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Abstract 
Soil depth (SoD) is a fundamental property controlling ecosystem services, agricultural productivity, and 

hydrological processes, yet its spatial prediction remains a challenge in data-scarce regions. This study 

demonstrates the effectiveness of a Quantile Regression Forest (QRF) model to predict the spatial 

distribution of SoD and, crucially, quantify its prediction uncertainty using a limited dataset in the black 

soil region (BSR) of Amravati, Maharashtra, India. Ninety-two soil profiles were integrated with a suite of 

environmental covariates derived from terrain, climate, and remote sensing data. Key predictors were 

identified through recursive feature elimination. The QRF model explained 86% of the variance (R² = 0.86) 

with a root mean square error of 19.99 cm (sqrt-transformed) and 12.4 cm (back-transformed). A Lin's 

concordance correlation coefficient (CCC) of 0.93 indicated excellent agreement between predicted and 

observed values. The resulting map revealed distinct patterns: deeper soils in depositional valleys and 

plains (>150 cm) and shallower soils on erosional plateau tops and hillslopes (<50 cm). Predictive 

uncertainty was lowest in well-sampled alluvial plains and highest in sparsely sampled steep landscapes. 

The QRF model successfully handled non-linear relationships and provided robust, interpretable 

predictions from sparse data. The high-resolution SoD map with quantified uncertainty is a vital tool for 

optimizing agricultural water use, preventing land degradation, and implementing targeted soil 

conservation practices in this rainfed agricultural system. 

 

Keywords: Digital soil mapping, prediction intervals, machine learning, SCORPAN, deccan trap, spatial 

variability, land use planning. 

 

1. Introduction  

Soil depth (SoD) is a master variable controlling a myriad of critical landscape functions. It 

fundamentally influences agricultural productivity by defining rootable space and water storage 

capacity, regulates hydrologic processes (Pelletier & Rasmussen, 2009) [18], and determines a 

landscape's susceptibility to erosion and degradation (Catani et al., 2010; Gu et al., 2018) [2, 5]. 

Furthermore, SoD is a key factor in carbon sequestration, vegetation growth (Meyer et al., 2007) 

[15], and overall land quality assessment (Yang et al., 2020) [26]. Defined as the sum of the 

thicknesses of surface and subsurface soil horizons down to bedrock or a paralithic contact (Liu 

et al., 2019) [10], accurate spatial prediction of SoD is therefore essential for informed land 

management and environmental modelling. 

Despite its importance, precise and accurate spatial data on SoD is scarce in this area. This 

scarcity stems from several factors: the high cost and labor-intensive nature of direct field 

measurement, particularly for deep soils (Tesfa et al., 2009) [23], the high spatial variability of 

SoD across landscapes (Vanwalleghem et al., 2010) [24], and a historical research focus primarily 

on surface horizons (epipedons) for agricultural purposes (Liu et al., 2013; Singh et al., 2020) [11, 

22]. 

To address this, digital soil mapping (DSM) approaches have been developed to predict SoD 

from correlated environmental covariates. Prior research has applied various modeling 

paradigms, including mechanistic landscape evolution models (Bonfatti et al., 2018; Liu et al., 

2019) [1, 10] and empirical methods ranging from geostatistics (ordinary kriging; Yan et al., 2021)  
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[25] to machine learning (ML) algorithms (Random Forest, 

Cubist; Zhang et al., 2021; Mulder et al., 2016) [27, 16]. While ML 

models like Random Forest excel at capturing non-linear 

relationships and complex interactions inherent in soil-forming 

factors, they possess a significant limitation for practical 

application: they typically quantify prediction uncertainty 

inadequately or circumstantially (Ma et al., 2014) [12]. This is a 

critical shortcoming, as ignorance of uncertainty can lead to 

misguided decisions. This issue is exacerbated in regions with 

sparse sample data, where uncertainty is inherently high and 

reliable estimation is most needed (Lagacherie et al., 2019) [8]. 

This challenge is acutely felt in India's agriculturally critical 

black soil regions (BSRs). These regions are characterized by 

complex topography and non-stationary soil-environment 

relationships, making them ideal candidates for ML approaches. 

However, detailed soil survey data is often limited and spatially 

sparse, rendering traditional models that require dense 

calibration datasets less effective (Cheng et al., 2019; Guo et al., 

2019) [4, 6] and highlighting the need for methods that can work 

with scarce data while providing robust uncertainty estimates. 

