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Abstract 
This study evaluates bias correction of the Regional Climate Model (RCM) outputs from the CORDEX 
South Asia dataset for Rajkot district of Gujarat, using data from the Indian Meteorological Department 
(IMD). It focused mainly on daily maximum and minimum temperatures during the historical period 
(1951-2005) and future projections (2006-2100) under RCP 2.6, RCP 4.5, and RCP 8.5. The bias correction 
method used was Gaussian distribution mapping, and statistical parameters such as monthly mean, 
coefficient of variation (CV), skewness (Cs), and kurtosis (Ck) were analysed. During the control period 
(1951-2005), raw RCM data was found underestimated than the observed IMD temperature data. After bias 
correction, monthly means closely matched the observations, with an R² of 1.00 for both maximum and 
minimum temperatures during calibration (1951-1995) and validation (1996-2005). The CV improved 
significantly after correction, with values aligning with IMD. However, the Gaussian method failed to 
correct higher-order moments such as skewness (Cs) remained negative during calibration but became 
positive for some months during validation, and kurtosis (Ck) stayed positive for all months, indicating the 
persistence of heavy-tailed distributions. For future scenarios (2006-2100), bias-corrected RCM data was 
found overestimated for monthly mean temperatures across all RCPs. The CV was consistently lower than 
in raw data. Skewness (Cs) and kurtosis (Ck) showed varied results: under RCP 2.6 and RCP 4.5, Cs was 
mostly positive in winter months, while Ck was positive in both summer and winter. Under RCP 8.5, 
skewness and kurtosis were positive for most months. Overall, Gaussian distribution mapping effectively 
corrected the mean temperature values and provided a solid foundation for temperature projections, making 
it a valuable method for adjusting climate models, though further refinement may be needed to address the 
extreme temperature events for enhanced climate resilience planning. 
 
Keywords: IMD, CORDEX, bias correction, RCM, Gaussian distribution, temperature projections, RCP, 
climate adaptation, Rajkot, Gujarat 
 
Introduction  
Global and regional climate models (GCMs and RCMs) frequently exhibit biases, which 
necessitate correction against observational or reanalysis datasets to ensure their outputs are 
suitable for impact studies and practical applications, such as evaluating the effects of climate 
change on climate extremes (Eccles et al., 2021; Trancoso et al., 2020) [3, 9]. GCMs simulate 
atmospheric circulation patterns but with a coarse spatial resolution of 100-200 km. Compared 
to GCMs, RCMs are more adept at capturing mesoscale precipitation patterns, including 
topographic effects and sea-land contrasts (Frei et al., 2006; Grose et al., 2019) [5, 6]. However, 
RCMs still exhibit significant biases due to factors such as imperfect boundary conditions 
derived from reanalysis or GCM data and systematic errors inherent in the model itself (Ehret et 
al., 2012; Teutschbein & Seibert, 2012) [4, 8].  
Bias correction is a crucial preliminary step in most climate change impact studies and involves 
adjusting model outputs to reduce systematic errors, thereby improving their fit to observed data 
(Maraun, 2016) [7]. There are various methods of bias correction, ranging from simple linear 
scaling to more sophisticated techniques like quantile mapping (Casanueva et al., 2020; Chen et 
al., 2013) [1, 2]. Linear scaling adjusts projections by accounting for monthly errors but only 
corrects the mean, which can be inadequate for extreme events and other statistical 
characteristics, such as variability (Teutschbein and Seibert, 2012) [8]. 
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In contrast, distribution mapping methods, including quantile-
quantile mapping, can correct for both variability and extremes, 
offering a more comprehensive approach to bias correction 
(Teutschbein and Seibert, 2012) [8]. 
The Coordinated Regional Downscaling Experiment 
(CORDEX) provides enhanced regional climate change 
projections on a global scale, offering detailed predictions that 
can be easily applied to any region. These datasets are valuable 
for vulnerability and adaptation studies as well as climate 
research. In the past, climate change impact assessments 
primarily relied on General Circulation Models (GCMs) or 
Regional Climate Models (RCMs), but CORDEX has expanded 
the ability to produce more refined and region-specific climate 
projections. 
CORDEX data, like other climate model outputs, often exhibit 
biases that necessitate careful analysis when studying future 
climate projections. To address these biases, it is essential to 
compare future simulations (post-2006) with historical 
simulations (1961-2005) produced by the same CORDEX 
models. This comparison helps in understanding the deviations 
and provides a more accurate representation of future climate 
conditions. The CORDEX initiative offers data for three key 
Representative Concentration Pathways (RCPs) - RCP 2.6, RCP 
4.5 and RCP 8.5 - which represent different possible scenarios 
for greenhouse gas emissions and land-use changes. By 
examining these scenarios, researchers can better understand the 
potential range of future climate outcomes and their 
implications. 
RCP 8.5 represents the most pessimistic scenario, where no 
significant climate policy is implemented, leading to high 
population growth and elevated levels of greenhouse gas 
emissions by 2100. This scenario assumes a future where the 
global community fails to take substantial action to mitigate 
climate change, resulting in severe environmental consequences. 
On the other hand, RCP 4.5 depicts a more moderate scenario, 
where efforts are made to stabilize greenhouse gas emissions by 
the end of the century. This pathway suggests that, while some 
measures are taken to address climate change, they are not 
aggressive enough to reverse the trends entirely, leading to a 
stabilized but warmer climate. RCP 2.6 is the most optimistic 
scenario, assuming a significant reduction in greenhouse gas 
emissions, resulting in a projected global temperature rise of 
only 1.6°C by 2100 relative to pre-industrial levels. This 
scenario envisions a future where strong international 
cooperation and stringent climate policies lead to substantial 
mitigation efforts, keeping global warming to a minimum. 
Comparing climate projections across these three scenarios is 
crucial for understanding the potential impacts of varying levels 

