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Abstract

Insect pests pose a severe threat to global food security, with estimated losses of 20-40% of crop yields 

each year. Traditional monitoring relies on manual scouting and simple weather models, often reacting too 

late to prevent damage. In contrast, modern systems combine Unmanned Aerial Vehicles (drones) with 

artificial intelligence (AI) to create rapid, high-resolution insect surveillance and forecasting. Drones 

equipped with advanced sensors (multispectral, thermal, RGB cameras, etc.) survey fields and orchards, 

while AI algorithms process the imagery and sensor data to identify pests and predict infestation trends. 

This synergy enables early outbreak detection and automated alerts, allowing farmers to target only 

affected areas and significantly reduce pesticide use. In this article, we review the theoretical foundations 

of AI-based image recognition and sensor data analysis, and we describe the latest drone monitoring 

platforms. We then examine practical applications in India and worldwide, showing how AI-enabled 

drones improve pest forecasting and crop protection. The benefits improved yields, resource efficiency, and 

faster response are highlighted, along with current challenges such as technical and regulatory hurdles. 

Finally, we discuss future trends in precision agriculture, illustrating how emerging drone-AI innovations 

will further enhance integrated pest management systems. 

Keywords: Drones (UAV), artificial intelligence (AI), pest forecasting, insect surveillance, precision 

agriculture, integrated pest management (IPM), computer vision, crop monitoring 

Introduction 

Insect pests pose one of the greatest threats to global food production, especially as climate 

change and intensive farming have allowed outbreaks to become more frequent and severe [6]. 

The Food and Agriculture Organization (FAO) estimates that pests and diseases destroy roughly 

20-40% of the world’s crop yields each year [35]. Traditionally, pest management has relied on 

manual field scouting, pheromone or sticky traps, and weather-based models to predict 

outbreaks. These methods are often slow and reactive, providing little lead time for preventive 

action. As a result, farmers frequently resort to blanket pesticide applications after infestations 

are already widespread, incurring high costs and environmental impact [17]. There is a growing 

consensus that agriculture needs more proactive, data-driven surveillance to stay ahead of pest 

populations. Modern technological advances are beginning to fill this gap [36, 76]. Unmanned 

Aerial Vehicles (drones) equipped with high-resolution cameras and sensors can rapidly scan 

entire fields and orchards from low altitudes. The imagery and data collected by drones are then 

analysed by artificial intelligence (AI) and machine learning algorithms. Computer vision 

techniques automatically identify insect pests and plant stress signatures in aerial images, while 

predictive models use weather and historical data to forecast how pest populations will evolve 
[23, 108]. By combining real-time sensing with AI-driven analytics, these systems can generate 

early-warning maps of pest hotspots and development [61]. Such tools effectively create 

automated decision-support systems for farmers. Targeted advisories and precision spraying 

become possible, meaning that only infested zones are treated and healthy areas are left 

untouched. This precision approach leads to reduced pesticide use, lower costs, and healthier 

crops [47].  
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This article examines the integration of drones and AI in insect 

surveillance and pest forecasting. First, we review the theoretical 

background: how remote sensing (from satellites and UAVs) 

works, the role of various sensors, and the basics of AI-based 

image recognition, alongside an overview of traditional pest 

control and forecasting methods [121, 62]. Next we describe 

technological advancements: how modern UAV platforms and 

smart imaging sensors work together with AI algorithms to 

detect pests, issue real-time alerts, and even automate control 

actions like targeted spraying. We then explore practical 

applications, highlighting case studies from India (such as the 

new National Pest Surveillance System) and around the world 

where AI-enabled drones have improved early detection and 

response. We discuss the benefits of this approach including 

increased yield, resource efficiency, and timeliness as well as the 

remaining challenges, from infrastructure and cost to policy and 

data issues. Finally, we outline future prospects, illustrating 

emerging trends (like drone swarms and edge AI) that promise 

to make pest management even more precise and predictive [7, 

48]. 

 
Table 1: Types of Drones and Their Applications in Pest Surveillance 

 

Drone Type Key Features Pest Surveillance Applications 

Multi-Rotor 

(Quadcopter/ 

Hexacopter) 

Vertical take off/landing, high 

maneuverability, stable hover, 

moderate range 

Localized monitoring: precision imaging and spraying in small fields or orchards; 

indoor/greenhouse inspections. Enables close-up inspection of plants for pests or diseases. 

Fixed-Wing 
Long-range, high endurance, 

fast horizontal flight 

Broad-area surveying: rapid mapping of large fields and landscapes. Used for large-scale 

field scans (e.g. cereal crops, plantations) and monitoring migrating pest swarms. 