Therefore, this study aims to bridge this gap by applying 

Quantile Regression Forest (QRF), a machine learning algorithm 

specifically designed to provide conditional quantiles and thus 

robust prediction intervals to predict SoD in a data-scare BSR of 

India. Unlike standard Random Forest or other ML models, QRF 

retains the full distribution of values in decision trees, allowing 

it to directly quantify predictive uncertainty without 

distributional assumptions (Meinshausen, 2006) [14], making it 

ideally suited for this challenge. Specifically, our objectives are 

to: (i) Develop a QRF model for predicting the spatial 

distribution of SoD using a sparse set of soil profiles and 

environmental covariates. (ii) Identify the key environmental 

factors controlling SoD variation in the region. (iii) Generate a 

high-resolution map of SoD with quantified prediction intervals 

to support risk-aware land management decisions. 

 

2. Materials And methods 

2.1. Study area 

The study was conducted in the BSR of Amravati district of 

Maharashtra, India, covering approximately 59,758 ha (Fig. 1) 

and lies between 20○24’ to 21○33’N and 77○06’ to 78○18’E. The 

region is part of the Deccan Plateau, characterized by flat-topped 

hills (plateaus) and intervening valleys. The climate is semi-arid 

tropical with a mean annual rainfall of 975 mm and a mean 

annual temperature of 28°C. The geology is predominantly 

Deccan Trap basalt, with alluvial deposits in the valley of the 

Purna River. Rainfed agriculture is the dominant land use. The 

soils have an ustic moisture regime and an isohyperthermic 

temperature regime.  

 

 
 

Fig 1: Location of study area 

 

2.2. Legacy data 

A total of 92 soil profiles were used, comprising 72 newly dug 

profiles (1: 10,000) and 20 from legacy data (1: 250,000). 

Profiles were excavated up to 150 cm or until a lithic/paralithic 

contact was encountered. Depth was recorded as the point where 

the volume of coarse fragments >2 mm exceeded 75% or as 

expert-estimated based on local topography and parent material 

where contact was not reached. The spatial distribution of 

samples was uneven, with an average density of one sample per 

133 km², characterizing a sparse dataset. The raw SoD data were 

positively skewed. A square-root (sqrt) transformation was 

applied to achieve a near-normal distribution (Fig 2), which is 

conducive for ML modeling. 
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Fig 2: Histograms of frequency of original (A) and square root (sqrt)-transformed (B) SoDs obtained from field survey. 

 

2.3 Environmental covariates  

Based on the SCORPAN framework, 47 covariates representing 

Soil, Climate, Organisms, Relief, Parent material, Age, and 

Space were compiled (Table 1). Terrain attributes (30 m 

resolution) were derived from the SRTM DEM using SAGA 

GIS. Climate variables (Mean Annual Precipitation and 

Temperature) were sourced from WorldClim (1km resolution). 

Time-series Landsat 5 TM imagery was used to compute 

spectral indices (NDVI, EVI, SAVI, FV) for three seasons 

(kharif, rabi, zaid). Annual average Land Surface Temperature 

(LST) was derived from MODIS data (1km). All covariates 

were resampled to a 30 m grid using bilinear interpolation. 

 
Table 1: Environmental covariates used for digital soil mapping of SoD  

 

S. N Group Covariate  Abbr. Res. 

1 Climate  Mean annual precipitation (mm) MAP 1 km 

2 Terrain  

Elevation (m) Elv 30 m 

Slope (%) Slope 30 m 

Relative Slope Position RSP 30 m 

Channel Network Base Level CNBL 30 m 

Channel Network Distance CND 30 m 

Multi-Resolution Ridge Top Flatness Index  MRRTF 30 m 

Multi-Resolution Valley Bottom Flatness Index MRVBF 30 m 

Valley Depth VD 30 m 

Topographic Wetness Index TWI 30 m 

LS-Factor LSf 30 m 

3 

Vegetation  

(Kharif (k), Rabi (r), Zaid (z)) 

Land surface thermal conditions  LST 30 m 

 Normalized Difference Vegetation Index. NDVI 10 m 

 Near infrared  NIR 10 m 

 Enhanced Vegetation Index  EVI 10 m 

 Fractional vegetation  FV 10 m 

 

2.4. Variable Selection and Quantile Regression Forest 

Modelling 

To avoid overfitting and reduce multicollinearity, recursive 

feature elimination (RFE) was performed using the rfe function 

in the caret R package. Variables were ranked by their 

importance (%IncMSE) from a preliminary RF model, and the 

optimal subset that maximized model performance was selected. 

