
~ 191 ~ 

International Journal of Research in Agronomy 2025; SP-8(9): 191-199 

 
E-ISSN: 2618-0618 

P-ISSN: 2618-060X 

© Agronomy 

NAAS Rating (2025): 5.20 

www.agronomyjournals.com  

2025; SP-8(9): 191-199 

Received: 13-06-2025 

Accepted: 17-07-2025 
 

Dr. Sunita Kumari  

Associate Professor, Department of 

Agronomy, PGCA, RPCAU, Pusa, 

Samastipur, Bihar, India 

 

Dr. Vishal Gulab Vairagar 

SMS Agriculture Extension, KVK 

Mohol Solapur', Mahatma Phule 

krushi Vidyapeeth Rahuri, 

Maharashtra, India 

 

Dr Jayashree Pattar  

Scientist (Animal Science), ICAR -

KVK Dharwad, University of 

Agricultural Science, Dharwad, 

Karnataka, India 

 

Bhaswati Saikia 

M.Sc (Ag.) Entomology, College of 

Agriculture, Assam Agricultural 

University, Jorhat, India 

 

Dr. Aishwarya Mangaraj 

Assistant Professor- Agronomy, 

College of Agriculture, Chiplima, 

OUAT, Bhubaneswar, Odisha, India 

 

Swadhin Kumar Swain 

M.Sc. (Ag.) Nematology, College of 

Agriculture, OUAT, Bhubaneswar 

Odisha, India 

 

Ravita 

Ph.D Research Scholar, Department 

of Climate Change and Agricultural 

Meteorology, Punjab Agricultural 

University, Ludhiana, Punjab, India 

 

Sourav Mandal 

M.Sc. Research Scholar, Department 

of Agronomy, Odisha University of 

Agriculture and Technology, 

Bhubaneswar, Odisha, India 

 

Sachin Shrikant Chinchorkar 

Assistant Professor of Physics, 

Polytechnic in Agricultural 

Engineering, AAU Dahod, Gujarat, 

India 

 

Corresponding Author: 

Dr. Vishal Gulab Vairagar 

SMS Agriculture Extension, KVK 

Mohol Solapur', Mahatma Phule 

krushi Vidyapeeth Rahuri, 

Maharashtra, India 

 

Precision agrometeorology: Integrating AI and IoT for 

real-time agro-advisories 

 
Sunita Kumari, Vishal Gulab Vairagar, Jayashree Pattar, Bhaswati Saikia, 

Aishwarya Mangaraj, Swadhin Kumar Swain, Ravita, Sourav Mandal and 

Sachin Shrikant Chinchorkar  
 

DOI: https://www.doi.org/10.33545/2618060X.2025.v8.i9Sc.3783  

 
Abstract 
Precision agrometeorology leverages high-resolution weather and climate data through IoT sensor 

networks and advanced AI analytics to provide timely, site-specific farming advice. By combining in-situ 

microclimate sensors, remote sensing and cloud/edge computing, farmers can monitor soil moisture, 

temperature, humidity and crop health in real time. Machine learning and deep learning models analyze 

these data streams to forecast irrigation needs, pest and disease risk and yield outcomes. The AI-enhanced 

system enables adaptive management e.g., optimizing water and fertilizer use and issuing frost or storm 

alerts thus enhancing resource efficiency, productivity and climate resilience. Challenges include network 

connectivity in rural areas, data quality and interoperability, but emerging solutions (edge computing, 

federated learning, blockchain) are addressing them. This review outlines key IoT sensor technologies and 

AI methods (Table 1, Table 2), describes architectures for data flow from field to advisory (Figure 1) and 

discusses applications (Table 3, Table 4) and future directions for global precision agrometeorology.  

