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Abstract 
The global population is increasing rapidly, leading to a corresponding rise in food demand. Traditional 

farming practices are often insufficient to meet these growing requirements, necessitating the adoption of 
advanced automated technologies such as drones. Drone technology not only contributes to fulfilling food 

demands but also optimizes resource utilization by reducing excessive use of water, pesticides, and 
herbicides, while helping maintain soil fertility. It enhances manpower efficiency, increases productivity, 

and improves crop quality. The objective of this paper is to review the diverse applications of drones in 
agriculture. A comprehensive literature review was conducted to examine existing research worldwide. 

Findings indicate that drones can support multiple agricultural operations, including crop health 
monitoring, weed management, evapotranspiration estimation, precision spraying, and overall farm 

management. The paper concludes by emphasizing the potential benefits of wider adoption of drone 
technology to improve agricultural outputs and sustainability. 

 
Keywords: Drone technology, agriculture, crop health monitoring, weed management, evapotranspiration, 

precision spraying, soil fertility, smart farming 

 

Introduction  

Agriculture remains the backbone of India’s economy; however, the sector still lags in adopting 

modern technologies compared to developed nations. Countries across the globe have already 

integrated Unmanned Aerial Vehicles (UAVs) into precision agriculture photogrammetry, and 

remote sensing thereby enhancing efficiency and reducing the workload of farmers. UAVs are 

typically equipped with advanced cameras and sensors for crop monitoring, as well as sprayers 

for pesticide application. Although UAV technology has traditionally been employed in military 

and civilian domains [5], its application in agriculture has gained momentum in recent years. 

Technical analyses have highlighted the potential of UAVs in various agricultural operations, 

including crop monitoring [6], crop height estimation [7], pesticide spraying [8], and soil and field 

analysis [9]. However, the practical deployment of UAVs largely depends on critical hardware 

factors such as weight, flight range, payload capacity, configuration, and cost [10]. 

Initially, drones were often perceived as luxury tools or recreational devices. In agriculture, their 

potential remained underexplored, to the detriment of farming efficiency and sustainability. 

Today, drones can operate autonomously through dedicated software that enables flight planning 

and execution using GPS, while incorporating parameters such as speed, altitude, Region of 

Interest (ROI), geo-fencing, and fail-safe modes. Compared to manned aircraft, drones offer 

significant advantages, including high spatial resolution, rapid data acquisition, lower 

operational costs, and ease of deployment. These features make UAVs particularly suitable for 

precision agriculture, where vast areas must be monitored and analyzed within minimal 

timeframes. Advances in miniaturized cameras and sensors such as infrared, multispectral, and 

sonar technologies have further expanded the scope of UAV applications in modern agriculture. 

 

Historical Background 

The Japanese were the first to successfully implement Unmanned Aerial Systems (UAS) 
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technology for agricultural chemical spraying in the 1980s [11], 

followed by crop dusting in the 1990s. By 2001, approximately 

1,220 units of Yamaha unmanned helicopters had been sold and 

deployed in Japan [12]. Currently, more than 2,000 Yamaha 

RMAX unmanned helicopters are used annually to spray nearly 

2.5 million acres, covering about 40% of the country’s rice 

paddies [12]. In comparison, the United States has lagged behind 

Japan in adopting UAVs for agricultural applications, largely 

due to complex privacy regulations and legal restrictions. 

 

Current Applications 

Although the use of UAVs in agriculture has been steadily 

increasing worldwide, growth is still constrained by technical 

challenges that must be addressed. Among the various 

applications, stress detection and quantification have received 

the greatest attention due to their potential in mitigating crop 

losses and improving yields. UAVs are now widely explored for 

monitoring plant stresses such as drought, diseases, nutrient 

deficiencies, pests, and weeds. 

Crop monitoring for insects, nutrition, diseases, water stress, and 

overall plant health remains central to precision agriculture. 