The QRF model was implemented using the ranger package in 

R. The model was tuned via out-of-bag (OOB) error estimation; 

the optimal parameters were mtry = 5, num.trees = 1000, and 

min.node.size = 5. Unlike standard RF, which estimates the 

conditional mean, QRF retains the entire distribution of values 

in the leaf nodes of each tree, allowing for the computation of 

any quantile of the conditional distribution. This study generated 

the 0.05, 0.5 (median), and 0.95 quantiles to represent the lower 

bound, median prediction, and upper bound of the 90% 

prediction interval, respectively. 

 

2.5 Evaluation of model performance 

Model performance was evaluated using a repeated (20 times) 

10-fold cross-validation. Performance metrics included 

coefficient of determination (R²), root mean square error 

(RMSE), mean error (ME), and Lin's concordance correlation 

coefficient (CCC). Good models have a root mean square error 

that is close to 0, R2 and CCC that is equal to or close to 1. 

 

Coefficient of determination (R2) = 1-   (i) 

 

Mean error (ME) =    (ii) 

 

Root mean squared error (RMSE) =  (iii) 

where, pi and oi are predicted and observed values,  and  

are means of these values. 

 

Lin's concordance correlation coefficient (CCC) = 

     (iv) 
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In this formula, ρ is the Pearson correlation coefficient between 

the observed and predicted values,  and are the means of 

the observed and predicted values, and  and are the 

corresponding variances. 

 

3. Results and Discussion 

3.1 Variable importance 

The most influential predictors of soil depth (SoD) were 

MRVBF, LST-z, NIR-r, NDVI-r, and FV-r (Fig. 3). Vegetation-

related indices (NIR-r, NDVI-r, FV-r) were important because 

deeper soils store more heat and water, supporting denser 

vegetation, while vegetation itself reduces erosion by trapping 

soil particles. NIR-r was particularly significant due to its 

sensitivity to both plant vigor and soil moisture. 

Among terrain covariates, MRVBF effectively captured 

depositional versus erosional settings, with shallow soils 

occurring in erosion-dominated positions and deeper soils in 

depositional zones. LST-z also contributed strongly, reflecting 

the thermal buffering capacity of deeper soils. In contrast, slope, 

DEM, and curvature were relatively weak predictors at the 

regional scale, consistent with earlier findings (Scarpone et al., 

2016; Penízek & Borůvka, 2006; Chen et al., 2019) [21, 19, 3]. 

However, previous small-scale studies (Patton et al., 2018) [17] 

suggest that curvature and slope become more important in 

hillslope-scale environments, indicating a scale-dependent 

effect. 

Seasonal variation in LST further highlighted that summer 

daytime LST best explained SoD differences, agreeing with Liu 

et al., (2020) [9], who reported strong predictive performance of 

seasonal LST in low-relief areas. Overall, the results 

demonstrate that SoD patterns are shaped more by geomorphic 

processes (erosion–deposition dynamics) than by pedogenic 

factors. Terrain indices and vegetation signals were more 

decisive than lithological or climatic variables, emphasizing the

dominant role of landscape processes in controlling soil depth 

distribution in the study region. 

 

 
 

Fig 3: Relative importance (% IncMSE) of environmental covariates. 

 

3.2 Model predictive performance 

The QRF model achieved strong predictive accuracy, explaining 

86% of the variance in soil depth (SoD) with a cross-validation 

R² of 0.86, RMSE of 19.99 cm (sqrt scale), and a high CCC of 

0.93, indicating close agreement between predicted and 

observed values. Compared with earlier studies, the performance 

was notably higher. Zhang et al. (2021) [27] reported an R² of 

0.61 for a black soil watershed in Northeast China, while Mulder 

et al. (2016) [16] achieved only 0.11 at the national scale. 

Piecewise models by Malone and Searle (2020) [13] in Australia 

yielded accuracies of 99% (rock outcrops), 85% (deep soils), 

and CCC = 0.77 for intermediate soils. These comparisons 

highlight that QRF provided robust and reliable predictions for 

SoD even under data-scarce conditions in India’s black soil 

region. 

 

 
 

Fig 4: Cross-validation performance of the QRF model 

 

3.3 Predicted Soil Depth Distribution 

The predicted soil depth (SoD) map for the study area is shown 

in Fig. 5. Soil is predicted to be deepest in the plain areas and 

shallowest in the high plateau. Because gravity, freeze–thaw, 

and water erosion are more powerful on the slopes and ridges of 

mountains than in valley bottoms, the soils on the plateau top are 

typically shallower. Near the ridge crests, soils are extremely 

thin or absent, exposing bare rock. 