 

Keywords: Precision agrometeorology, Internet of Things (IoT), Artificial Intelligence (AI), real-time 

advisories, Smart farming, machine learning, sensor networks 

 

Introduction  

Modern agriculture faces the dual pressures of rising global demand and increasing climatic 

variability [27]. Traditional farming methods, relying on calendar-based schedules and manual 

observation, often lead to inefficient resource use and vulnerability to weather extremes. In this 

context, precision agrometeorology the integration of precise weather/climate monitoring with 

site-specific farming offers a solution by tailoring management to local conditions [42]. Precision 

agriculture has evolved into “Agriculture 4.0, ” characterized by networks of IoT sensors (soil 

probes, weather stations, UAVs) and data-driven decision systems. This paradigm shift enables 

real-time agro-advisories, where actionable guidance (e.g. irrigation schedules, pest alerts, frost 

warnings) is generated by analyzing live data with AI models [62]. 

IoT networks in fields collect fine-scale data on temperature, humidity, soil moisture, solar 

radiation and crop status, often segmenting large farms into management zones based on 

microclimate differences [63]. These high-resolution data supplement traditional meteorological 

observations and remote sensing (e.g. satellite or aerial imagery) to capture local variability [80]. 

Artificial intelligence (AI) methods including machine learning and deep learning process this 

data to forecast future conditions, detect anomalies and prescribe interventions. For example, 

convolution neural networks (CNNs) can identify disease symptoms from leaf images, while 

time-series models forecast soil moisture or temperature patterns [26]. The integration of IoT and 

AI thus transforms raw sensor readings into predictive analytics, enabling farmers to apply 

water, fertilizers and pesticides with unprecedented precision [43]. 

Integrating Artificial Intelligence (AI) and the Internet of Things (IoT) in agriculture represents 

a paradigm shift toward data-driven, precision farming practices [81]. By marrying ubiquitous 

sensor networks with advanced analytics, AIoT platforms enable real time monitoring and 

autonomous decision making in crop management [64]. This convergence enhances resource use  
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efficiency, reduces environmental impact and bolsters yields, 

addressing both food security and sustainability challenges 

facing modern agriculture [82].  

The Internet of Things (IoT) refers to interconnected devices 

sensors, actuators, cameras that continuously collect and 

transmit data over networks to centralized or cloud based 

platforms for storage and basic preprocessing. Artificial 

Intelligence (AI), in this context, encompasses machine learning 

(ML) and deep learning algorithms that analyze these vast data 

streams to detect patterns, predict outcomes and generate 

prescriptive advisories [83]. When integrated, AI and IoT (often 

termed “AIoT”) create a closed loop system whereby sensor 

inputs drive AI models, which in turn issue control signals or 

recommendations to farming equipment and management 

platforms [65]. This synergy forms the backbone of precision 

agriculture, enabling site specific management of irrigation, 

fertilization, pest control and harvest timing. In the United 

States, the NSF funded IoT4Ag research center exemplifies real 

world AIoT adoption [28]. Researchers have developed 

biodegradable leaf and soil sensors that continuously monitor 

nutrient levels, moisture content and microclimatic conditions 
[44]. These low cost devices relay data via ground based robots 

and drones into cloud dashboards, where ML models identify 

nutrient deficiencies or disease onset up to two weeks before 

visible symptoms. Early adopters report up to a 15% increase in 

yield and a 20% reduction in water use, underscoring the 

economic and environmental benefits of AIoT deployments [1]. 

Another compelling example is the integration of AI IoT 

platforms for hyper local weather forecasting [23]. Scientist 

proposed a layered AIoT framework comprising data 

acquisition, storage, processing, application and decision making 

tiers. Field deployed weather stations equipped with 

temperature, humidity and barometric sensors feed high 

resolution data into neural network based forecasting models. 

