 7.87, and 8.05 branches, respectively, while T<sub>7</sub> consistently followed. At harvest, the maximum branch number (8.22) was again recorded under T<sub>3</sub>, whereas the control (T<sub>1</sub>) remained lowest.

The increase in the number of shoots per square meter with FYM combined with biofertilizers can be attributed to improved

nutrient availability, especially nitrogen, within the root zone, enabling better nutrient uptake by the plants (Gudadhe *et al.*, 2020) [5]. Biofertilizers further contribute to the soil's nitrogen pool, enhancing vegetative growth and ultimately promoting greater shoot and branch development in sorghum. Such integrated nutrient management practices ensure a continuous supply of nutrients that foster robust crop architecture (Maharana and Singh, 2021) [8]. Supporting this, earlier studies have reported the positive influence of vermicompost on shoot proliferation, demonstrating its considerable role in enhancing overall plant growth.

### Leaf area (cm<sup>2</sup>)

Table 3 provides detailed information on the impact of organic and inorganic nutrient sources on leaf area development in sorghum. A thorough analysis of the data clearly indicates that integrated nutrient management combining organic fertilizers, inorganic fertilizers, and biofertilizers, significantly and positively influenced leaf area expansion in the crop. In the first year (2023-24), measurements taken at 30 DAS showed that treatment T<sub>3</sub>, which consisted of 100% RDF along with Azotobacter and PSB, produced the largest leaf area (146.23 cm<sup>2</sup>). This value was statistically comparable to treatment T<sub>7</sub> (75% RDF + 2 t/ha vermicompost + biofertilizers), which recorded 142.63 cm<sup>2</sup>. Other integrated nutrient treatments also resulted in markedly higher leaf area than the control (T<sub>1</sub>), which consistently exhibited the smallest leaf area throughout all growth stages. At 60 DAS, T<sub>3</sub> again achieved the highest leaf

area (172.28 cm<sup>2</sup>), with T<sub>7</sub> close behind at 168.78 cm<sup>2</sup>, while the control treatment recorded only 88.51 cm<sup>2</sup>. A similar pattern continued at 90 DAS, where T<sub>3</sub> reached the maximum leaf area of 183.23 cm<sup>2</sup>, followed by T<sub>7</sub> (179.35 cm<sup>2</sup>), whereas T<sub>1</sub> remained significantly lower.

Results from the second experimental year (2024-25) mirrored these findings. At 30 DAS, the highest leaf area was again recorded in T<sub>3</sub> (147.52 cm<sup>2</sup>), statistically on par with T<sub>7</sub> (143.93 cm<sup>2</sup>). At 60 DAS, T<sub>3</sub> maintained its lead with 173.39 cm<sup>2</sup>, while T<sub>7</sub> followed closely at 169.93 cm<sup>2</sup>. The control treatment, once more, produced the lowest leaf area across all measurement periods. At 90 DAS, T<sub>3</sub> registered the highest leaf area (184.19 cm<sup>2</sup>), with T<sub>7</sub> remaining the second-best performer at 180.71 cm<sup>2</sup>. Throughout both years of study, T<sub>1</sub> consistently produced the lowest leaf area values, highlighting the substantial limitations in vegetative growth under nutrient-deficient conditions. The combined findings from both years conclusively demonstrate that integrating organic manures such as vermicompost with recommended levels of inorganic fertilizers and biofertilizers markedly enhances leaf area development in sorghum (Gudadhe *et al.*, 2020) [5]. Improved leaf area is indicative of stronger vegetative growth and increased photosynthetic potential, which can ultimately translate into higher yield. The consistent superiority of integrated nutrient treatments across two consecutive seasons underscores the effectiveness of such nutrient management practices in promoting vigorous sorghum growth under field conditions (Maharana and Singh, 2021) [8].