VTOL Hybrid 
Vertical take off plus efficient 

cruise flight 

Flexible deployment: Combines benefits of multi-rotor and fixed-wing. Can quickly launch 

and then cover wide area. Suitable for varied terrain, e.g. hilly farms. 

Rotary-Wing Helicopter 
High payload capacity, long 

endurance, vertical lift 

Heavy-duty spraying: Lifts large tanks of pesticide/fertilizer for covering many acres. Also 

used for high-altitude surveillance or remote-area mapping with powerful sensors. 

Nano/Micro Drone 
Very small size, lightweight, 

ultra-precise flight 

Close-quarters monitoring: Inspecting under foliage or between vines, indoors or under 

greenhouse benches. Ideal for detailed crop scouting or even pollination assistance. 

Sprayer Drone (Agri-

UAV) 

Large chemical tank, multiple 

nozzles, precision controls 

Targeted application: Carries pesticides or biocontrol agents to spray exactly on identified 

pest hotspots. Reduces chemical usage by treating only infested patches. 

Multispectral Imaging 

UAV 

Equipped with multispectral or 

hyperspectral camera 

Spectral analysis: Captures plant reflectance at various wavelengths (visible and near-IR). 

Detects early stress or feeding damage invisible to RGB, enabling early pest alerts. 

Thermal Imaging Drone 
Mounted thermal infrared 

camera 

Heat-stress detection: Identifies plant stress or insect colonies via heat anomalies. Useful 

for spotting whitefly aggregations or locating animals that vector pests. 

LiDAR-Equipped Drone 
Carries LiDAR scanner for 3D 

mapping 

Structural mapping: Generates high-resolution 3D models of crop canopy. Helps detect 

canopy thinning or defoliation patterns caused by borers or beetles in forests and orchards. 

Drone Swarm 
Multiple coordinated drones, 

networked 

Parallel scanning: Covers very large farms quickly. Each UAV covers a sub-area; swarm AI 

algorithms integrate data. Useful for time-sensitive outbreaks (e.g. locusts, armyworms). 

Under-Canopy Drone 
Small, agile frame designed 

for low flight 

Sub-canopy inspection: Flies under tree canopies or between tall crops to inspect leaf 

undersides and fruit. Detects pests hidden from above, such as aphids or scale insects. 

Tethered Drone 
Stationary drone attached by 

cable (power/GPS) 

Persistent monitoring: Remains airborne for long periods (hours/days) above traps or 

critical zones. Provides continuous imaging (e.g. around livestock or greenhouses) to catch 

pest activity in real time. 

Solar-Powered HALE 

UAV 

High-Altitude, Long-

Endurance (solar/hydrogen) 

Ultra-wide surveillance: Hovers at stratospheric altitudes for weeks. Monitors very large 

regions (e.g. crop belts) and relays data; potentially used for broad pest trend observations. 

Greenhouse Monitoring 

UAV 

Automated indoor drone or 

sensor rig 

Controlled-environment scanning: Continuously surveys greenhouse plants for pests and 

diseases. Examples include camera-equipped drones that trigger insect traps or predator 

releases. 

Predator-Interceptor 

UAV 

Tiny autonomous drone 

(conceptual) 

Pest interception: (Experimental) Drone programmed to seek and intercept flying insect 

pests (e.g. moths) in mid-air. Represents future biological control method with minimal 

chemical use. 

 

Theoretical Background 

Historically, farmers have combated insect pests through 

cultural controls (crop rotation, resistant varieties), chemical 

pesticides, and constant field monitoring. Integrated Pest 

Management (IPM) stresses careful surveillance of crops so that 

control measures (like pesticide sprays or biological controls) 

are used only when needed [109, 49]. Traditional surveillance 

methods include manual field scouting and stationary traps. For 

example, pheromone-baited traps or light traps count adult 

moths or flies, providing an indirect indicator of larval 

populations [78, 37]. Agronomists also visually inspect sample 

plots for signs of chewing, discoloration, or other damage. 

Simple weather-based “degree-day” models and historical 

outbreak records are used to roughly forecast key pest lifecycle 

events (such as egg hatch or migration). However, these 

conventional approaches are labour-intensive, time-consuming, 

and limited in scale [122, 8]. They can easily miss rapidly 

developing infestations until crops are visibly damaged, forcing 

delayed, often area-wide pesticide applications. Thus, traditional 

pest forecasting frequently results in over-application of inputs 

and avoidable yield losses. There is a clear need for more 

continuous, high-resolution monitoring to implement IPM 

effectively [24]. Remote sensing technologies have long been 

applied in agriculture to monitor vegetation at large scales [1]. 

Satellite imagery and manned aircraft can measure indices like 

NDVI (Normalized Difference Vegetation Index) that correlate 

with plant health, but these approaches often lack the spatial 

detail and revisit frequency needed for pest detection [64, 110]. 