Farmers receive optimized irrigation and planting advisories via 

mobile apps, which have been shown to reduce crop losses from 

unexpected weather events by up to 30% in pilot deployments 

across India’s semi arid regions [24]. Beyond traditional IoT, the 

concept of the Internet of Everything (IoE) extends connectivity 

to molecular and bio nano scale devices. They articulate how 

IoE sub domains such as the Internet of Nano Things (IoNT) and 

the Internet of Fungus (IoF) can monitor plant biochemical 

signals and soil microbiome dynamics. When coupled with AI 

driven pattern recognition, these systems promise unprecedented 

precision in nutrient delivery and disease detection at the cellular 

level, potentially transforming greenhouse and vertical farming 

operations [25]. The fusion of AI and IoT yields multiple 

agronomic advantages. Sensor based soil moisture probes, pH 

meters and spectral cameras generate continuous datasets that AI 

algorithms translate into actionable insights optimizing irrigation 

schedules, nutrient management and pest control interventions. 

Studies demonstrate yield improvements of 1020% and input 

cost reductions of up to 25% in AIoT equipped fields compared 

to conventional management. Despite demonstrated benefits, 

widespread AIoT adoption faces hurdles [29]. Connectivity gaps 

in rural areas limit real time data transmission, while high 

upfront costs deter smallholders. Moreover, data privacy, cyber 

security and digital skill deficits among farming communities 

present significant barriers. Addressing these challenges requires 

public private partnerships, affordable network infrastructure 

(e.g., LoRaWAN, 5G) and farmer training programs. 

Standardization efforts such as open source IoT platforms and 

interoperable data schemas will be critical to scale AIoT

solutions globally. Integrating AI and IoT in agriculture is no 

longer a futuristic vision but a present day reality reshaping farm 

management [45]. Through case studies like IoT4Ag’s 

biodegradable sensors and AI powered weather forecasting, we 

see tangible gains in yield, resource efficiency and risk 

mitigation [93]. As IoE and AI model sophistication advance, 

economies of scale and supportive policy frameworks will be 

essential to ensure these transformative technologies benefit 

small and large farms alike, driving a more resilient and 

sustainable global food system. Figure 1 illustrates a conceptual 

architecture of a precision agrometeorology system [84]. In 

practice, multiple sensing technologies feed data into gateways 

and networks (LoRaWAN, cellular, satellite), which relay 

information to cloud or edge computing platforms [2]. AI 

analytics produce insights and generate advisories, delivered via 

mobile apps, SMS or dashboards. This closed-loop system 

continuously monitors environmental factors and updates 

recommendations in near real time [66]. The subsequent sections 

discuss the components of such systems in detail (IoT hardware, 

AI models, data flow) and review recent scientific advances 

supporting real-time agricultural advisories. All claims are 

grounded in recent literature on smart farming technologies [30]. 

 

Precision Agrometeorology: Scope and Data Sources 

Agrometeorology traditionally studies the interactions between 

weather, climate and agriculture. Precision agrometeorology 

extends this by using fine-grained measurements and analytics 

to tailor advice to specific fields or even zones within fields [22].  

 

Data sources include 

(a) Ground-based weather stations and automated micro-

weather sensors (recording rainfall, temperature, humidity, 

wind, solar radiation),  

(b) Soil sensors (soil moisture, temperature, nutrient content),  

(c) Crop-monitoring platforms (drones, UAVs, tractor-mounted 

cameras capturing plant health and growth), and  

(d) External forecasts/models (numerical weather predictions, 

satellite remote sensing of vegetation indices). These 

multimodal data capture the “state” of the farm ecosystem 
[31]. 

 

Satellite and UAV imagery provide periodic overviews (NDVI, 

LAI maps), while IoT devices provide continuous local data. For 

example, an agro meteorological IoT station may include 

temperature/humidity probes, a tipping-bucket rain gauge and 

soil moisture sensors, all connected wirelessly [85, 92]. Networks 

of these stations often one per management zone can reveal 

microclimates across a farm. In Brazil, for instance, researchers 

deployed a sensor network to monitor climate factors by 

management zone, noting that “climate factors directly influence 

yield at each stage” [67]. By capturing microclimates, such 

precision monitoring informs zone-specific fertilization or 

irrigation, maximizing yield potentials [3]. 