**Table 1:** Effect of organic and inorganic sources of nutrients on different growth stages of plant height (cm).

| Treatments      | Plant height (cm) |         |        |         |         |        |         |         |        |
|-----------------|-------------------|---------|--------|---------|---------|--------|---------|---------|--------|
|                 | 30 DAS            |         |        | 60 DAS  |         |        | 90 DAS  |         |        |
|                 | 2023-24           | 2024-25 | Pooled | 2023-24 | 2024-25 | Pooled | 2023-24 | 2024-25 | Pooled |
| T <sub>1</sub>  | 22.02             | 23.52   | 22.77  | 64.08   | 65.45   | 64.77  | 91.89   | 93.02   | 92.46  |
| T <sub>2</sub>  | 77.14             | 78.62   | 77.88  | 119.03  | 120.37  | 119.70 | 147.02  | 149.62  | 148.32 |
| T <sub>3</sub>  | 88.34             | 89.82   | 89.08  | 130.35  | 131.78  | 131.07 | 158.23  | 161.03  | 159.63 |
| T <sub>4</sub>  | 33.61             | 34.75   | 34.18  | 75.18   | 76.64   | 75.91  | 103.04  | 105.75  | 104.40 |
| T <sub>5</sub>  | 36.73             | 38.04   | 37.39  | 78.32   | 79.69   | 79.01  | 106.18  | 109.02  | 107.60 |
| T <sub>6</sub>  | 72.54             | 73.83   | 73.19  | 114.17  | 115.58  | 114.88 | 142.09  | 144.83  | 143.46 |
| T <sub>7</sub>  | 81.23             | 82.04   | 81.64  | 121.79  | 123.19  | 122.49 | 149.67  | 152.42  | 151.05 |
| T <sub>8</sub>  | 31.57             | 32.52   | 32.05  | 73.24   | 74.65   | 73.95  | 101.05  | 103.84  | 102.45 |
| T <sub>9</sub>  | 51.72             | 53.09   | 52.41  | 93.39   | 94.82   | 94.11  | 121.31  | 124.05  | 122.68 |
| T <sub>10</sub> | 63.39             | 64.64   | 64.02  | 105.08  | 106.39  | 105.74 | 133.09  | 135.65  | 134.37 |
| T <sub>11</sub> | 66.85             | 68.16   | 67.51  | 108.47  | 110.01  | 109.24 | 136.41  | 139.13  | 137.77 |
| T <sub>12</sub> | 56.66             | 57.99   | 57.33  | 98.32   | 99.67   | 99.00  | 126.22  | 128.89  | 127.56 |
| T <sub>13</sub> | 58.19             | 59.42   | 58.81  | 100.01  | 101.18  | 100.60 | 127.72  | 129.86  | 128.79 |
| S.Em (±)        | 0.85              | 0.75    | 0.80   | 1.20    | 1.25    | 1.23   | 2.06    | 2.29    | 2.18   |
| C.D. at 5%      | 2.49              | 2.20    | 2.35   | 3.54    | 3.68    | 3.61   | 6.05    | 6.73    | 6.39   |

**Table 1.1:** Effect of organic and inorganic sources of nutrients on different growth stages of plant height (cm).

| Treatments      | Plant height (cm) |         |        |            |         |        |
|-----------------|-------------------|---------|--------|------------|---------|--------|
|                 | 120 DAS           |         |        | At harvest |         |        |
|                 | 2023-24           | 2024-25 | Pooled | 2023-24    | 2024-25 | Pooled |
| T <sub>1</sub>  | 106.42            | 108.51  | 107.47 | 111.50     | 113.58  | 112.54 |
| T <sub>2</sub>  | 161.52            | 163.46  | 162.49 | 165.70     | 168.56  | 167.13 |
| T <sub>3</sub>  | 173.02            | 174.87  | 173.95 | 177.90     | 179.95  | 178.93 |
| T <sub>4</sub>  | 117.67            | 119.69  | 118.68 | 121.78     | 124.76  | 123.27 |
| T <sub>5</sub>  | 120.75            | 122.77  | 121.76 | 125.80     | 127.89  | 126.85 |
| T <sub>6</sub>  | 156.68            | 158.69  | 157.69 | 161.70     | 163.75  | 162.73 |
| T <sub>7</sub>  | 164.29            | 166.30  | 165.30 | 169.30     | 171.39  | 170.35 |
| T <sub>8</sub>  | 115.73            | 117.66  | 116.70 | 120.62     | 122.76  | 121.69 |
| T <sub>9</sub>  | 136.02            | 137.87  | 136.95 | 140.81     | 142.99  | 141.90 |
| T <sub>10</sub> | 147.48            | 148.44  | 147.96 | 152.42     | 154.58  | 153.50 |
| T <sub>11</sub> | 151.03            | 151.92  | 151.48 | 155.93     | 158.09  | 157.01 |
| T <sub>12</sub> | 140.78            | 142.76  | 141.77 | 145.69     | 147.89  | 146.79 |
| T <sub>13</sub> | 142.34            | 144.31  | 143.33 | 147.23     | 149.35  | 148.29 |
| S.Em (±)        | 2.39              | 2.11    | 2.25   | 2.47       | 2.36    | 2.42   |
| C.D. at 5%      | 7.04              | 6.19    | 6.62   | 7.25       | 6.93    | 7.09   |