of anthropogenic activity, particularly in terms of greenhouse 
gas emissions. The differences between these pathways 
highlight the importance of policy decisions and their long-term 
effects on the global climate. 
In recent years, the increasing frequency of extreme climate 
events has underscored the need to analyze future climate 
projections using Regional Climate Models (RCMs) under 
different RCP scenarios. These extreme events, ranging from 
heatwaves to intense storms, are becoming more common as the 
climate continues to change, posing significant challenges for 
communities and ecosystems worldwide. However, the outputs 
of RCMs, like all climate models, are not free from biases. 
These biases must be corrected to ensure that the projections are 
accurate and reliable, especially when used for decision-making 
in climate adaptation and mitigation efforts. 
This study aims to assess the effectiveness of distribution 
mapping techniques for bias correction in temperature data 
simulated by the RCA4 RCM for a specific study area under 
different RCP scenarios. By focusing on bias correction, the 
study seeks to improve the reliability of climate projections, 
providing more accurate data for researchers and policymakers. 
This approach is critical for developing effective strategies to 
address the impacts of climate change, particularly in regions 
that are highly vulnerable to shifts in temperature and 
precipitation patterns.  
 
Study Area 
Rajkot is a prominent city located in the Saurashtra region of 
Gujarat, India, and serves as the administrative headquarters of 
the Rajkot district. It is situated at 22.3039°N latitude and 
70.8022°E longitude. Rajkot ranks as the fourth-largest city in 
Gujarat in terms of population. Rajkot is positioned in the 
central part of the Saurashtra peninsula, on the banks of the Aji 
and Nyari rivers. Rajkot experiences a semi-arid climate, 
characterized by three main seasons. Summer (March to June): 
Summers in Rajkot are hot, with temperatures often ranging 
from 24 °C to 42 °C. The peak of summer usually sees 
maximum temperatures around 40 °C, accompanied by dry and 
sunny weather. Monsoon (July to September): The city receives 
the majority of its annual rainfall during the monsoon season, 
with July and August being the wettest months. The average 
annual rainfall is approximately 500-600 mm. The monsoon 
season brings relief from the intense heat, but high humidity 
levels are typical. Winter (October to February): Winters in 
Rajkot are mild, with temperatures ranging between 10 °C and 
25 °C. The season is generally dry, and the weather remains 
pleasant. 

 

 
 

Fig 1: Study area map showing Rajkot District 
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Data Collection 
The research utilized gridded rainfall and temperature data 
prepared by the Indian Meteorological Department (IMD) for 
various regions in India. The datasets included daily gridded 
rainfall at a 0.25 x 0.25-degree resolution and daily maximum 
and minimum temperatures at a 0.5 x 0.5-degree resolution. 
These datasets were provided in the Network Common Data 
Format (NetCDF). To access and process this data, the 
NetCDF4Excel add-in can be downloaded and installed, 
enabling the conversion of NetCDF files to Excel format using 
ArcGIS software. 
This climatic data was crucial for studying future climate change 
projections. Regional Climate Models (RCMs) are effective 
tools for understanding and predicting climate changes. In this 
research, climate change data was sourced from the CORDEX-
South Asia Multi-Model Output, accessible through the Centre 
for Climate Change Research at the Indian Institute of Tropical 
Meteorology, Pune. The CORDEX data includes simulations 
using the RCA4 (Rossby Centre regional atmospheric model 
version 4) model for various regions, available at two 
resolutions: the standard 0.44 degrees (~50 km, EUR-44) and a 
finer 0.11 degrees (~12.5 km, EUR-11). These datasets provide 
projections for daily rainfall (in mm) and temperature (in °C) 
under different Representative Concentration Pathway (RCP) 
scenarios—2.6, 4.5, and 8.5—covering both historical and future 
periods. Similar to the IMD data, these climate data file, also in 
NetCDF format, were converted to Excel format using ArcGIS 
for further analysis. 
 