Traditionally, such monitoring was conducted through ground-

based surveys or manned aerial observations. However, these 

methods are limited by high operational costs and restricted 

coverage. While light aircraft can provide high-resolution 

imagery at lower costs than satellite platforms, they remain 

relatively expensive per acre. Small UAVs, on the other hand, 

enable the acquisition of temporal and spatial data at centimeter-

level resolution and can repeatedly fly the same routes and 

altitudes, ensuring consistency in crop surveillance. Moreover, 

UAV-based image acquisition is less affected by cloud cover, 

making data collection more reliable. 

 

Challenges and Limitations 

Despite their promise, UAVs in agriculture face several 

challenges. Technical barriers include constraints on payload 

capacity, flight time, hardware durability, and integration of 

advanced sensors. Legal and regulatory issues—particularly 

concerning privacy and safety—pose additional hurdles, 

especially in countries like the United States. Furthermore, the 

large datasets generated by UAV imaging require sophisticated 

data processing and interpretation tools, which can be resource-

intensive for farmers. 

 

Objective of the Review 

In this context, the objective of this article is to provide a 

comprehensive overview of UAV applications in agriculture. 

The review emphasizes plant stress monitoring and precision 

agricultural practices while also summarizing the major 

technologies, applications, and challenges that must be 

addressed for widespread adoption. 

 

 
 

Fig 1: Applications of drones in agriculture, including crop health monitoring, weed control, evapotranspiration estimation, and spraying. 

 

Crop Health Monitoring 

Drones have emerged as an efficient tool for monitoring crop 

conditions throughout the growing season, enabling timely and 

need-based interventions. By using different types of sensors—

such as visible, near-infrared (NIR), and thermal infrared—

multispectral indices can be derived from reflectance patterns at 

varying wavelengths. These indices are valuable for assessing 

crop conditions related to water stress, nutrient deficiencies, 

insect-pest attacks, and diseases. Importantly, drone-mounted 

sensors can detect early signs of stress even before visible 

symptoms appear, thereby functioning as an early warning 

system that allows farmers to apply remedial measures in time. 

Unmanned Aerial Vehicles (UAVs) are capable of covering 

several hectares in a single flight while capturing high-resolution 

data. Equipped with thermal and multispectral cameras [14], 

drones can record vegetation canopy reflectance. These cameras, 

mounted on quadcopters, capture images at regular intervals and 

transmit data to the ground station through telemetry. The data 

are then processed using vegetation indices, the most common 

of which is the Normalized Difference Vegetation Index (NDVI) 
[15]: 

RNIR−RRED 

NDVI= 

RNIR+RRED 

 

NDVI = \frac{R_{NIR} - R_{RED}}{R_{NIR} + R_{RED}} 

 

RNIR+RRED 

NDVI=  

RNIR−RRED  

 

Where: 

 RNIRR_{NIR}RNIR = Reflectance in the near-infrared 

band 

 RREDR_{RED}RRED = Reflectance in the red band 

 

NDVI is a simple yet powerful metric for evaluating green 

vegetation health. Healthy crops with high chlorophyll content 

strongly reflect NIR radiation (around 750 nm) while absorbing 

red and blue wavelengths. NDVI values range from -1 to +1, 

with values near zero indicating little or no vegetation, and 
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values between +0.8 and +0.9 signifying dense, healthy green 

vegetation [12]. 

By interpreting NDVI maps, farmers can easily identify stressed 

areas within a field and precisely target interventions such as 

pesticide or nutrient application. This reduces the need for 

manual crop scouting, saving both time and labor. Moreover, 

drones can efficiently monitor horticultural crops, tall plants, 

and trees in regions that are otherwise difficult to access, such as 

mountainous or remote areas. By enabling rapid detection and 

timely action, this technology significantly reduces yield losses 

and enhances overall farm productivity. 

 

Water Stress Monitoring 

Characterizing water stress in crops is a complex task, as 

drought effects are influenced by multiple interacting factors [16]. 

Thermal imaging is commonly used for water stress assessment; 

however, it often relies on subtle temperature variations, making 

thresholds and regression models derived under one condition 

less applicable under others. For instance, even under identical 

environmental conditions, different crop genotypes may exhibit 

distinct canopy temperatures due to variations in stomatal 

conductance and transpiration rates [17, 18, 19]. 