Unmanned Aerial Vehicles (drones) overcome this gap by flying 

at low altitudes and capturing very high-resolution data. Modern 

agricultural drones come in different airframe types (multirotor, 

fixed-wing, hybrid VTOL, etc.) and can carry a variety of 

sensors [79, 111]. These may include high-resolution RGB 

cameras, multispectral or hyperspectral cameras (capturing 

specific wavelength bands beyond the visible), thermal infrared 

cameras, and even LiDAR units for 3D canopy mapping. Each 
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sensor provides different clues [80]. For instance, healthy 

vegetation strongly reflects near-infrared light, so areas where 

pests have damaged leaves will stand out as anomalies in 

multispectral images. Thermal cameras can reveal subtle 

temperature differences, potentially indicating plant stress or 

large clusters of insects (e.g. a swarm might emit extra heat). As 

a drone flies, it collects geotagged data points or overlapping 

photographs, which can then be stitched into detailed maps of 

the field [50]. These maps reveal spatial patterns of plant stress or 

discoloration that may indicate pest activity long before human 

scouts notice it. Processing this wealth of data relies on AI 

techniques. In particular, machine learning models can be 

trained to recognize pest-specific signatures in images and 

sensor data [65]. Convolutional Neural Networks (CNNs) have 

revolutionized image recognition: given sufficient labelled 

examples, a CNN can learn to distinguish between healthy 

foliage and damage caused by a particular caterpillar or beetle 

species [123, 9]. Object-detection networks (like YOLO or Faster 

R-CNN) can even locate and count individual insects or eggs in 

an image [81]. Other models support vector machines, decision-

tree ensembles (random forests or gradient boosting) can 

classify patterns in spectral or time-series data. Recurrent neural 

networks (LSTM, GRU) or other time-series models can analyze 

sequences of weather and trap-count data to forecast pest 

population trends [112]. In short, AI algorithms sift through multi-

dimensional data to classify pests and predict outbreaks. By 

automating identification and trend analysis, they turn raw 

images and trap counts into actionable insights [66]. 

In addition to drone imagery, many surveillance systems 

integrate ground-based sensors. Smart traps equipped with 

cameras or acoustic microphones can detect and sometimes 

identify insects as they enter [18]. Soil and weather sensors 

(measuring moisture, temperature, humidity) feed the network 

with environmental context [113]. This Internet-of-Things (IoT) 

data is incorporated into predictive models. For example, a 

model might take recent trap counts, local 

temperature/precipitation data, and plant growth stage to issue 

an early warning of an impending infestation [124, 82]. The 

theoretical foundation of modern pest surveillance thus 

combines classical agricultural science (pest ecology, IPM 

principles) with cutting-edge sensing and AI: continuous data 

collection from drones and sensors is analyzed by intelligent 

algorithms to enable a proactive approach to crop protection [51]. 

 
Table 2: Key AI Techniques Used in Pest Identification and Forecasting 

 

AI Technique Description / Application 

Convolutional Neural 

Networks (CNNs) 

Deep learning models trained on images to classify insects or damage. Used to identify pest species from photos of 

leaves or traps. 

Object Detection (YOLO, 

R-CNN) 

Real-time detection models that locate and count pests within an image. Enables spotting individual insects (e.g. locusts, 

caterpillars) in drone photos. 

Recurrent Neural 

Networks (RNN / LSTM) 

Models that analyze temporal sequences. Used for forecasting pest populations or migration over time based on historical 

counts and weather data. 

Support Vector Machines 

(SVM) 
Classical ML classifiers. Employed to distinguish pest vs. non-pest image patches or sensor spectra when data is limited. 

Random Forest / Gradient 

Boosting 

Ensemble tree-based models for robust classification/regression. Used to predict outbreak risk from combined features 

(e.g. trap counts, climate data). 

Bayesian Networks 
Probabilistic models incorporating expert knowledge. Used for risk assessment, accounting for uncertainty in pest spread 

under varying conditions. 

Transfer Learning 
Adapting pretrained image models to new pest datasets. Allows rapid deployment of AI by fine-tuning general models 

(e.g. from common crops) to specific local pests. 

Unsupervised Clustering 

(K-Means, DBSCAN) 

Grouping data without labels. Helps detect unusual pest population patterns or group fields with similar infestation 

levels. 

Ensemble Learning 
Combining multiple AI models (bagging, boosting) to improve accuracy. For example, merging CNN and SVM 

predictions to reduce misclassification of pests. 

Graph Neural Networks 
Advanced models for spatial data. Can represent farm areas as connected nodes, learning how pest pressure in one part of 

a field influences neighbouring areas. 