Methodology 
The historical daily maximum and minimum temperature 
records for Junagadh, covering 55 years (1951-2005), were 
obtained from the Indian Meteorological Department (IMD). 
Simulated maximum and minimum temperatures for the same 
location were also acquired from the CORDEX database for 
various Representative Concentration Pathways (RCPs). The 
baseline period (1951-2005) was used as a reference for 
comparison with future projections (2006-2100) under different 
RCP scenarios, including RCP 2.6, RCP 4.5, and RCP 8.5. 
Simulations from Regional Climate Models (RCMs) often 
exhibit biases due to inherent model errors, such as inaccuracies 
in model formulation, spatial discretization, and grid cell 
averaging. These biases make direct application of RCM outputs 
in hydrological impact studies challenging. To address this, it is 
recommended to use an ensemble of RCM simulations and 
apply bias correction techniques. These methods adjust the 
simulated climate data to better match observed values. In this 
study, the period from 1951 to 1995 was used for model 
calibration, while 1996 to 2005 served as the validation period. 
A probability distribution-based scaling method was applied to 
correct the RCM-simulated temperatures. This method uses 
cumulative distribution functions to align the simulated data 
with observed temperature distributions. The annual temperature 
cycle, being symmetric, was modeled using a normal 
distribution with monthly-specific means and standard 
deviations, allowing for a more accurate representation of 
temperature variability. 
 
Distribution Mapping Method 
The Distribution Mapping (DM) method was used to align the 

distribution of modeled data with that of observed data. This 
method adjusts key statistical parameters, such as the mean, 
standard deviation, and quantiles, while aiming to maintain the 
integrity of extreme values. However, a limitation of this 
approach in the assumption that both observed and simulated 
meteorological variables share the same underlying distribution, 
which may not always be the case and can introduce additional 
biases. 
For temperature time series, the Gaussian distribution method 
was often assumed to be the most suitable. This distribution 
defined by two parameters: the mean (μ), which determines the 
centre of the distribution, and the standard deviation (σ), which 
influences its spread. A smaller standard deviation (σ) results in 
a narrower distribution with fewer extreme values, while a larger 
standard deviation leads to a wider distribution, increasing the 
probability of extremes. To adjust the temperature data using 
this method, the Gaussian cumulative distribution function 
(CDF) and its inverse are applied, allowing for the 
transformation of simulated data to more closely resemble 
observed data. 
For temperature adjustments, the process involves using the 
Gaussian (normal) CDF (FN) cumulative distribution function 
(CDF) and its inverse (FN

-1). 
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Where,  
T*

contr = corrected value of temperature of control period 
Tcontr = uncorrected value of temperature of control period 
T*

scen = corrected value of temperature for scenario period 
 Tscen = uncorrected value of temperature of scenario period 
FN= Gaussian CDF 
F-1

N= Inverse Gaussian CDF 
µcontr= monthly mean of simulated time series of daily 
temperature during for control period 
σ2

obs = monthly standard deviation of observed time series of 
temperature during control period 
µobs= monthly mean of observed time series of daily temperature 
during control period 
σ2

contr = monthly standard deviation of simulated time series of 
daily temperature during control period. 
 
Results and Discussion 
The study focused on bias corrections for daily maximum and 
minimum temperatures, covering both a baseline period (1951-
2005) and future scenarios (2006-2100). It involved calibration 
(1951-1995) and validation (1996-2005) phases, comparing 
simulated data with actual observations. Specifically, the bias 
correction was applied to temperatures simulated by RCA4 for 
Rajkot, using observed data for comparison. The analysis 
provided temperature data for both the control period (1951-
2005) and the projected future period (2006-2100). 
 
A) Daily Maximum Temperature 
Control Period (1951-2005) 
The computed monthly mean of daily observed, Raw RCM and 
Bias corrected RCM of maximum temperature of Rajkot for the 
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calibration period (1951-1995) and validation period of (1996-
2005) shown in Fig 1a.1 and Fig 1a.2. The considered statistics 
were the mean and coefficient of variation of the bias correction 
using the gaussian distribution mapping method. Fig 1a.1 
showed that the raw RCM maximum temperature was 
underestimated over the observed monthly maximum 
temperature for all months for calibration period and Fig 1a.2 
also showed the same result for the validation period. In fact, 
after applying the bias correction of Gaussian distribution 
method, the monthly mean for calibration period, (Fig 1a.1) and 
monthly mean for the validation period, (Fig 1a.2) of daily 
maximum temperature were agreed well with the actual 
observation during all of the 12 months of the year. 
The relationship of monthly mean of observed maximum, raw 
RCM and bias corrected RCM maximum temperature for 
calibration period (1951-1995) and validation period (1996-
2005) were shown in Fig 1a.3 and Fig 1a.4. It could be seen 
from Fig 1a.3 that goodness of fit (R2) between raw RCM and 
Bias corrected RCM were 0.91 and 1 respectively for calibration 
period (1951-1995) and Fig 1a.4 showed that goodness of fit 
(R2) between raw RCM and Bias corrected RCM were 0.921 and 
0.999 respectively for validation period (1996-2005), which 
showed that the gaussian distribution has corrected the first 
moment.  
The coefficient of variation of observed, raw RCM and Bias 
corrected RCM daily maximum temperature of Rajkot during 
the calibration and validation period was found as shown in Fig 
1a.5 and Fig 1a.6. Fig 1a.5 Showed that the raw RCM daily 
maximum temperature with higher coefficient of variation than 
the observed maximum temperature data for all months. After 
applying the bias correction, the coefficient of variation of BC 
RCM maximum temperature were matched with the observed 
coefficient of variation of maximum temperature. For validation 