Researchers have employed a variety of sensors and indices to 

identify and quantify water stress 

 

 Spectral Indices 
Multispectral or hyperspectral imagery is widely used to 

compute vegetation indices such as NDVI and GNDVI, which 

highlight crop properties related to water status [16, 20]. The 

Photochemical Reflectance Index (PRI), sensitive to carotenoid 

pigment changes, has also been used for detecting stress 

responses [17, 20, 21]. 

 

 Thermal Infrared Imaging 
Thermal infrared data provide canopy temperature 
measurements, either directly [16, 22] or indirectly through derived 
indices. The Crop Water Stress Index (CWSI), for example, 
normalizes the difference between canopy and air temperature 
(Tc - Ta) using vapor pressure deficit (VPD) [18, 19, 21]. Related 
parameters such as the Non-Water Stress Baseline (NWSB) 
have also been applied to evaluate crop stress levels [23]. 
 

 Hybrid and Alternative Approaches 
RGB imagery, though less commonly used, has been integrated 
with multispectral or thermal data to derive hybrid indices such 
as the Water Deficit Index (WDI) [24]. Additionally, chlorophyll 
fluorescence—calculated from narrow-band multispectral 
imagery—has been explored sporadically for water stress 
detection. 
The underlying principle in most approaches is that water stress 
reduces stomatal conductance, leading to less transpirational 
cooling and consequently higher canopy temperatures [16, 24]. 
This physiological response can be effectively detected by 
UAV-mounted sensors, enabling precise and timely assessment 
of crop water status. 

 

Nutrient Status and Deficiency Monitoring 
Adequate levels of essential nutrients are critical for healthy 
plant growth and optimal yield. Nitrogen supports vigorous 
vegetative growth, phosphorus is essential for root and stem 
development, and potassium enhances disease resistance while 
improving crop quality. When soils are deficient in these 
nutrients, plants experience stress and reduced productivity. 
UAV-based imaging offers a promising approach for early 
detection of nutrient deficiencies. Multispectral and near-

infrared (NIR) imagery enable the calculation of vegetation 
indices (e.g., NDVI), which can identify nutrient-deficient zones 
before symptoms become visible to the naked eye. These 
management zones can then be targeted with site-specific 
interventions, minimizing yield losses and improving resource 
efficiency. 

Traditionally, nutrient status has been assessed through visual 

inspection using plant color guides, which lack quantitative 

precision [26], or through laboratory-based leaf analysis, which, 

while accurate, is time-consuming and resource-intensive [27]. 

Alternative approaches include chlorophyll meters such as the 

SPAD (Soil-Plant Analysis Development) meter for nitrogen 

estimation [28]. However, SPAD-based assessments are labor-

intensive and not always reliable across crops and conditions [29, 

30]. 

To overcome these limitations, UAVs equipped with advanced 

sensors have been increasingly explored. Among plant nutrients, 

nitrogen has been the most extensively studied due to its direct 

relationship with biomass accumulation and yield. Other 

nutrients such as potassium and sodium have also been 

investigated [32]. Multispectral imaging remains the predominant 

method for extracting meaningful indices [33, 34], though RGB [35] 

and hyperspectral imaging [33] are also widely applied. 

Recent studies have also focused on data fusion approaches, 

combining multispectral, RGB, and thermal imaging for more 

accurate nutrient monitoring [35]. Vegetation indices (VI) are 

typically extracted from images and correlated with nutrient 

content using regression models, most often linear. Less 

common approaches involve using average reflectance spectra 
[32], specific spectral bands [34], color features [36], or principal 

component analysis (PCA) [37]. Hyperspectral imagery is 

generally preferred for these advanced analyses, while RGB 

imagery is used for color-based assessments. 

 

Disease Monitoring 

Crop diseases—classified broadly as fungal, bacterial, or viral—

can cause severe yield losses if not detected and managed in 

time. Early detection is therefore critical for implementing 

effective control strategies. UAVs equipped with infrared 

cameras can capture detailed images of plant canopies, revealing 

internal physiological changes that may not be visible to the 

naked eye [38]. By detecting infections in their initial stages, 

farmers can apply preventive measures such as targeted 

treatment or removal of infected plants before the disease 

spreads to neighboring crops. 