Autoencoders / Anomaly 

Detection 

Neural nets that learn normal crop patterns and flag deviations. Useful for spotting novel pest outbreaks as anomalies in 

imaging or sensor data. 

Semantic Segmentation Pixel-level classification (e.g. U-Net). Used to outline diseased leaf areas or infested crop sections in aerial images. 

Reinforcement Learning 
Training AI agents (e.g. drone control policies) via trial and error. Could optimize flight paths or spraying strategies to 

maximize pest coverage with minimal resources. 

Hyperspectral Analysis 
Deep learning applied to hyperspectral cubes. Differentiates subtle biochemical changes in plants caused by specific 

pests, enabling early detection. 

Data Augmentation / 

GANs 

Techniques to synthetically expand training datasets. Generative Adversarial Networks (GANs) can create realistic pest 

images to train models, improving detection of rare pests. 

 

Technological Advancements 

Modern drone platforms act as the “eyes” of a precision pest 

management system. They are built with GPS navigation, 

autopilot capability, and pre-programmed flight paths, allowing 

a single UAV to systematically survey large farms multiple 

times per week. These drones can carry an array of sensors on a 

single flight [84]. For example, a drone might mount a high-

resolution RGB camera for visual data, a multispectral imager 

for vegetation indices, a thermal camera for heat mapping, and 

even a lightweight LiDAR unit for 3D canopy structure [83]. As 

the drone flies over a field, it continuously collects geotagged 

imagery and sensor readings at centimeter-level resolution [26, 

114]. This raw data is typically streamed wirelessly or 

downloaded after the flight and then fed into AI processing 

pipelines. 

Once the data is collected, AI-driven software analyzes it to 

detect and forecast pests. Computer vision algorithms can stitch 

the drone’s photographs into a large orthomosaic map, then 

apply convolutional neural networks (CNNs) to each image tile 
[39]. The CNN may be trained to recognize specific insects (for 

instance, spotting fall armyworm caterpillars or whitefly clusters 

on leaves) or damage patterns (such as holes, mines, or milky 
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aphid secretion) [85]. Other algorithms compute plant stress 

indices from multispectral data (e.g. anomalies in near-infrared 

reflectance). By overlaying successive maps in time, the system 

can also identify new areas of deterioration [115]. Simultaneously, 

machine learning models may incorporate weather forecasts and 

historical data to predict how a detected pest population will 

spread [52]. Many platforms automate the entire workflow: the 

moment a drone survey detects a dangerous pest level in one 

corner of the farm, the system flags it on a map. Farmers then 

receive an alert through a smartphone app or dashboard, 

pinpointing exactly which fields or rows need attention [86]. In 

practice, these technologies form a closed-loop monitoring-and-

response system. Drones fly on schedule, AI analyzes the 

imagery, and decisions are made automatically or semi-

automatically [2]. For example, if a surveillance drone spots an 

outbreak of stem borers in a cotton field, the system can 

automatically dispatch a pesticide-spraying drone loaded with 

the appropriate insecticide, directed only to the affected sections 
[116]. This means that sensing and actuation occur in quick 

succession: the time from detection to intervention is drastically 

shortened [86]. In high-tech greenhouses, fully automated micro-

drones or ceiling cameras now vigilantly watch for flying insect 

pests. In one demonstration setup, ceiling-mounted cameras 

identify harmful flies by wingbeat frequency and size; tiny bat-

like drones are then released from charging stations to intercept 

and kill only those pests mid-flight, leaving beneficial insects 

untouched [87]. Such innovations illustrate the broad reach of 

drone-AI integration, from sprawling open fields to controlled-

environment agriculture, making pest control both smarter and 

more efficient [117]. 

Networking and connectivity enhancements further boost these 

systems. As 5G and IoT infrastructure expand into rural areas, 

drones can stream high-definition video to cloud servers in real 

time for rapid analysis [10]. Multiple drones can work in concert: 

for instance, a leading UAV might transmit data to other drones 

in flight, enabling a coordinated “swarm” search of a large 

plantation. Cloud platforms can aggregate data from satellite 

imagery down to drone data to create a unified monitoring 

framework [88]. Over time, shared databases allow AI models to 

improve by learning from many farms and regions, covering 

diverse pest species and crops. In summary, the technological 

trend is toward fully integrated systems: autonomous drones 

gather data and, guided by AI, trigger precise responses, 

transforming pest forecasting into a fast, data-driven process 

rather than a slow manual task [40]. 