period (1996-2005), the coefficient of variation of both observed 
and bias corrected data were found lower than the coefficient of 
variation of raw RCM maximum temperature for all months. 
However, after applying the bias correction, the coefficient of 
variation of BC RCM maximum temperature were matched with 
the observed coefficient of variation of maximum temperature. 
The relationship between the monthly coefficient of variation of 
observed, Raw and bias corrected daily maximum temperature 
for calibration period (1951-1995) and validation period (1996-
2005) were shown in Fig 1a.7 and Fig 1a.8. It could be seen 
from Fig 1a.7 that goodness of fit (R2) between raw RCM and 
Bias corrected RCM were 0.883 and 1 respectively for 
calibration period (1951-1995) which shows that data set was 
nearly matched with each other and Fig 1a.8 showed that 
goodness of fit (R2) between raw RCM and Bias corrected RCM 
were 0.875 and 0.975 respectively for validation period (1996-
2005). So, it indicated that the value of CV was not exactly 
corrected for the validation period. 
The Fig 1a.9 and Fig 1a.10 showed the comparison of skewness 
coefficient (Cs) of observed, raw and bias corrected daily 
maximum temperature for calibration and validation period 
respectively. For calibration period it was found negative for all 
months and for validation period it was found positive for March 
and September and for rest of months it was found negative. 
The Fig 1a.11 and Fig 1a.12 showed the comparison of Kurtosis 
coefficient (Ck) of observed, raw and bias corrected daily 
maximum temperature for calibration and validation period 
respectively. For calibration period it was found positive for 
January, November and December and for rest of months it was 
found as negative and for validation period it was found positive 
for June and for rest of months it was found as negative. It can 
be seen that the bias correction by adopting Gaussian 
distribution cannot correct the third and fourth moments.  
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B) Daily Minimum Temperature 
Control Scenario (1951-2005) 
The computed monthly mean of daily observed, Raw RCM and 
Bias corrected RCM of minimum temperature of Rajkot for the 
calibration period (1951-1995) and validation period of (1996-
2005) shown in Fig 1b.1 and Fig 1b.2. The considered statistics 
were the mean and coefficient of variation of the bias correction 
using the gaussian distribution mapping method. Fig 1b.1 
showed that the raw RCM minimum temperature was 
underestimated over the observed monthly minimum 
temperature for all months for calibration period and Fig 1b.2 
also showed the same result for the validation period. In fact, 
after applying the bias correction of Gaussian distribution 
method, the monthly mean for calibration period, (Fig 1b.1) and 
monthly mean for the validation period, (Fig 1b.2) of daily 
minimum temperature were agreed well with the actual 
observation during all of the 12 months of the year. 
The relationship of monthly mean of observed minimum, Raw 
RCM and bias corrected RCM minimum temperature for 
calibration period (1951-1995) and validation period (1996-
2005) were shown in Fig 1b.3 and Fig 1b.4. It could be seen 
from Fig 1b.3 that goodness of fit (R2) between raw RCM and 
Bias corrected RCM were 0.862 and 1 respectively for 
calibration period (1951-1995) and Fig 1b.4 shows that 
goodness of fit (R2) between raw RCM and Bias corrected RCM 
were 0.858 and 0.999 respectively for validation period (1996-
2005), which showed that the gaussian distribution has corrected 
the first moment. 
The coefficient of variation of observed, raw RCM and Bias 
corrected RCM daily minimum temperature of Rajkot during the 

calibration and validation period was found as shown in Fig 1b.5 
and Fig 1b.6. Fig 1b.5 Showed that the raw RCM daily 
maximum temperature with higher coefficient of variation than 
the observed minimum temperature data for all months. After 
applying the bias correction, the coefficient of variation of BC 
RCM minimum temperature were matched with the observed 
coefficient of variation of minimum temperature. For validation 
period (1996-2005), the coefficient of variation of both observed 
and bias corrected data were found lower than the coefficient of 
variation of raw RCM minimum temperature for all months. 
However, after applying the bias correction, the coefficient of 
variation of BC RCM minimum temperature were matched with 
the observed coefficient of variation of minimum temperature. 
The relationship between the monthly coefficient of variation of 
observed, Raw and bias corrected daily minimum temperature 
for calibration period (1951-1995) and validation period (1996-
2005) were shown in Fig 1b.7 and Fig 1b.8. It could be seen 
from Fig 1b.7 that goodness of fit (R2) between raw RCM and 
Bias corrected RCM were 0.5406 and 1 respectively for 
calibration period (1951-1995) which shows that data set was 
nearly matched with each other and Fig 1b.8 shows that 
goodness of fit (R2) between raw RCM and Bias corrected RCM 
were 0.503 and 0.991 respectively for validation period (1996-
2005). So, it indicated that the value of CV was not exactly 
corrected for the validation period. 
The Fig 1b.9 and Fig 1b.10 shows the comparison of skewness 
coefficient (Cs) of observed, raw and bias corrected daily 
minimum temperature for calibration and validation period 
respectively. For calibration period it was found negative for all 
months except November and for validation period it was found 
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positive for November and for rest of months it was found 
negative. 
The Fig 1b.11 and Fig 1b.12 shows the comparison of Kurtosis 
coefficient (Ck) of observed, raw and bias corrected daily 
minimum temperature for calibration and validation period 
respectively. For calibration period it was found positive for 