Image-based tools play an increasingly important role in plant 

disease detection, particularly in situations where human visual 

assessments are unreliable, inconsistent, or infeasible across 

large areas [39]. UAVs provide extended coverage, enabling rapid 

surveillance of vast fields and facilitating the identification of 

disease hotspots. 

Different imaging technologies have been employed for disease 

monitoring: 

 RGB imagery is widely used due to its simplicity, 

affordability, and ease of interpretation [39, 40]. 

 Multispectral imagery provides additional insights by 

capturing reflectance data across bands sensitive to plant 

stress [41, 42]. 

 Hyperspectral imagery offers fine spectral resolution, 

enabling the detection of subtle physiological changes 

linked to specific pathogens [43, 44]. 

 Thermal imagery is particularly useful for identifying 

secondary stress factors, such as water stress, which can be 

associated with disease progression [43, 44]. 

https://www.agronomyjournals.com/
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Weed Control 

Weeds are undesirable plants that compete with crops for 

essential resources such as water, nutrients, light, and space, 

often leading to significant yield losses. In India, yield 

reductions due to weeds have been reported as: Rice (10-100%), 

Wheat (10-60%), Maize (30-40%), Sugarcane (25-50%), 

Vegetables (30-40%), Jute (30-70%), and Potato (20-30%) [45]. 

Traditionally, weed management has relied heavily on herbicide 

applications or manual uprooting after crop emergence. In 

conventional practice, uniform amounts of herbicides are 

sprayed across entire fields, regardless of weed distribution. This 

indiscriminate application not only increases production costs 

but also contributes to the development of herbicide-resistant 

weed populations and adversely impacts crop health and yield. 

Moreover, excessive herbicide use poses serious environmental 

threats, including soil and water pollution. 

Recent advances in UAV technology offer site-specific weed 

management solutions. By generating high-resolution weed 

cover maps, drones enable precise herbicide applications only in 

infested areas, thus reducing chemical usage and minimizing 

environmental hazards. Different sensing technologies have 

been successfully employed for weed detection: 

 Hyperspectral imagery has been used to distinguish spectral 

signatures of weeds with varying resistance to herbicides 

such as glyphosate 46]. 

 RGB sensors have proven effective for classifying different 

weed species [47]. 

 Drone-based hyperspectral sensors can monitor weeds by 

analyzing canopy chlorophyll content and leaf density [48 

 

Agro-drones further enhance weed control by enabling efficient 

pre-emergence and post-emergence herbicide spraying. They are 

capable of operating under diverse field conditions, including 

muddy soils, weed infestations, insect presence, as well as in 

sunny or drizzling weather. Compared to conventional methods, 

UAV-based spraying optimizes herbicide usage, improves 

efficiency, and reduces labor dependency. Additionally, drones 

are lightweight, portable, easy to maintain, and operated 

remotely—making them safer for farm workers’ health. 

 

Spraying 

Indian agriculture requires both production and protection inputs 

to achieve high productivity. Fertilizers and pesticides are 

frequently used to promote crop growth and protect against 

insect-pests. Drones offer a modern solution for spraying 

chemicals such as fertilizers, pesticides, and micronutrients, 

enabling site-specific application based on crop health and field 

variability. The spraying rate can be adjusted according to crop 

conditions or the severity of pest and disease attack, thereby 

improving efficiency and sustainability. 

Integration of UAVs with spraying systems provides an 

advanced platform for pest management and vector control, 

especially in large crop fields. For extensive spraying, heavy-lift 

UAVs are required [52, 53], whereas quadcopters (QCs) offer a 

low-cost and lightweight option suitable for both indoor and 

outdoor crops [54]. These systems can operate autonomously, and 

communication with android devices via Bluetooth enables real-

time control. PWM controllers improve spraying uniformity and 

efficiency in pesticide applications [55, 56]. 