Table 1 summarizes common sensor types and their roles in 

agrometeorology. Temperature, humidity, wind and solar 

sensors typically use weather station setups, soil probes measure 

volumetric water content and nutrients, plant health is accessed 

via optical or multispectral cameras. Together, they enable 

continuous environmental monitoring. The IoT connectivity 

layer (e.g. LoRaWAN, NB-IoT, satellite) ensures that data flows 

reliably even in remote areas (though connectivity remains a 

challenge in many rural regions) [21, 32]. 
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Fig 1: Integrating IoT sensors and smart data analytics in precision farming. IoT devices (bottom) measure environmental variables and crop status, 

while AI/analytics (center) generate advisories (top). Sensors depicted include soil moisture probes, weather station, drones, cameras. 

 
Table 1: IoT sensors and data parameters for precision agrometeorology [90, 91]. 

 

Sensor/Device Measured Data Purpose Example Network 

Ambient weather 

station 

Air temperature, humidity, rainfall, wind speed, 

solar radiation 
General climate monitoring, frost/flood warnings GPRS/LoRaWAN 

Soil moisture probe Volumetric water content Optimize irrigation scheduling, drought alerts LoRaWAN, 5G 

Soil nutrient sensor Soil N-P-K levels, pH Fertilizer management, nutrient deficiency alerts NB-IoT 

Plant health 

camera/UAV 
Multispectral images (NDVI, RGB) 

Crop growth, biomass/yield estimation, disease/pest 

detection 
Wi-Fi/5G/LPWAN 

Humidity/leaf wetness Leaf wetness index Disease outbreak prediction (e.g., fungal risk) ZigBee, LoRa 

On-board machinery 

GPS 
Tractor position, variable-rate seeding/appl. logs Mapping management zones, yield mapping 

ISOBUS, 

Bluetooth 

Satellite sensors Meteorological forecasts, vegetation indices Macro-weather forecasts, stress indices Satellite link 

 

IoT Networks and Data Infrastructure 

The IoT infrastructure forms the backbone of precision 

agrometeorology. Field sensors must reliably transmit data, 

often over unlicensed or cellular networks [20, 89]. Technologies 

like LoRaWAN, NB-IoT or low-cost GSM modules are 

common for rural connectivity [4]. Data are typically aggregated 

at on-field gateways or edge devices which may perform initial 

pre-processing [46]. As summarized in Table 1, sensing layers 

feed data into multi-tier architectures. Architecturally, data can 

be processed at various layers (edge, fog, cloud). Edge 

computing (e.g. a local Raspberry Pi or smart gateway) allows 

immediate analytics and compression near the source, mitigating 

latency and bandwidth issues. For example, an edge device 

could run a lightweight AI model to detect soil moisture 

anomalies and trigger local irrigation control [47]. More 

sophisticated processing (deep neural network training, multi-

sensor fusion) typically occurs in the cloud, where scalable 

resources and data stores reside [68]. Cloud platforms facilitate 

integration of heterogeneous data (e.g. public weather forecasts, 

satellite imagery, field sensor logs) and support machine 

learning pipelines [33, 88]. 

Table 2 compares key architectural choices. Cloud-centric 

systems offer high computational power and easy scalability, at 

the cost of dependency on network uplink and data privacy 

concerns. Edge-focused designs reduce bandwidth and allow 

local autonomy (critical during connectivity outages), but may 

be limited by device resources [48]. A hybrid approach is 

emerging: initial processing at the edge, with aggregated 

features sent to cloud AI models for deep analysis. In any case, 

data security and interoperability are essential considerations, 

blockchain and standardized schemas are being explored to 

ensure trust and seamless data exchange across vendors and 

platforms [69]. 

 

AI and Analytical Methods 

Artificial intelligence lies at the core of generating actionable 
advisories from raw IoT data. Recent reviews highlight the 
growing use of machine learning (ML) and deep learning (DL) 
in agrometeorology [19]. ML models ingest historical and real-
time data to learn patterns and predict outcomes. For instance, 
supervised methods such as Random Forests, Support Vector 
Machines (SVMs) and Convolution Neural Networks (CNNs) 
are widely applied to tasks like yield estimation, irrigation 
scheduling and disease detection. Unsupervised techniques 
(clustering, anomaly detection) identify unusual sensor readings 
that may indicate equipment failure or emerging threats [70]. 
 