**Table 2:** Effect of organic and inorganic sources of nutrients on different growth stages of number of branches per plant.

| Treatment       | Number of branches per plant |         |        |         |         |        |         |         |        |
|-----------------|------------------------------|---------|--------|---------|---------|--------|---------|---------|--------|
|                 | 30 DAS                       |         |        | 60 DAS  |         |        | 90 DAS  |         |        |
|                 | 2023-24                      | 2024-25 | Pooled | 2023-24 | 2024-25 | Pooled | 2023-24 | 2024-25 | Pooled |
| T <sub>1</sub>  | 3.12                         | 3.41    | 3.27   | 4.91    | 5.41    | 5.16   | 5.32    | 5.68    | 5.50   |
| T <sub>2</sub>  | 4.23                         | 4.54    | 4.39   | 6.42    | 6.92    | 6.67   | 7.13    | 7.47    | 7.30   |
| T <sub>3</sub>  | 4.52                         | 4.82    | 4.67   | 7.13    | 7.63    | 7.38   | 7.52    | 7.87    | 7.70   |
| T <sub>4</sub>  | 3.63                         | 3.90    | 3.77   | 5.61    | 6.12    | 5.87   | 5.93    | 6.26    | 6.10   |
| T <sub>5</sub>  | 3.64                         | 3.91    | 3.78   | 5.42    | 5.91    | 5.67   | 6.03    | 6.35    | 6.19   |
| T <sub>6</sub>  | 4.21                         | 4.52    | 4.37   | 6.63    | 7.14    | 6.89   | 6.92    | 7.24    | 7.08   |
| T <sub>7</sub>  | 4.32                         | 4.61    | 4.47   | 7.11    | 7.63    | 7.37   | 7.53    | 7.82    | 7.68   |
| T <sub>8</sub>  | 3.34                         | 3.63    | 3.49   | 5.32    | 5.82    | 5.57   | 5.74    | 6.04    | 5.89   |
| T <sub>9</sub>  | 3.82                         | 4.12    | 3.97   | 5.93    | 6.41    | 6.17   | 6.25    | 6.54    | 6.40   |
| T <sub>10</sub> | 4.14                         | 4.44    | 4.29   | 6.33    | 6.82    | 6.58   | 6.75    | 7.03    | 6.89   |
| T <sub>11</sub> | 4.21                         | 4.51    | 4.36   | 6.42    | 6.93    | 6.68   | 7.05    | 7.32    | 7.19   |
| T <sub>12</sub> | 3.91                         | 4.22    | 4.07   | 6.04    | 6.52    | 6.28   | 6.41    | 6.71    | 6.56   |
| T <sub>13</sub> | 3.92                         | 4.23    | 4.08   | 5.93    | 6.41    | 6.17   | 6.42    | 6.74    | 6.58   |
| S.Em ( $\pm$ )  | 0.07                         | 0.06    | 0.07   | 0.08    | 0.07    | 0.08   | 0.11    | 0.07    | 0.09   |
| C.D. at 5%      | 0.21                         | 0.19    | 0.20   | 0.23    | 0.22    | 0.23   | 0.34    | 0.20    | 0.27   |

**Table 2.1:** Effect of organic and inorganic sources of nutrients on different growth stages of number of branches per plant.