May, June, August and December and for rest of months it was 
negative and for validation period it was found positive for 
April, May and June and for rest of months it was found as 
negative. It can be seen that the bias correction by adopting 
Gaussian distribution cannot correct the third and fourth 
moments.  
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Future Period (2006-2100)  
RCP 2.6 
A) Daily Maximum Temperature 
Fig 3a.1, Fig 3a.2, Fig 3a.3 and Fig 3a.4 shows the statistical 
characteristics of raw and bias-corrected regional climate model 
(RCM) simulations from 2006 to 2100. Fig 3a.1 showed the 
mean temperatures, the mean temperature increased from 
January (29.10 °C) to May (37.17 °C), reaching a peak. This 

suggested that May was likely the hottest month. After May, the 
mean temperature decreased, indicating the onset of the 
monsoon and post-monsoon cooling effects. There was a second 
peak in September (35.64 °C) and then temperatures gradually 
decrease towards December (31.65 °C). 
Standard deviation indicates the amount of variation or 
dispersion from the mean. The SD was highest in March (2.78 
°C) and lowest in September (1.26°C). Months with higher SD 
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(March, April, June, and July) suggest greater variability in 
temperature, possibly due to transitional weather conditions or 
variable climate patterns. Lower SD in months like September 
indicated more stable temperatures with less fluctuation. 
Fig 3a.2 showed the coefficient of variation (Cv). Cv is the ratio 
of the standard deviation to the mean, expressed as a percentage. 
It provides a normalized measure of dispersion. Cv values 
ranged from 0.04 to 0.08, indicating relatively low variability in 
temperature across all months. This low variability suggested 
that while there are some fluctuations, temperatures remain 
relatively consistent around their mean. 
Fig 3a.3 examined skewness coefficient (Cs). Skewness 
measures the asymmetry of the data distribution around its 
mean. Cs values close to zero indicate a near-normal 
distribution. Positive skewness (e.g., January: 0.33, December: 
0.35) implied a distribution with a longer tail on the right, 
meaning there are more instances of above-average 
temperatures. Negative skewness (e.g., April: -0.09, August: -
0.08) suggested a longer left tail, with more occurrences of 
below-average temperatures. The majority of months have Cs 
values close to zero, indicating a roughly symmetrical 
distribution of temperature around the mean. 
Fig 3a.4 shows Kurtosis coefficient (Ck). Kurtosis measures the 
"tailedness" of the data distribution. A positive kurtosis (e.g., 
July: 0.43, August: 0.42) indicated a distribution with heavier 
tails and a sharper peak than a normal distribution, implying 
more extreme values. Negative kurtosis (e.g., February: -0.29, 
March: -0.40) suggested a flatter distribution with lighter tails, 
meaning fewer extreme temperature values. Most months have 
Ck values close to zero, indicating that the temperature 
distribution does not deviate significantly from a normal 
distribution. 
 
B) Daily Minimum Temperature 
Fig 3b.1, Fig 3b.2, Fig 3b.3 and Fig 3b.4 showed the statistical 
characteristics of raw and bias-corrected regional climate model 
(RCM) simulations from 2006 to 2100. Fig 3b.1 showed the 
mean temperature, increasing from January (13.78 °C) to June 
(27.71 °C), indicating warming during the pre-monsoon period 
and reaching a peak in June and July. Post-July, the 
temperatures started to decrease gradually, reaching a low again 
in December (16.20 °C). This pattern aligned with typical 