Innovative designs include a blimp-integrated quadcopter aerial 

automated pesticide sprayer (AAPS) for GPS-based spraying at 

low altitudes [57] and the cost-effective UAV system “Freyr,” 

controlled via mobile applications [58]. Field and laboratory 

studies have evaluated UAV-mounted sprayers in terms of 

discharge rate, pressure, spray uniformity, droplet size, and 

deposition efficiency [59]. To minimize wastage, electrostatic 

spraying technology has been combined with UAV platforms, 

significantly enhancing droplet adhesion on plant surfaces [60]. 

The human health risks from conventional spraying methods are 

severe—WHO estimates over one million pesticide poisoning 

cases annually, with more than 100,000 deaths, particularly in 

developing countries [61]. UAV-based spraying reduces direct 

human exposure, preventing pesticide poisoning and associated 

neurological disorders. Compared to tractors or manual methods, 

UAVs can spray chemicals faster, with greater precision and less 

environmental impact [62, 63]. 

Recent studies have investigated the performance of UAV 

spraying systems under different heights, droplet concentrations, 

and wind conditions for controlling diseases such as powdery 

mildew in wheat [64]. UAV spraying enhances chemical 

efficiency while reducing soil and water pollution, thus 

contributing to sustainable agriculture. 

Fertilizers—including macronutrients (N, P, K) and 

micronutrients (S, Mg, Zn)—are conventionally applied using 

ground-based equipment (tractors, pressurized irrigation) [65] or 

manned aircraft [66]. However, these methods often use uniform 

application rates, disregarding field variability. UAVs equipped 

with multispectral, thermal, and hyperspectral sensors can 

estimate crop nutrient status across entire fields, providing 

valuable insights for variable-rate fertilizer recommendations [67-

71]. Moreover, UAV-mounted systems with accelerometer and 

gyroscope sensors have demonstrated the ability to improve 

spraying accuracy, reduce time, save labor, and lower input 

costs—offering a promising step toward precision, safe, and 

sustainable crop management. 

 
Table 1: Applications of UAV-based sensors and models in agriculture for monitoring water stress, nutrient disorders, diseases, weeds, 

evapotranspiration, and precision spraying. 
 

Application Sensor/Model Used Reference(s) 

Water Stress Monitoring Multispectral/Hyperspectral sensors - NDVI, GNDVI, PRI [16, 20, 17, 20, 21] 

 

Thermal infrared sensor - Canopy temperature, Tc-Ta [27, 28, 29, 30, 33] 

RGB sensor - Water Deficit Index (WDI) [24] 

Nutrient Disorders RGB, Multispectral, and Hyperspectral sensors [33, 34, 35] 

Diseases Monitoring 

RGB sensor [39, 40] 

Multispectral sensor [41, 42] 

Hyperspectral and Thermal sensors [43, 44] 

Weeding 
Hyperspectral sensor [46, 48] 

RGB sensor [47] 

Evapotranspiration Multispectral and Thermal sensors [49, 50] 

Spraying 
GPS sensor [57] 

Accelerometer and Gyroscope sensors [72] 
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Conclusion 

Drones hold immense potential to transform Indian agriculture 

by enhancing precision, efficiency, and sustainability. With 

continued technological advancements, the production and 

adoption of drones are likely to become more economical and 

farmer-friendly. Their integration into agriculture may also 

attract modern youth towards farming by reducing drudgery and 

introducing innovative practices. 

Drones provide real-time, high-resolution imagery superior to 

satellite data, enabling applications such as weed and disease 

detection, soil property analysis, crop health monitoring, 

irrigation management, and the development of accurate 

elevation models. By leveraging these capabilities, farmers can 

optimize inputs, reduce chemical usage, and improve overall 

productivity. 

Farmers using drones have already reported tangible benefits, 

including efficient land use, early pest and disease management, 

improved soil and irrigation practices, and enhanced crop 

resilience. In the long run, drones are poised to become an 

integral component of farming systems, empowering farmers to 

manage resources more effectively while moving towards 

sustainable agriculture. 
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