Weather and Yield Forecasting 

Agro meteorology critically involves predicting weather impacts 
on crops. Numerical Weather Prediction (NWP) models provide 
regional forecasts, but AI models can downscale and bias-
correct these forecasts for local conditions [71]. Transformer 
networks and auto encoders have been used to enhance spatial 
resolution of temperature, precipitation and humidity forecasts 
for farms [49]. AI-driven ensembles combine satellite data, local 
station readings and crop growth models. For example, one 
study used CNNs with regional climate data to forecast sub-
national crop yields weeks ahead, achieving error reductions of 
~5% compared to no-AI forecasts. AI-based weather forecasting 
thus enables adaptive decisions: farmers can adjust irrigation or 
apply frost protection if a cold snap is predicted [34]. 
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Irrigation and Water Management 

Soil moisture prediction and irrigation scheduling are among the 

most mature AI applications. Models trained on historical 

rainfall and sensor data can predict soil moisture several days 

ahead [18]. Real-time moisture sensors, combined with irrigation 

control, form closed-loop smart irrigation. For example, AI-

augmented drip irrigation systems use sensor networks to detect 

which zones are dry, then automatically activate valves only 

where needed [72]. Table 2 lists common AI methods by 

application. Deep neural nets and LSTM recurrent networks are 

especially useful for multi-step time series predictions (soil 

moisture, evapotranspiration). Rule-based and fuzzy logic 

systems also exist for straightforward advisory logic (e.g., if soil 

moisture < threshold then irrigate) [5]. 

 

Pest and Disease Alerts 

Integrated pest management benefits from AI-powered early 

warning. Historical models relate pest lifecycles to weather 

patterns, but now image-based detection is possible [73]. Farmers 

can use IoT cameras or drone imagery analyzed by CNNs to 

spot pest outbreaks or leaf diseases (downy mildew, blight) as 

soon as symptoms appear. When combined with weather data 

(humidity and temperature conditions), predictive models can 

issue warnings days before pests reach damaging levels [50]. The 

system might alert: “Risk of late blight is high in 48 hours under 

predicted dew formation, apply fungicide.” This anticipatory 

advisory relies on both sensor data and learned relationships in 

the AI models. 

 

Fertilization and Nutrient Management 

AI can optimize fertilization by interpreting soil and plant data. 

Spectral imaging reveals nutrient stress (e.g., low nitrogen 

causing yellowing), which AI algorithms translate into variable-

rate fertilizer maps [74]. Coupled with IoT soil nutrient sensors, 

systems can dynamically adjust fertilizer application [51]. For 

instance, if a local sensor reports declining nitrogen, the 

advisory system may schedule an additional fertilization in that 

zone. Such precision fertilization reduces waste and runoff [35]. 

 

Decision Support Systems (DSS) 

The end product of AI analytics is a farmer-facing advisory. 

Modern DSS platforms compile model outputs into user-friendly 

recommendations. Cloud-based dashboards and smart phone 

apps present key metrics (soil moisture, expected rainfall) and 

prescribe actions (Figure 1) [17]. Studies emphasize that these 

platforms must be intuitive and adaptive to farmer inputs. Some 

systems allow farmers to input goals or constraints (e.g. “water 

budget”, “organic-only treatments”) and then use AI to generate 

a plan. Research shows IoT-DSS platforms providing real-time 

alerts via SMS or mobile app significantly improve on-time 

interventions (e.g., irrigation right when needed) [6, 86]. 

 
Table 2: AI/ML methods and their applications in precision agrometeorology. 