seasonal variations in the region, where temperature rise during 
the pre-monsoon season and drop during the winter months. 
The SD was highest in March (2.69 °C) and lowest in August 
(0.54 °C). High SD values in the cooler months (e.g., January to 
March and November to December) suggested higher 
temperature variability, possibly due to the transition between 
winter and summer or between summer and monsoon seasons. 
Lower SD in monsoon and post-monsoon months (e.g., August) 
indicated more stable temperatures with less fluctuation, 
possibly due to the moderating effects of monsoon rains. 
Fig 3b.2 showed the coefficients of variation (Cv). Cv values 
range from 0.02 (August) to 0.17 (February), indicating varying 
degrees of relative temperature variability across the months. 
Higher Cv in the cooler months (January, February, November, 
December) suggested relatively higher variability compared to 
their means, while lower Cv in the warmer months (June, July, 
August) indicated more consistent temperatures relative to their 
means. 
Fig 3b.3 showed the skewness coefficient (Cs). Positive 
skewness (e.g., January: 1.31, February: 0.55, December: 1.17) 
indicated that the temperature distributions were right-skewed 
with more instances of below-average temperatures and 
occasional higher extreme temperatures. Negative skewness 
(e.g., April: -0.22, July: -0.40, August: -1.16) suggested a left-
skewed distribution with more occurrences of above-average 
temperatures and some lower extreme temperatures. Months 
with near-zero skewness (e.g., March: -0.02, October: -0.05) 
have temperature distributions that were approximately 
symmetric around the mean. 
Fig 3b.4 shows the Kurtosis coefficient (Ck). Positive kurtosis 
(e.g., January: 1.28, July: 1.98, August: 1.82) indicated a 
distribution with heavier tails and a sharper peak than a normal 
distribution, implying a higher likelihood of extreme 
temperature values (either hot or cold). Negative kurtosis (e.g., 
February: -0.53, March: -0.41, October: -0.66) suggested a 
flatter distribution with lighter tails, meaning fewer extreme 
temperature values. The presence of both positive and negative 
kurtosis across different months indicated that temperature 
distributions could be quite varied, with some months 
experiencing more extreme temperature variability and others 
more moderate, stable conditions. 
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Future Period (2006-2100)  
RCP 4.5 
A) Daily Maximum Temperature 
Fig 4a.1, Fig 4a.2, Fig 4a.3 and Fig 4a.4 showed the statistical 
characteristics of raw and bias-corrected regional climate model 

(RCM) simulations for the period 2006-2100. Fig 4a.1 showed 
the mean daily maximum temperatures, the mean temperatures 
increase steadily from January (28.66°C) to May (36.44°C), 
indicating a warming trend leading up to the pre-monsoon 
period. June (36.14°C) marked a slight decrease, indicating the 
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start of the monsoon season which typically moderates 
temperature. After June, temperature gradually declined through 
to December (30.76°C), following a post-monsoon cooling and 
the onset of winter. 
Standard deviation measured the variability or dispersion of 
temperature values around the mean. SD values ranged from a 
minimum of 1.17°C in May to a maximum of 2.58°C in July. 
Higher SD values in months like February (2.40°C), March 
(2.47°C), and July (2.58°C) indicated more significant 
temperature variability during these periods. Lower SD values in 
May (1.17°C) and August (1.42°C) suggested more stable 
temperatures during these months, likely due to more consistent 
climatic conditions. 
Fig 4a.2 showed coefficient of variation (Cv). Cv values range 
from 0.03 (May) to 0.08 (February), indicating relatively low 
variability across all months. Months with higher Cv, like 
February (0.08) and March (0.07), have slightly more relative 
variability compared to their mean, which could be due to 
transitional weather conditions. Lower Cv values, particularly in 
May (0.03), indicate consistent temperature with less relative 
fluctuation around the mean. 
Fig 4a.3 showed the Skewness coefficient (Cs). Positive 
skewness values (e.g., January: 0.42, February: 0.44, March: 
0.22) indicated that these months have more instances of below-
average temperatures with occasional higher extreme 
temperatures, resulting in a right-skewed distribution. Negative 
skewness values (e.g., April: -0.24, May: -0.54, August: -0.43) 
suggested a left-skewed distribution with more occurrences of 
above-average temperatures and fewer extreme low 
temperatures. The skewness values close to zero (e.g., June: -
0.10, October: -0.12) indicate that temperature distributions 
were approximately symmetric around the mean. 
Fig 4a.4 showed the Kurtosis coefficient (CK). Positive kurtosis 
values (e.g., January: 0.58, June: 1.45, December: 0.93) 
indicated a distribution with heavier tails and a sharper peak 
than a normal distribution, suggesting a higher likelihood of 
extreme values (either hot or cold). Negative kurtosis values 
(e.g., March: -0.34, April: -0.27) suggested a flatter distribution 
with lighter tails, meaning fewer extreme temperature values. 
Months with kurtosis values close to zero (e.g., October: -0.01, 
November: -0.03) have a distribution that does not deviate 
significantly from a normal distribution, indicating a balance in 
the frequency of extreme and average temperatures. 
 
B) Daily Maximum Temperature 
Fig 4b.1, Fig 4b.2, Fig 4b.3 and Fig 4b.4 showed the statistical 
characteristics of raw and bias-corrected regional climate model 