 

Applications in India and Globally 

AI-enabled drone surveillance and analytics are being adopted 

worldwide, from smallholder farms to national programs. In 

India, for example, the government has launched several 

initiatives to leverage these technologies [89]. In 2024 the 

National Pest Surveillance System (NPSS) was rolled out under 

the Digital Agriculture Mission. This AI-driven platform allows 

farmers to upload images of diseased plants from over 60 major 

crops; the system uses image recognition to identify the pest or 

disease and immediately provides management advice through 

mobile and web apps in local languages [90]. The NPSS has 

already issued thousands of real-time advisories for crops like 

rice, wheat, maize, cotton, pulses, mango, and banana. States 

have also piloted AI-drone programs. In Maharashtra’s cotton 

belt, drones equipped with cameras and AI models scan fields 

for bollworm infestations, enabling precise spraying and 

significantly reducing damage [101]. The early success led the 

state to formalize an “AI in Agriculture” policy for 2025-2029. 

Private enterprises and farmers are also embracing drone-AI 

tools [27]. In Kerala and Karnataka, start-ups have introduced 

drone sprayers that cover several hectares in minutes; one 

company reported that cotton and rice farmers saw ~30-35% 

yield increases and slashed water and fertilizer use by over half 

after switching to precision spraying [53]. Horticultural farmers 

use sensor networks and smartphone apps to complement aerial 

monitoring. For instance, soil moisture and weather sensors 

installed by an agri-tech firm now serve tens of thousands of 

acres of orchards and fields, helping growers only water and 

fertilize when plants truly need it (healthier plants are more 

resistant to pests) [19]. In a mango orchard in Telangana, farmers 

simply photographed a diseased leaf with a mobile app. The app 

instantly diagnosed a fungal infection (sooty mold) and 

recommended a fungicide, preventing what could have become a 

costly outbreak [41, 100]. This kind of smartphone-based AI 

diagnosis (such as the Plantix app, which covers 30+ crops and 

multiple languages) empowers farmers to act on pest problems 

in real time, complementing drone observations [28]. 

 
Table 3: Comparative Pest Outbreak Cases: Traditional vs AI-Drone Forecasting Systems 

 

Pest & Crop 

(Region/Year) 
Traditional Forecasting & Response AI + Drone Forecasting & Response 

Fall Armyworm 

(Maize, Africa) 

Manual trap surveys and field checks; often alerts 

arrive after larvae are widespread, causing heavy 

defoliation and yield loss. 

Drones survey fields with multispectral cameras; AI spots stressed patches 

early and predicts spread; enables targeted spraying on infestation zones, 

greatly reducing damage. 

Desert Locust 

(Africa/India) 

Ground patrols and farmer reports; broad aerial 

pesticide spraying after swarms appear; often slow 

to react as swarms move quickly. 

Drones equipped with thermal/multispectral sensors map swarm locations 

and breeding sites; AI forecasts swarm movement; allows pre-emptive, 

focused spraying, containing outbreaks faster. 

Pink Bollworm 

(Cotton, India) 

Pheromone trap counts; scheduled or reactive 

spraying; infestation often advanced before 

control, leading to cotton boll damage. 

Aerial surveillance identifies moth concentrations or early larval damage; 

AI generates hotspot maps; precise insecticide or biocontrol release only 

where needed, protecting bolls. 

Brown Planthopper 

(Rice, Asia) 

Expert weather models (monsoon forecasts) and 

field scouting; routine insecticide programs; 

widespread spraying often used. 

UAVs capture canopy images; AI detects subtle nutrient stress from 

hoppers; integrates weather data to forecast outbreaks; spot-treats or 

releases natural enemies at high-risk times, cutting blanket spray. 

Colorado Potato 

Beetle (Potato, USA) 

Field inspections and calendar sprays; beetle 

populations often high before detection, requiring 

large insecticide use. 

Drone scans for beetle eggs/larvae on plants; AI counts and maps 

densities; only infested rows are sprayed or treated with predators, 

reducing pesticide use while keeping beetle pressure low. 

Codling Moth (Apple, 

Global) 

Pheromone traps alert when moths emerge; timed 

orchard sprays; many fruit still struck by larvae 

inside before detection. 

Drones image orchard canopies; AI identifies initial fruit damage or moth 

hotspots; enables targeted application of bacillus or mating disruptors to 

infected trees, reducing wormy apples. 

Grape Mealybug Sticky and visual traps; spot sprays often only Multispectral and RGB drone imagery highlight infested vines; AI locates 
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(Vineyard, USA/EU) after mealybugs spread; virus transmission may 

occur before control. 

mealybug colonies; treatments (parasitoid releases or spot sprays) are 

applied only to those vines, limiting spread. 

Pine Bark Beetle 

(Forest, N. America) 

Ground crews survey and mark red/browning 

trees; salvage logging after heavy infestations, 

with significant timber loss. 