In the pediment, the terrain becomes gentle and open, and the 

eroded material carried from the upper slopes is deposited in 

valleys and plains, leading to overall deeper soils than the 

pediment itself. The valley areas have deeper soils than the 

plains due to deposition of alluvial, colluvial, and aeolian 

materials. Lower plains tend to have deeper soils than the middle 

and upper plains, as soil materials are continuously transported 

and deposited by wind and water. 
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Two small windows in the northern and central parts of the 

research area (Fig. 5B and C) demonstrate that our predictions 

effectively captured local variations in SoD in addition to 

regional patterns. SoD changes linked to vertical zonality and 

microtopography are evident across both small-window maps. 

For instance, SoD increases from the plateau to the pediment in 

Fig. 5B, while Fig. 5C shows marked SoD variability among 

plateaus, pediments, valleys, and surrounding landforms. Such 

spatial patterns are consistent with findings from Zhang et al., 

(2021) [27] and Henderson et al., (2005) [7], who reported strong 

topographic control on soil depth in hilly terrains. 

 

 
 

Fig 5: The predicted SoD map  

 

3.4 Spatial Uncertainty of Soil Depth Prediction 

The spatial distribution of uncertainty associated with the SoD 

prediction is shown in Fig. 6. Areas of the pediment, plateau, 

and hillslope exhibit relatively high uncertainty, represented by 

dark blue shades. These regions were difficult to access, 

resulting in sparse or absent soil survey data. In contrast, valleys 

and alluvial plains, where field accessibility was easier and 

survey density was higher show lower uncertainty, represented 

by green and yellow shades. 

This pattern highlights the importance of observation density for 

predictive reliability, as also noted by Malone and Searle (2020) 

[13] and Poggio et al., (2021) [20]. By explicitly quantifying spatial 

uncertainty, the SoD map can be provided to end-users with 

clear confidence levels, ensuring its usefulness for decision-

making in land evaluation, agricultural planning, and 

environmental management. 

 

 
 

Fig 6: Map of predictive uncertainty for SoD 

 

4. Conclusion 

This study provides a robust framework for high-resolution soil 

depth mapping in data-scarce regions. The QRF model 

successfully handled sparse data and non-linear relationships to 

deliver accurate predictions with quantifiable uncertainty. The 

findings underscore the dominance of geomorphic processes in 

shaping SoD patterns in this landscape. The final map is a 

decision-support tool for enhancing agricultural water 

productivity and soil conservation. Future work will focus on 

integrating proximal sensing data to validate depth estimates and 

scaling this approach to the entire black soil belt of Central 

India. 

 

5. Acknowledgment  

I am deeply grateful to the faculty of the Soil Science Division, 

IGKV, Raipur, for their invaluable academic guidance. My 

sincere thanks to the faculty of the SRS Division and Director of 

ICAR-NBSS & LUP, for their expert mentorship and for 

providing an exceptional research environment. 

 

References  

1. Bonfatti BR, Hartemink AE, Giasson E, Iório JFS, Demattê 

JAM. Digital mapping of soil carbon in a degraded 

watershed of the Brazilian savanna. Geoderma. 

2018;324:48-59. 

2. Catani F, Segoni S, Falorni G. An empirical 

geomorphology-based approach to the spatial prediction of 

soil thickness at catchment scale. Water Resour Res. 

2010;46(5):W05508. 

3. Chen S, Arrouays D, Mulder VL, Poggio L, Minasny B. 

Digital mapping of soil carbon stocks with machine learning 

and environmental covariates in the northern Circumpolar 

Permafrost Region. Earth Sci Rev. 2021;223:103858. 

4. Cheng M, Wang Y, Zhang J, Liu Y, Li Y. Evaluation of 

different machine learning approaches for prediction of soil 

organic matter and soil moisture content in a forested 

watershed, China. Soil Sci Soc Am J. 2019;83(4):1107-

1118. 

5. Gu Z, Duan X, Shi Y, Li Y, Pan X. Spatiotemporal 

prediction of soil moisture content using multiple-linear 

regression and random forest in a small catchment of the 

Loess Plateau, China. Catena. 2018;171:583-594. 

https://www.agronomyjournals.com/


International Journal of Research in Agronomy  https://www.agronomyjournals.com  

~ 310 ~ 

6. Guo PT, Li MF, Luo W, Tang QF, Liu ZW, Lin ZM. Digital 

mapping of soil organic matter for rubber plantation at 

regional scale: An application of random forest plus 

residuals kriging approach. Geoderma. 2019;237:49-59. 