(RCM) simulations for the period 2006-2100. Fig 4b.1 showed 
the mean daily minimum temperatures, the mean temperatures 
increase from January (13.35°C) to June (27.81°C), indicating a 
warming trend leading up to the pre-monsoon period. After 
June, temperature slightly decrease, reaching a minimum in 
December (16.24°C). This pattern reflected the typical seasonal 
cycle, with the warmest months occurring just before the 
monsoon and cooler temperature following the monsoon and 
continuing through winter. 
SD values range from a minimum of 0.44°C in August to a 
maximum of 2.56°C in December. Higher SD values in the 
cooler months (January, February, November, December) 
suggested more significant temperature variability, which could 
be due to greater fluctuation between daytime and nighttime 
temperatures or weather transitions in those months. Lower SD 
values in June (0.84°C) and August (0.44°C) indicated more 
stable temperatures, likely due to consistent monsoon conditions 
and cloud cover moderating temperatures. 
Fig 4b.2 showed coefficient of variation (Cv). Cv values range 
from 0.02 (August) to 0.16 (February and December), indicating 
that relative variability is higher in the cooler months and lower 
during the monsoon months. The highest Cv values in February 
(0.16) and December (0.16) suggest higher relative temperature 
variability during these months, possibly due to the transition 
between seasons or fluctuating weather patterns. 
Fig 4b.3 showed the Skewness coefficient (Cs). Positive 
skewness values (e.g., January: 1.67, February: 0.54, December: 
1.04) indicate a right-skewed distribution, with more instances 
of below-average temperatures and occasional extreme high 
temperatures. Negative skewness values (e.g., April: -0.28, May: 
-0.85, June: -1.04, September: -1.03) indicated a left-skewed 
distribution, with more instances of above-average temperatures 
and occasional extreme low temperatures. Skewness values near 
zero (e.g., March: 0.06, November: 0.03) suggest a roughly 
symmetrical distribution of temperatures around the mean. 
Fig 4b.4 showed the Kurtosis coefficient (CK). Positive kurtosis 
values (e.g., January: 2.97, June: 3.44, September: 0.97) 
indicated distributions with heavier tails and sharper peaks than 
a normal distribution, suggesting a higher likelihood of extreme 
values (either hot or cold). Negative kurtosis values (e.g., 
February: -0.44, March: -0.37, October: -0.26, November: -0.70) 
suggested flatter distributions with lighter tails, meaning fewer 
extreme temperature values. The range of kurtosis values 
showed that while some months have a distribution that deviate 
significantly from a normal distribution, others were closer to a 
normal distribution. 
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Future Period (2006-2100)  
RCP 8.5 
A) Daily Maximum Temperature 
Fig 5a.1, Fig 5a.2, Fig 5a.3 and Fig 5a.4 showed the statistical 
characteristics of raw and bias-corrected regional climate model 
(RCM) simulations for the period 2006-2100. Fig 5a.1 shows the 

mean daily maximum temperatures, the mean temperatures 
show a gradual increase from January (30.51°C) to May 
(38.67°C), indicating a warming trend leading up to the hottest 
part of the year. June (37.91°C) shows a slight decrease from 
May, reflecting the onset of the monsoon season. From July 
onwards, temperatures decrease, reaching their lowest in 
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December (31.52°C), following the typical seasonal cooling 
pattern after the monsoon and into winter. SD values range from 
a minimum of 1.44°C in August to a maximum of 2.91°C in 
February. Higher SD values in months like February (2.91°C) 
and March (2.59°C) suggest greater temperature variability 
during these months, likely due to transitional weather 
conditions. Lower SD values in August (1.44°C) and May 
(1.56°C) suggest more stable temperatures, likely due to 
consistent climatic conditions during the monsoon and the 
beginning of summer. 
Fig 5a.2 shows Coefficient of Variation (Cv). Cv values range 
from 0.04 (May, August, September, October) to 0.09 
(February), indicating relatively low variability across all 
months. February, with the highest Cv value (0.09), indicates 
more relative variability compared to its mean, which could be 
due to winter weather variability. Months like May, August, and 
September, with lower Cv values (0.04), indicate consistent 
temperatures with less relative fluctuation around the mean. 
Fig 5a.3 shows the skewness coefficient. Positive skewness 
values (e.g., January: 0.43, February: 0.41, May: 0.25) indicate 
that these months have more instances of below-average 
temperatures with occasional higher extreme temperatures, 
resulting in a right-skewed distribution. Negative skewness 
values (e.g., July: -0.14, October: -0.15, December: -0.06) 
suggest a left-skewed distribution with more occurrences of 
above-average temperatures and fewer extreme low 
temperatures. The skewness values close to zero (e.g., March: 
0.01, April: 0.01, November: 0.02) indicate that temperature 
distributions are approximately symmetric around the mean. 
Fig 5a.4 shows the kurtosis coefficient. Positive kurtosis values 
(e.g., January: 0.16, June: 0.62, December: 1.11) indicate a 
distribution with heavier tails and a sharper peak than a normal 
distribution, suggesting a higher likelihood of extreme values 
(either hot or cold). Negative kurtosis values (e.g., February: -
0.13, March: -0.61, April: 0.00) suggest a flatter distribution 
with lighter tails, meaning fewer extreme temperature values. 
Months with kurtosis values close to zero (e.g., April: 0.00, 
October: 0.06) have a distribution that does not deviate 
significantly from a normal distribution, indicating a balance in 
the frequency of extreme and average temperatures. 
 