 

Application Area AI/ML Model(s) Input Data Output/Purpose 

Weather forecasting LSTM, Transformer, CNN NWP data + local sensors Local weather predictions 

Soil moisture prediction LSTM, SVM, ensemble trees Past moisture, rainfall Irrigation scheduling 

Crop yield estimation CNN, RF, regression Time series & imagery Yield forecasting (weeks ahead) 

Pest/disease detection CNN, Vision Transformer Field images, weather Early pest/disease alerts 

Nutrient management KNN, Decision Trees, ANN Soil NPK sensors, imagery Variable-rate fertilization plans 

Anomaly detection Clustering, Autoencoder Sensor network streams Fault detection (sensor/crop health) 

Farm-level DSS Rule-based, fuzzy logic, AIoT Synthesized data Actionable advisories (alerts) 

 

System Architecture and Data Flow 

A typical real-time advisory system involves multiple integrated 

layers (Figure 1). Data flow (Figure 2) starts at the field sensors 

(data layer), moves through communication gateways, into 

cloud/edge servers (processing layer) and ends with user 

interfaces (application layer). Figure 1 depicted an abstract flow, 

we now detail each component [52]. 

At the sensing layer, myriad IoT devices continuously sample 

environmental variables (see Table 1). Sensor data are tagged 

with timestamps and GPS locations. Data may first be collected 

by on-site controllers (e.g. Arduino or industrial PLC) which 

apply initial filtering (noise removal, outlier rejection) [75, 85]. 

The communication layer ensures reliable transmission. 

Common protocols include LoRaWAN for low-power wide-area 

networking, NB-IoT or LTE for broader coverage and even 

satellite for very remote areas. Farmers may use local gateways 

(solar-powered if off-grid) that connect via GSM to data centers. 

In well-connected areas, Wi-Fi or 5G can support high-

bandwidth streams (e.g. drone imagery) [36]. 

The processing layer consists of edge and cloud computing. On 

the edge (field gateway or farm computer), lightweight analytics 

(e.g. simple threshold checks, basic ML inferencing) enable 

immediate actions (like shutting off an irrigation valve) [16]. 

Edge computing also helps in data compression and encryption 

before sending to the cloud. The cloud platform aggregates data 

from many sources (sensors, satellites, external weather 

services) into big data lakes. There, advanced AI pipelines run: 

cleaning, model training, forecasting and DSS logic. 

Containerized AI models and services (e.g., TensorFlow or 

PyTorch deployments) process data in near real-time [54]. 

Importantly, the system closes the loop. Feedback and actuation 

may occur: e.g. cloud-issued irrigation commands sent back to 

field actuators (valves, pivot systems) in an automated 

controlled loop [76]. Alternatively, advisories are sent to farmers 

or agronomists through mobile apps or SMS. The APIs of 

advisory apps translate complex recommendations into clear 

messages (e.g. “Apply 30 mm irrigation in Zone A before 

midnight”) [7, 53]. 

 

 
 

Fig 2: IoT-enabled agricultural machinery and sensors. Modern farm 

equipment (tractors, implements) are connected via networks like 

ISOBUS, Bluetooth and GSM to exchange data 
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Table 3: Comparison of IoT computing architectures for agro meteorology [83, 84]. 
 

Architecture Type Description Advantages Limitations Use Case Example 

Cloud-centric 
Sensors → Cloud via gateway, all 

processing in cloud 

Unlimited compute, easy 

updates, multi-farm analytics 

Needs strong connectivity, 

latency may be high 

Regional yield forecasting, 

long-term climate analysis 

Edge-centric 

Local processing 

(gateways/controllers), selective cloud 

sync 

Low latency, works offline, 

data privacy 

Limited compute/storage, 

update complexity 

Immediate irrigation control, 

on-board vehicle control 

Hybrid (Fog) 
Edge pre-processing + cloud for heavy 

tasks 

Balance of latency and 

power, resilient operations 

More complex design and 

maintenance 

Real-time pest detection 

(edge) + seasonal 

forecasting (cloud) 

Distributed 

(Blockchain-federated) 

Peer-to-peer data sharing, local AI 

models 

Data ownership control, 

secure sharing 

Emerging tech, integration 

overhead 

Cross-farm data sharing, 

community advisories 

 

Real-Time Agro-Advisories and Decision Support 

The ultimate goal of precision agrometeorology is actionable 

advice for farmers and stakeholders [15]. Real-time advisories 

span a range of decision contexts, as illustrated in Table 4. These 

are typically delivered via mobile applications, text messages or 

embedded tractor dashboards. For example, a system might push 

a “Frost Alert” when overnight temperatures are predicted to 

drop below crop tolerance or an “Irrigation Notice” when soil 

moisture falls under a threshold [37]. 