| Treatment       | Number of branches per plant |         |        |            |         |        |
|-----------------|------------------------------|---------|--------|------------|---------|--------|
|                 | 120 DAS                      |         |        | At harvest |         |        |
|                 | 2023-24                      | 2024-25 | Pooled | 2023-24    | 2024-25 | Pooled |
| T <sub>1</sub>  | 5.44                         | 5.65    | 5.55   | 5.48       | 5.92    | 7.52   |
| T <sub>2</sub>  | 7.21                         | 7.55    | 7.38   | 7.32       | 7.71    | 8.03   |
| T <sub>3</sub>  | 7.72                         | 8.05    | 7.89   | 7.83       | 8.22    | 6.34   |
| T <sub>4</sub>  | 6.03                         | 6.35    | 6.19   | 6.14       | 6.53    | 6.53   |
| T <sub>5</sub>  | 6.24                         | 6.55    | 6.40   | 6.32       | 6.74    | 7.44   |
| T <sub>6</sub>  | 7.12                         | 7.45    | 7.29   | 7.25       | 7.62    | 7.90   |
| T <sub>7</sub>  | 7.63                         | 7.85    | 7.74   | 7.66       | 8.14    | 6.16   |
| T <sub>8</sub>  | 5.84                         | 6.15    | 6.00   | 5.97       | 6.34    | 6.67   |
| T <sub>9</sub>  | 6.34                         | 6.75    | 6.55   | 6.51       | 6.82    | 7.24   |
| T <sub>10</sub> | 6.82                         | 7.35    | 7.09   | 7.14       | 7.33    | 7.43   |
| T <sub>11</sub> | 7.13                         | 7.45    | 7.29   | 7.23       | 7.62    | 6.92   |
| T <sub>12</sub> | 6.51                         | 6.95    | 6.73   | 6.78       | 7.06    | 6.98   |
| T <sub>13</sub> | 6.62                         | 7.05    | 6.84   | 6.82       | 7.14    | 0.10   |
| S.Em ( $\pm$ )  | 0.11                         | 0.11    | 0.11   | 0.10       | 0.10    | 0.31   |
| C.D. at 5%      | 0.32                         | 0.33    | 0.33   | 0.31       | 0.30    | 7.52   |

**Table 3:** Effect of organic and inorganic sources of nutrients on different growth stages of Leaf area (cm<sup>-2</sup>).

| Treatments      | Leaf area (cm <sup>-2</sup> ) |         |        |         |         |        |         |         |        |
|-----------------|-------------------------------|---------|--------|---------|---------|--------|---------|---------|--------|
|                 | 30 DAS                        |         |        | 60 DAS  |         |        | 90 DAS  |         |        |
|                 | 2023-24                       | 2024-25 | Pooled | 2023-24 | 2024-25 | Pooled | 2023-24 | 2024-25 | Pooled |
| T <sub>1</sub>  | 62.41                         | 63.71   | 63.06  | 88.51   | 89.62   | 89.07  | 99.23   | 100.38  | 99.81  |
| T <sub>2</sub>  | 141.23                        | 142.74  | 141.99 | 167.60  | 168.63  | 168.12 | 178.29  | 179.52  | 178.91 |
| T <sub>3</sub>  | 146.23                        | 147.52  | 146.88 | 172.28  | 173.39  | 172.84 | 183.23  | 184.19  | 183.71 |
| T <sub>4</sub>  | 85.41                         | 86.69   | 86.05  | 115.54  | 112.63  | 114.09 | 122.41  | 123.45  | 122.93 |
| T <sub>5</sub>  | 91.71                         | 94.03   | 92.87  | 118.86  | 119.94  | 119.40 | 129.62  | 130.78  | 130.20 |
| T <sub>6</sub>  | 127.32                        | 128.62  | 127.97 | 153.42  | 154.40  | 153.91 | 164.42  | 165.31  | 164.87 |
| T <sub>7</sub>  | 142.63                        | 143.93  | 143.28 | 168.78  | 169.93  | 169.36 | 179.35  | 180.71  | 180.03 |
| T <sub>8</sub>  | 83.03                         | 83.38   | 83.21  | 108.29  | 109.27  | 108.78 | 118.94  | 120.23  | 119.59 |
| T <sub>9</sub>  | 101.62                        | 102.95  | 102.29 | 127.68  | 128.85  | 128.27 | 138.48  | 139.72  | 139.10 |
| T <sub>10</sub> | 114.63                        | 115.89  | 115.26 | 140.74  | 141.91  | 141.33 | 151.37  | 152.59  | 151.98 |
| T <sub>11</sub> | 116.71                        | 118.05  | 117.38 | 142.93  | 143.94  | 143.44 | 153.61  | 154.81  | 154.21 |
| T <sub>12</sub> | 104.37                        | 105.49  | 104.93 | 130.32  | 131.38  | 130.85 | 141.18  | 142.28  | 141.73 |
| T <sub>13</sub> | 107.92                        | 109.31  | 108.62 | 134.08  | 135.17  | 134.63 | 144.81  | 145.96  | 145.39 |
| S.Em ( $\pm$ )  | 1.99                          | 1.43    | 1.71   | 1.80    | 1.52    | 1.66   | 2.32    | 2.66    | 2.49   |
| C.D. at 5%      | 5.83                          | 4.21    | 5.02   | 5.28    | 4.46    | 4.87   | 6.81    | 7.83    | 7.32   |