High-altitude UAVs use thermal and spectral sensors to detect infested 

trees by heat and reflectance; AI maps outbreak perimeter; enables early 

tree removal or pheromone trapping ahead of spread. 

Whitefly (Vegetables, 

Global) 

Calendar-based blanket sprays; little actual 

scouting; populations often resistant; 

environmental impact. 

Periodic drone flights count whitefly on leaf images using AI; threshold 

alerts trigger targeted sprays or biocontrol release in affected crop patches, 

preserving beneficials elsewhere. 

Mango Hopper 

(Mango, India) 

Regular scheduled spraying; effectiveness varies; 

heavy pesticide use; often misses localized 

outbreaks. 

Field drones and sticky traps feed image data to AI; it detects hopper 

hotspots on specific trees; enables spot application of bio-pesticides on 

infested trees, boosting yield and reducing chemicals. 

Soybean Aphid 

(Soybean, USA) 

Manual sampling against action thresholds; broad 

insecticide campaigns if thresholds exceeded; late 

timing common. 

Weather and satellite data feed AI models that predict aphid flights; drones 

confirm early infestations; precise treatment or resistant variety planting is 

enacted before major damage. 

European Corn Borer 

(Corn, Europe) 

Pheromone traps and scouting; seasonal sprays or 

Bt maize; many maize ears still perforated by 

larvae. 

Drones with hyperspectral imagers detect early feeding stress; AI forecasts 

second-generation hatch; targeted foliar sprays or localized Bt release 

protect vulnerable areas. 

Cotton Bollworm 

(Cotton, Africa) 

Often blanket pesticide applications (older 

organophosphates); high application frequency; 

resistant populations persist. 

UAVs scout for bollworm egg pods; AI pinpoints infestation clusters; 

focused release of baculovirus or safe biopesticides only in hot zones, 

lowering chemical load while controlling the pest. 

Sugarcane Stem Borer 

(India) 

Soil drenches or uniform foliar sprays twice 

yearly; spotty coverage; labor intensive and 

costly. 

Drone NDVI mapping reveals cane patches with dead hearts (infestation 

symptom); AI flags those areas; targeted application of entomopathogenic 

nematodes or endophytic treatments concentrates on problem spots. 

Coffee Berry Borer 

(Coffee, Latin 

America) 

Sweep nets and canopy fogging; many infested 

berries escape treatment; final yield and quality 

drop. 

High-resolution drone imaging of coffee trees; AI identifies boreholes on 

berries or entrance sites; spot fumigation or release of parasitoids in 

flagged areas improves harvest quality. 

 
Globally, similar success stories are emerging. In Africa and the 
Middle East, governments and NGOs have flown drones to 
combat locust swarms [102]. UAVs equipped with thermal and 
multispectral cameras can spot swarm aggregations and 
vegetation greening in deserts, guiding targeted aerial spraying 
of pesticides [20]. For example, UN-backed operations in Kenya 
and Somalia tested drones that quickly mapped potential locust 
breeding grounds, enabling focus on hot spots [11]. In the 
Americas, large farms use drones to survey crops for invasive 
pests; U.S. corn and soybean growers, for instance, employ 
drones with AI to detect fall armyworm and corn borer early in 
the season, allowing precise interventions [29]. In China, 
authorities have integrated thousands of agricultural drones into 
rice and cotton fields both for spraying and for imaging crop 
health; data analytics then predict pest outbreaks so that 
interventions can be timed [42]. In Europe and Australia, 
researchers and farmers likewise use drones for specialty crops: 
vineyards and orchards are scanned for grapevine moth, codling 
moth, and fruit fly infestations, often combining drone data with 
weather models to forecast hot spots [43]. Innovative products 
have even emerged: Dutch engineers have developed palm-sized 
indoor drones that fly among greenhouse tomatoes or peppers, 
intercepting moths in mid-air (killing them on contact) based on 
AI flight-pattern recognition, thus providing pesticide-free 
control [54]. In all these cases, integrating drones with AI 
transforms pest monitoring from sporadic field checks into 
continuous, data-rich surveillance, improving resilience in crop 
protection worldwide [3, 103]. 
 

Benefits and Impact 

• Early detection of pests: By uncovering infestations at 
their onset, drone-AI systems allow intervention before the 
damage spreads. In practice, farmers report catching 
outbreaks weeks sooner than with manual scouting, 
preventing what could have become major yield losses [55]. 

• Targeted treatments: Precise maps of pest hotspots mean 
that pesticides or biological controls are applied only where 
needed. This drastically cuts chemical usage and cost. 
Studies and field reports indicate pesticide reductions of 30-
70% when using precision UAV spraying versus blanket 

sprays [44, 104]. 