 

Key advisory domains include 

• Irrigation management: Combining weather forecasts and 

soil moisture, the system advises when and how much to 

irrigate. This prevents both drought stress and water 

logging. For instance, if no rain is expected and soil 

moisture is low, an alert may suggest a specific volume of 

water for each field zone [55]. 

• Nutrient management: Based on soil nutrient sensors and 

growth stage models, advisories suggest fertilizer timing 

and rates. For example, if a crop is entering rapid vegetative 

growth and soil nitrogen is low, the alert might recommend 

top-dressing nitrogen [77]. 

• Pest/disease risk: When conditions favour pest outbreaks 

(e.g. warm, humid weather for fungal diseases), the system 

sends pest or disease risk alerts. These alerts often include 

recommended interventions (e.g. particular biocontrol 

agents or pesticides) [78, 82]. 

• Harvest and planting scheduling: Phenology models and 

yield forecasts help time planting or harvesting. An 

advisory might warn of an upcoming high-heat event that 

could damage flowering crops, prompting an earlier harvest. 

Or it might estimate optimal sowing dates based on future 

rainfall predictions [8]. 

• General weather warnings: Alerts for extreme events 

(storms, heavy rain, frost) help farmers take protective 

actions (reinforce structures, deploy frost fans or schedule 

irrigation to prevent soil compaction) [56]. 

 

These advisories are supported by the decision support systems 

(DSS) that weigh economic and risk factors. For instance, an 

advisory system may compute the cost-benefit of applying a 

fungicide given the predicted disease pressure and market prices. 

Such ROI analysis is increasingly built into AI-driven platforms 
[38]. 

 
Table 4: Examples of real-time agro-advisory services enabled by AI+IoT [13, 14]. 

 

Advisory Type Trigger Data Recommended Action Benefit/Outcome Typical Delivery 

Frost warning Air temp < 2°C prediction 
Deploy frost fans/sprinklers or cover 

crops 

Protects sensitive crops from freeze 

damage 
Mobile alert, SMS 

Irrigation 

schedule 

Soil moisture < 30% + no rain 

expected 
Apply 20 mm water to Zone A Maintains yield, conserves water 

App dashboard 

alert 

Pest outbreak 

alert 

High humidity + warm night, pest 

models 

Scout fields and apply biological 

control 
Early control, reduced yield loss SMS/email 

Nutrient 

deficiency 
Low leaf N index or soil N sensor Top-dress 50 kg/ha N fertilizer Optimized input use, prevents stall Push notification 

Harvest timing 
Nearing crop maturity window + 

forecast 
Plan harvest within 3 days Maximize quality, avoid losses App calendar note 

 

Implementation Considerations and Case Examples 

Numerous pilot projects and research efforts globally 

demonstrate precision agrometeorology in action. While many 

are region-specific, the underlying principles are general [9]. For 

instance, India’s AgriTechnology programs have used IoT 

weather stations and AI to issue SMS advisories to smallholder 

farmers, enhancing climate resilience. In the Midwest US, 

research combines regional climate models with crop 

simulations to forecast yields weeks in advance, enabling market 

and policy planning [12]. An interdisciplinary European network 

(e.g. the AgDataBox-IoT initiative) has developed open-source 

IoT platforms for microclimate monitoring that feed into cloud 

DSS. These examples illustrate the technology, though specific 

weather regimes or crops vary, the system architectures and 

algorithms are adaptable worldwide [39]. 