### Conclusion

The present study clearly demonstrates that the integrated use of organic and inorganic nutrient sources plays a significant role in enhancing the growth, development, and productivity of the sorghum crop. The combined application of these nutrient inputs ensured a balanced and continuous supply of essential nutrients

throughout the crop growth period, leading to improved nutrient uptake and utilization. As a result, key vegetative growth parameters such as plant height, leaf area, and total biomass accumulation showed marked improvement. Enhanced plant height reflected better vigor, while increased leaf area promoted higher photosynthetic activity. Overall, integrated nutrient

management proved to be an effective and sustainable approach for promoting vigorous growth and improving the productivity potential of sorghum.

## References

1. Bijarnia AL, Singh U, Sutaliya R. Influence of integrated nutrient management on fodder pearl millet in transitional plain of Luni Basin. International Journal of Economic Plants. 2020;7(4):193-196.
2. Dalei BB, Rath BS, Mohapatra AK, Patnaik GP, Phonglosa A, Sahoo S, *et al.* Residual effect of integrated nutrient management in kharif maize (*Zea mays* L.) on growth and yield of toria (*Brassica campestris* L. var. toria) during rabi season in Odisha, India. International Journal of Environment and Climate Change. 2023;13(1):266-275.
3. Dharaviya DD, Patel KM, Zala TB, Karnavat JV. Assessment of weed management practices in linseed (*Linum usitatissimum* L.). Journal of Advances in Biology and Biotechnology. 2023;28(3):9-16.
4. Food and Agriculture Organization of the United Nations. FAOSTAT: sorghum production. Rome (Italy): FAO; 2023.
5. Gudadhe N, Dhone MB, Hirwe NA. Effect of integrated nutrient management on soil properties under cotton-chickpea cropping sequence in vertisols of Deccan Plateau of India. Indian Journal of Agricultural Research. 2015;49(3):207-214.
6. Khalifa M, Eltahir EA. Assessment of global sorghum production, tolerance, and climate risk. Frontiers in Sustainable Food Systems. 2023;7:1184373.
7. Kumari M, Meena R, Kumar C, Kumar D. Efficacy of rock phosphate enriched compost on growth, yield and uptake of nutrients by summer mung bean (*Vigna radiata* (L.) Wilczek) in inceptisol of Varanasi. Journal of Ecofriendly Agriculture. 2024;19(2):287-293.
8. Maharana S, Singh S. Effect of iron and zinc on growth and yield of pearl millet (*Pennisetum glaucum* L.). Pharma Innovation Journal. 2021;10(10):546-550.
9. Pal SK, Kumar N, Ram CN, Kumar D, Maurya S, Singh A, *et al.* Effect of organic, inorganic and biofertilizers on soil characteristics and potato tuber yield (*Solanum tuberosum* L.). Journal of Scientific Research and Reports. 2024;30(11):494-500.
10. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, *et al.* The Sorghum bicolor genome and the diversification of grasses. Nature. 2009;457(7229):551-556.
11. Shukla AK, Singh RR, Mishra T, Tripathi KM, Mishra S, Kumar D. Optimizing nutrient uptake in rice crops through integrated organic manure application: a comprehensive analysis of grain and straw composition. Asian Journal of Soil Science and Plant Nutrition. 2024;10(1):167-174.
12. Taylor JRN, Duodu KG. Sorghum and millets: chemistry, technology, and nutritional attributes. Cambridge (UK): Woodhead Publishing; 2019.
13. Winchell F, Stevens CJ, Murphy C, Champion L, Fuller DQ. Evidence for sorghum domestication in fourth millennium BC eastern Sudan: spikelet morphology from ceramic impressions of the Butana Group. Current Anthropology. 2017;58(5):673-683.