• Increased yield and quality: With pests held in check 
more effectively, overall crop productivity improves. Trials 
have shown 15-35% yield increases in fields managed with 
drone/AI surveillance, since plants suffer less damage. 
Produce quality is also higher (e.g. cleaner fruit) when 
infestation levels are minimized [31, 67]. 

• Labor and time savings: A single drone flight can cover 
dozens of acres in minutes, a task that would take a team of 
scouts many hours or days. This efficiency frees up labour 
for other tasks. In regions with labour shortages, automating 
field surveys is a major advantage [56]. 

• Resource efficiency: AI analysis often integrates other 
farm data (soil moisture, nutrient levels), so that overall 
farm management improves. For example, healthier (well-
watered, well-nourished) plants are less susceptible to pests; 
drones identifying water-stressed areas help farmers irrigate 
optimally, thereby indirectly reducing pest risk. Resources 
like water and fertilizer are used more judiciously, 
improving sustainability [118, 12]. 

• Environmental and safety benefits: Reduced pesticide use 
means less chemical runoff into soil and waterways and 
lower exposure risk for farm workers and beneficial insects. 
Precision applications also allow use of targeted biocontrol 
agents (parasitoids, pheromones) instead of broad-spectrum 
poisons. Many projects highlight improvements in farmer 
health and ecosystem biodiversity when switching to 
precision methods [45]. 

• Better decision-making: The data collected build a 
historical record of pest activity. This knowledge enables 
more accurate forecasting and planning. Farmers can adjust 
planting dates, choose resistant varieties, or rotate crops 
more strategically. On a national scale, aggregated data can 
inform policy and insurance decisions [68]. 

• Economic gains: All of the above translate into better farm 
profitability. Higher yields and lower input costs improve 
net income. Some reports suggest return-on-investment 
times of just a few seasons after adopting drone/AI pest 
management [13, 32]. 
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Table 4: Challenges and Mitigation Strategies for Drone and AI Adoption in Pest Surveillance 
 

Challenge Mitigation Strategy 

High equipment and 

operational costs 
Government subsidies, leasing/rental schemes, cooperative purchasing to lower entry barriers for small farmers. 

Lack of technical expertise Training programs and field schools for farmers; extension workshops; partnerships with agri-tech providers. 

Poor rural connectivity Use of edge computing on drones (offline AI analysis); investment in 5G/Internet infrastructure in farming zones. 

UAV regulatory restrictions Streamlined drone licensing and clear agri-UAV policies; creation of approved low-altitude zones for agriculture. 

Data privacy and ownership 

concerns 
Implementation of secure data standards; farmer-controlled data-sharing agreements; anonymized datasets. 

Limited training data for AI 

models 

Development of open-access pest image databases; crowdsourcing labels from farmers; international data 

collaborations. 

Reliability and accuracy of AI Rigorous validation and field testing of models; combine AI insights with agronomist review; use of explainable AI. 

Weather and environmental 

constraints 

Robust drone designs (waterproof, high-wind stability); alternative sensors (radars) in poor light; flight scheduling 

apps. 

Battery life and endurance 

limits 
Adoption of advanced battery tech; solar or fuel-cell UAVs; coordinating multiple flights to cover large areas. 

Integration with existing farm 

systems 

Adoption of open APIs and interoperability standards; modular platforms that can plug into farm management 

software. 

Farmer adoption and trust Demonstration projects and pilot programs showing clear benefits; user-friendly interfaces; local language support. 

Maintenance and support 

infrastructure 
Establishment of local UAV service centers; training farmers in basic drone maintenance; spare-part networks. 

Environmental impact 

(wildlife, noise) 
Guidelines for eco-friendly operations (quiet rotors, wildlife-safe altitudes); impact assessments before deployment. 

Cybersecurity and data 

protection 

Encrypted communications for drone data; secure firmware updates; authentication protocols to prevent unauthorized 

access. 

Socio-economic inequality 
Inclusive programs targeting smallholders (community-shared drones, subsidies); addressing affordability to avoid 

digital divide. 

 

Limitations and Challenges 

Despite their promise, drone-and-AI surveillance systems face 

several challenges. Infrastructure in many farming regions is 

limited: poor internet connectivity in rural areas can hinder real-

time data transmission, and local power or charging stations may 

be scarce for maintaining drone operations [57]. The UAV 

hardware itself can be expensive, especially sophisticated 

models with advanced sensors, which can be a barrier for small-

scale farmers [119]. Harsh weather is another factor; drones 

cannot fly in heavy rain or strong winds, and cloud cover can 

reduce the quality of optical and thermal images. Battery life and 

payload capacity also limit flight duration and sensor 

combinations, although these are improving [69]. 