In practice, deployments must be tailored to user needs and 

contexts. Smallholder systems may rely on SMS or interactive 

voice response to reach farmers, whereas large commercial 

farms use tablet apps and automated equipment integration [57]. 

Figure 1’s architecture can be scaled: a hobby farm may have a 

single gateway and cloud service, while a large enterprise might 

have an on-premise server farm with private 5G. The key is that 

the same principles of IoT sensing and AI processing apply at all 

scales. Table 3’s hybrid model, for example, is common: a 

research project found that “smallholder farms adopt simpler, in 

situ sensing” while “large farms benefit from high-resolution 

satellite/UAV data” [58]. 

 

Importance and benefits 

The integration of AI and IoT in precision agrometeorology 

holds transformative promise but also faces challenges. 

Connectivity and infrastructure are major concerns: many 
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productive agricultural regions lack reliable broadband or power 
[59]. Solutions include energy-efficient protocols (LoRaWAN), 

low-power sensors and solar-powered nodes. Data quality and 

standardization are crucial: sensors can drift and without 

calibration the AI outputs degrade. Interoperability between 

sensor brands and data formats is an ongoing hurdle, semantic 

web frameworks and common data schemas are being developed 

to alleviate this [10]. 

Model generalization and explainability are also topics of 

research. AI models trained in one climate zone may not directly 

transfer to another. Ongoing model training with local data and 

use of federated learning (where models learn from distributed 

data without sharing raw data) are emerging best practices. 

Additionally, stakeholders often require interpretability (“why 

did the system advise this action?”). Hybrid approaches that 

combine statistical models (which are more interpretable) with 

AI are being explored [40]. 

Socio-economic and policy aspects are equally important. 

Machine-driven advisories assume that farmers trust and act on 

them. Building user-friendly interfaces and providing extension 

training are essential for adoption. Studies have noted that 

digital advisory tools have varied adoption rates in the Global 

South due to factors like literacy and cost [79]. Ensuring equitable 

access for example, using languages and platforms familiar to 

local farmers is critical [60]. On the policy side, governments are 

starting to support agromet services, for instance, national 

weather agencies are integrating their forecasts with farm-level 

platforms. Moreover, issues of data ownership and privacy 

surface when private companies are involved in data platforms. 

Ethical frameworks recommend that farmers retain ownership of 

their field data and benefit from any aggregated analytics [61]. 

Finally, emerging technologies promise to enhance the 

integration further. Edge-AI chips on sensors, blockchain for 

secure data exchange and swarm robotics (multiple drones) for 

rapid field surveys are under development. As computing power 

becomes ubiquitous, the vision is a fully autonomous smart farm 

that continuously senses, learns and advises in a closed loop, 

significantly reducing the decision-making burden on farmers 

while optimizing productivity and sustainability [11, 41]. 

 

Conclusion 

Precision agrometeorology leverages the synergy of IoT and AI 

to provide real-time, site-specific agro-advisories, fundamentally 

improving decision-making in agriculture. By deploying dense 

sensor networks and applying sophisticated analytics, these 

systems transform diverse environmental and crop data into 

actionable guidance from irrigation scheduling to pest alerts 

thereby maximizing resource efficiency and resilience to climate 

variability. The literature shows that such technologies can boost 

yields, conserve water and reduce input waste. While technical 

and social challenges remain (connectivity gaps, data privacy, 

user adoption), continuous innovations in edge computing, 

federated AI and affordable sensor hardware are lowering 

barriers. Looking forward, the integration of precision 

agrometeorology into mainstream farming will require 

interdisciplinary effort: agronomists, meteorologists, data 

scientists and policymakers must collaborate. Global-scale 

platforms that combine local IoT data with satellite and weather 

model outputs could support crop forecasting and food security 

planning. Equally, farmer-centric design will ensure that 

advisories are practical and trusted. In sum, the convergence of 

IoT and AI in agrometeorology represents a key pillar of 

sustainable agriculture, enabling proactive management and 

steering global farming toward higher productivity with lower 

environmental impact. 
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