7. Henderson BL, Bui EN, Moran CJ, Simon DAP. Australia-

wide predictions of soil properties using decision trees. 

Geoderma. 2005;124(3-4):383-398. 

8. Lagacherie P, Arrouays D, Bourennane H, Gomez C, 

Martin MP, Saby NPA. How far can the uncertainty on a 

digital soil map be known? A numerical experiment using 

pseudo values of clay content obtained from Vis-NIR 

hyperspectral imagery. Geoderma. 2019;337:1320-1328. 

9. Liu F, Wu H, Zhao Y, Li D, Yang J, Song X. Mapping high 

resolution National Soil Information Grids of China. Sci 

Bull. 2020;67:1-12. 

10. Liu H, Zhang XL, Wu W, Tang Z. Prediction of soil depth 

in a large watershed using environmental covariates and 

machine learning. Soil Sci Soc Am J. 2019;83(5):1402-

1413. 

11. Liu X, Zhang G, Heathman GC, Wang Y, Huang C. Fractal 

features of soil particle size distribution as affected by plant 

communities in the forested region of Mountain Yujia, 

China. Geoderma. 2013;206:74-82. 

12. Ma Y, Minasny B, Malone BP, McBratney AB. Pedology 

and digital soil mapping (DSM). Eur J Soil Sci. 

2014;70(1):2-12. 

13. Malone BP, Searle R. Improvements to the Australian 

national soil thickness map using an integrated data mining 

approach. Geoderma. 2020;377:114579. 

14. Meinshausen N. Quantile regression forests. J Mach Learn 

Res. 2006;7:983-999. 

15. Meyer SE, García-Moya E, Lagunes-Espinoza LDC. Soil 

depth and fertility effects on biomass and nutrient allocation 

in jaragua grass. J Range Manag. 2007;60(4):388-395. 

16. Mulder VL, Lacoste M, Richer-de-Forges AC, Arrouays D. 

GlobalSoilMap France: A high-resolution spatial database 

of soil properties. Geoderma. 2016;279:1-12. 

17. Patton NR, Lohse KA, Godsey SE, Crosby BT. Predicting 

soil thickness on soil mantled hillslopes. Nat Commun. 

2018;9(1):3329. 

18. Pelletier JD, Rasmussen C. Geomorphically based 

predictive mapping of soil thickness in upland watersheds. 

Water Resour Res. 2009;45(9):W09417. 

19. Penízek V, Borůvka L. Soil depth prediction supported by 

primary terrain attributes: a comparison of methods. Plant 

Soil Environ. 2006;52(9):424-430. 

20. Poggio L, de Sousa LM, Batjes NH, Heuvelink GBM, 

Kempen B, Ribeiro E, et al. SoilGrids 2.0: producing soil 

information for the globe with quantified spatial 

uncertainty. Soil. 2021;7(1):217-240. 

21. Scarpone C, Schmidt MG, Bulmer CE, Knudby A. 

Modelling soil thickness in a forested watershed of southern 

British Columbia, Canada. Geoderma. 2016;282:59-69. 

22. Singh K, Mishra AK, Singh B, Singh RP, Patra DD. Tillage 

effects on crop yield and physicochemical properties of soil 

organic matter in a wheat–soybean double-cropping system. 

Soil Tillage Res. 2020;199:104596. 

23. Tesfa TK, Tarboton DG, Chandler DG, McNamara JP. 

Modeling soil depth from topographic and land cover 

attributes. Water Resour Res. 2009;45(10):W10438. 

24. Vanwalleghem T, Stockmann U, Minasny B, McBratney 

AB. A quantitative model for integrating landscape 

evolution and soil formation. J Geophys Res Earth Surf. 

2010;115(F4):F04013. 

25. Yan F, Shangguan W, Zhang J, Hu B. Estimation of soil 

organic carbon stock in China based on high-density soil 

sampling. Sci Total Environ. 2021;754:142150. 

26. Yang QJ, Zhang DP, Liu MB, Li R, Yang Y. Effects of soil 

depth on the spatial patterns of soil moisture and vegetation 

on a hillslope. J Hydrol. 2020;589:125135. 

27. Zhang S, Huang Y, Shen C, Ye H, Du Y. Prediction of soil 

organic carbon and its spatial distribution in a small 

watershed based on machine learning. Soil Sci Soc Am J. 

2021;85(4):1085-1098. 

 

https://www.agronomyjournals.com/