Regulatory and operational issues also arise. Many countries 

have strict rules on drone flights (altitude limits, no-fly zones, 

licensing requirements), which can complicate regular 

agricultural use [105]. Standardizing protocols for safe drone use 

and finding insurance or liability solutions are ongoing concerns 
[14]. On the AI side, reliable pest identification depends on high-

quality training data [33]. Diverse pest species and local 

variations mean models must be frequently updated; a model 

trained in one region may misidentify pests in another. Mistakes 

(false positives or negatives) can reduce farmers’ trust in the 

system [58]. Interoperability is another hurdle: there are many 

manufacturers of drones, sensors, and AI platforms, but no 

universally adopted standards, making integration into existing 

farm management systems complex [4]. 

Social and economic factors also play a role. Farmers may be 

hesitant to adopt new technology without clear support and 

training. Extension services and government programs may need 

to ramp up education on how to use these tools effectively [34]. 

Data ownership and privacy concerns have emerged: farmers 

may worry about who can access the aerial data of their fields 

and how it might be used [70]. Finally, there are broader concerns 

to address: ensuring equitable access so that smallholder farmers 

can benefit (not just large commercial farms), and minimizing 

any negative impacts of UAVs on wildlife or farm communities. 

Overcoming these challenges will be key to unlocking the full 

potential of AI-driven pest surveillance [21]. 

 

Future Prospects 

The future of pest surveillance looks increasingly autonomous 

and integrated. Drone technology continues to advance: newer 

UAVs promise longer flight times through solar or fuel-cell 

power, enabling continuous monitoring of large areas [59]. 

Miniaturization is advancing too, with micro-drones able to 

navigate complex canopy structures or greenhouse aisles. 

Swarm technology, where multiple drones coordinate a survey 

in parallel, is on the horizon such systems could map vast 

plantations in minutes [71]. Connectivity improvements, such as 

widespread 5G and IoT networks, will allow drones to transmit 

data instantly and coordinate with other farm machines in real 

time. Artificial intelligence is also evolving [15]. Next-generation 

models will be more adaptable, using transfer learning to apply 

knowledge from one region’s pest problems to another’s [106]. 

Federated learning and shared data platforms could allow 

models to improve collectively without exposing private farm 

data [120]. Edge computing (AI running directly on the drone) 

will become more common, giving immediate feedback even 

where internet is weak [72]. Researchers are exploring 

sophisticated algorithms like graph neural networks to model the 

spatial spread of pests across a landscape, or reinforcement 

learning to optimize drone flight paths and treatment strategies 
[107]. Generative AI might help too, by simulating pest 

population dynamics under climate change or by creating 

synthetic training images to improve rare pest detection [46]. 

Integration with other technologies will create even smarter 

systems. For example, data from satellites, weather stations, 

drones, and farmer smartphone reports could be fused into a 

“digital twin” model of a farm’s ecosystem [73]. Augmented 

reality (AR) could allow agronomists to view pest maps overlaid 

on their tractor’s windshield or on a tablet in the field. 

Blockchain and secure data-sharing protocols might enable 

traceable, farmer-controlled pest data exchanges [5]. On the 
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hardware side, we may see hybrid drones that both monitor and 

act for instance, drones that release sterile insects or distribute 

pheromones in response to detected infestations [74]. Advances in 

robotics could see ground vehicles working in tandem with 

aerial drones (aerial scans identify weeds or pests, then an 

autonomous tractor steps in to target-spray) [22]. Regulatory and 

support systems are likely to adapt as well: we can expect 

clearer UAV guidelines for agriculture and more government 

incentives for precision farming tech. Education and extension 

services will continue to help farmers adopt AI tools [75]. In the 

longer term, the vision is of a fully connected, sensor-driven 

farming system where pests are anticipated and neutralized 

before they become a problem. Such a future will greatly 

enhance crop resilience in the face of new pest pressures and 

climate volatility [16, 60]. 

 

Conclusion 

Insect pests will remain a major challenge for agriculture, but 

the convergence of drone technology and artificial intelligence 

offers powerful new tools to meet this challenge. By enabling 

continuous, large-scale surveillance with automated analysis, 

these systems shift pest management from reactive to proactive. 

Farmers gain earlier warnings of outbreaks, allowing for 

targeted treatments that save yield and reduce chemical usage. 

Case studies from India and around the world demonstrate clear 

benefits higher productivity, cost savings, and more sustainable 

farming practices. However, realizing this potential will require 

investment in infrastructure, data, and training, as well as 

sensible regulation and support from governments and industry. 

With these challenges addressed, the integration of drones and 

AI is poised to reshape pest forecasting systems. The result will 

be more resilient crop production and enhanced food security as 

agriculture adapts to evolving pest threats and a changing 

climate. 
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