B) Daily Minimum Temperature 
Fig 5b.1, Fig 5b.2, Fig 5b.3 and Fig 5b.4 showed the statistical 
characteristics of raw and bias-corrected regional climate model 
(RCM) simulations for the period 2006-2100. Fig 5b.1 showed 

the mean daily minimum temperatures, the mean temperatures 
showed an increase from January (15.70°C) to July (29.85°C), 
indicating a warming trend towards the middle of the year, 
which was typical for this region as it moves towards the 
summer. The highest mean temperature was in July (29.85°C), 
after which there was a gradual decrease until December 
(15.70°C), reflecting the cooling trend into the winter season. 
SD values range from a minimum of 0.85°C in August to a 
maximum of 3.22°C in February. The higher SD values in 
January (2.99°C) and February (3.22°C) suggested greater 
temperature variability during these winter months, which could 
be due to more unpredictable weather patterns. Lower SD values 
in August (0.85°C) and July (0.92°C) suggested more stable 
temperatures during the peak summer and early monsoon period. 
Fig 5b.2 showed the coefficient of variation. Cv values range 
from 0.03 (July and August) to 0.19 (January), indicating low 
relative variability in summer months and higher relative 
variability in winter months. The highest Cv in January (0.19) 
indicated a higher relative variability in temperatures, which can 
be associated with colder months that often have more 
fluctuations in daily temperatures. Lower Cv value in July and 
August (0.03) indicated more consistent temperatures relative to 
their means during these stable, warm months. 
Fig 5b.3 showed the skewness coefficient. Positive skewness 
values (e.g., January: 0.66, November: 0.64, December: 1.43) 
indicated that these months have more instances of below-
average temperatures with occasional higher extreme 
temperatures, resulting in a right-skewed distribution. Negative 
skewness values (e.g., March: -0.17, April: -0.24, August: -0.55) 
suggested a left-skewed distribution, indicating more 
occurrences of above-average temperatures with fewer lower 
extremes. Months with skewness values close to zero (e.g., 
October: 0.02, September: -0.02) have temperature distributions 
that are approximately symmetric around the mean. 
Fig 5b.4 showed kurtosis coefficient. Positive kurtosis values 
(e.g., July: 0.61, December: 2.17) indicated a distribution with 
heavier tails and a sharper peak than a normal distribution, 
suggested a higher likelihood of extreme values (either hot or 
cold). Negative kurtosis values (e.g., January: -0.25, February: -
0.32, March: -0.48) suggested a flatter distribution with lighter 
tails, meaning fewer extreme temperature values. Months with 
kurtosis values close to zero (e.g., April: -0.15, May: 0.01) have 
a distribution that does not deviate significantly from a normal 
distribution, indicating a balance in the frequency of extreme 
and average temperatures. 
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Conclusion 
The study shows a comprehensive bias correction analysis on 
daily maximum and minimum temperatures for Rajkot, focusing 
on the baseline period (1951-2005) and future scenarios (2006-
2100) under three Representative Concentration Pathways (RCP 
2.6, RCP 4.5, and RCP 8.5). The bias correction process used 
the Gaussian distribution mapping method to adjust the 
simulated data from the RCA4 regional climate model (RCM) 
against observed data, ensuring a more accurate representation 

of temperature trends. 
For daily maximum temperatures during the control period 
(1951-2005), the raw RCM data consistently underestimated 
observed temperatures across all months during both the 
calibration (1951-1995) and validation (1996-2005) phases. The 
Gaussian distribution mapping method significantly corrected 
these biases, bringing the bias-corrected RCM data in close 
agreement with observed data for all months. This was 
confirmed by high R² values, indicating a strong goodness of fit 
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between the bias-corrected and observed data. The coefficient of 
variation (CV) for the bias-corrected data also closely matched 
the observed data, demonstrating that the method effectively 
adjusted for variability. However, the bias correction method 
was less effective in fully correcting the skewness (third 
moment) and kurtosis (fourth moment), suggesting limitations in 
adjusting the tails and peaks of the temperature distribution. 
For daily minimum temperatures during the same period, a 
similar pattern was observed. The raw RCM data underestimated 
observed minimum temperatures, but after applying the 
Gaussian distribution mapping method, the bias-corrected data 
closely aligned with the observed data in terms of mean 
temperatures and CVs. Yet, like with maximum temperatures, 
there were notable discrepancies in skewness and kurtosis 
between the bias-corrected and observed data, indicating that 
while the correction method effectively adjusted for mean 
temperature biases, it did not fully account for the distribution's 
shape. 
In future scenarios (2006-2100), the analysis under RCP 2.6, 
RCP 4.5, and RCP 8.5 highlighted distinct temperature trends. 
Under RCP 2.6 and RCP 4.5, there was a noticeable warming 
trend before the monsoon season and cooling post-monsoon. 
The bias correction process-maintained consistency in these 
projections, ensuring that mean temperatures were aligned with 
expected trends. However, under the more extreme RCP 8.5 
scenario, the warming trends were more pronounced across all 
months, reflecting a significant increase in maximum and 
minimum temperatures due to higher greenhouse gas 
concentrations. 
Despite the effectiveness of the bias correction in aligning 
simulated data with observed mean temperatures across all RCP 
scenarios, variations in standard deviation, skewness, and 
kurtosis across different months indicated persistent challenges 
in accurately modeling temperature extremes and variability. 
These variations suggest that while the Gaussian distribution 
mapping method is robust for correcting mean biases, it has 
limitations in adjusting higher-order statistical moments, which 
are crucial for understanding the full range of temperature 
variability and extreme events in the future. 
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