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Abstract 
The study was conducted in Mahabubnagar district, Telangana, during kharif, 2024, where accurate rice 

yield estimation is crucial for food security planning and agricultural management, particularly under 

diverse agro-climatic conditions and fragmented landholdings. A semi-physical model (SPM) was adopted, 

integrating multi-source datasets: Sentinel-1 synthetic aperture radar (SAR) and Sentinel-2 NDVI for rice 

area mapping, meteorological inputs (rainfall, temperature, solar radiation), and physiological crop 

parameters. Sentinel-1A backscatter data were processed using temporal filtering and supervised machine 

learning (Random Forest) classification, combined with Sentinel-2A/2B optical data, to delineate rice 

cultivation areas with an accuracy of 98.33% and a kappa coefficient of 0.97 during the kharif season, 

showing only a 0.76% deviation from district statistics. 

Rice yield estimation was driven by net primary productivity (NPP), derived from meteorological and crop 

growth parameters, then converted to grain yield using a crop-specific harvest index. Calibration and 

validation with ground-truth field survey data yielded strong predictive performance (R² = 0.79, RMSE = 

1159 kg ha-1, nRMSE = 24.19%), demonstrating the model’s effectiveness in capturing spatial and 

temporal yield variations at the regional scale. 

 

Keywords: Sentinel-1A, random forest, crop area estimation, yield estimation, semi physical model 

 

1. Introduction  

Rice is the principal staple crop in India, playing a central role in national food security and rural 

livelihoods. Yield estimation at regional scales is essential for crop insurance, procurement 

planning and food supply management. In districts like Mahabubnagar, Telangana, where rice is 

cultivated under diverse irrigation and soil conditions, traditional crop cutting experiments 

(CCEs) are often insufficient due to logistical challenges and limited spatial coverage (Dwivedi 

et al., 2019) [3]. To overcome these limitations, remote sensing and modelling-based approaches 

are increasingly being used for yield estimation. 

Semi-physical models have emerged as a promising approach that balances empirical and 

process-based techniques. These models simulate net primary productivity (NPP) by 

incorporating physiological parameters such as photosynthetically active radiation (PAR), 

radiation use efficiency (RUE) and temperature stress functions. The resulting NPP is converted 

to crop yield using crop-specific harvest index (HI) values (Monteith, 1972; Field et al., 1995) 

[10, 4]. Unlike fully mechanistic crop models, semi-physical model require fewer inputs while still 

capturing key biological processes, making them well-suited for large-scale, data-sparse regions. 

The use of remote sensing, especially the combination of Sentinel-1 Synthetic Aperture Radar 

(SAR) and Sentinel-2 optical sensors, enables accurate crop area delineation and monitoring. 

Sentinel-1 SAR data provide robust, cloud-penetrating imagery critical during the monsoon 

(kharif) season, while Sentinel-2 imagery captures vegetation indices such as NDVI that 

correlate with chlorophyll content, canopy structure and biomass (Veloso et al., 2017; 

Pazhanivelan et al., 2022) [17, 13]. Integration of these sensors allows for improved spatial 

mapping of paddy fields, even in fragmented and mixed cropping landscapes (Mansaray et 

al.,2019) [9]. 

Several studies have demonstrated the value of such approaches in India and globally. Jain et al. 

(2016) used MODIS-based NDVI time-series and semi-empirical models for large-scale rice  
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yield prediction in eastern India. Dwivedi et al. (2019) [3] 

combined crop growth simulation and remote sensing to 

estimate rice yield in the Indo-Gangetic plains. Pazhanivelan et 

al. (2022) [13] illustrated how the fusion of Sentinel-1 and 

Sentinel-2 improved crop area and yield estimation in Tamil 

Nadu. These studies reinforce the reliability and scalability of 

combining physiological modelling with satellite observations 

for operational crop monitoring. 

This study aims to apply a semi-physical model for rice yield 

estimation in Mahabubnagar district, integrating Sentinel-1 and 

Sentinel-2 data for accurate rice area mapping. The model uses 

PAR-based NPP estimation, calibrated with meteorological 

inputs and field-measured yield data. The overarching goal is to 

provide a scalable, cost-effective and timely yield estimation 

framework for district-level agricultural monitoring in India. 

 

2. Study area 

Rice is the major crop predominantly cultivated in 

Mahabubnagar district of Telangana state. The study area is 

Mahabubnagar district of Telangana covering 16.737509° N 

latitude, 78.008125° E with altitude of 490 m which is shown in 

Fig 1.  

Mahabubnagar district in Telangana is predominantly covered 

by two major soil types: red sandy soils (Alfisols) and black 

cotton soils (Vertisols). Alfisols, found mainly in upland areas, 

are well-drained but low in organic matter and water-holding 

capacity, making them suitable for rainfed crops like groundnut, 

millets, and pulses. In contrast, Vertisols are deep, clay-rich soils 

with high fertility and moisture retention, ideal for crops such as 

cotton and paddy, though they pose challenges due to their 

swelling and cracking nature. The region receives an average 

annual rainfall of 600 to 750 mm, primarily during the southwest

monsoon season from June to September, which plays a crucial 

role in sustaining agriculture. However, the reliance on 

monsoonal rains also makes farming in the district vulnerable to 

rainfall variability and dry spells, particularly in rainfed areas. 

 

 
 

Fig 1: Study area is Mahabubnagar district, Telangana state, India. 

 

3. Data used 

The basic input data required for model development are 

photosynthetically active radiation (PAR), fraction of absorbed 

photo synthetically active radiation (faPAR), temperature stress, 

water scalar and harvest Index (HI) data will be used for yield 

estimation. Details of data product, satellite and sources are 

given below in Table 1. 

 
Table 1: Details of data product, satellite and source taken for semi physical model 

 

Data / Product Satellite/ Ground  Sensor  Resolution  Source 

Daily integrated Insolation (PAR) INSAT 3D Imager 4 km MOSDAC 

8-days composite faPAR 
Terra  

Sentinel 3 

MODIS  

OLCI 

0.5 km 

0.3 km 
NASA-EARTHDATA ESA 

8-days composite surface reflectance 
Terra 

Sentinel 2 

MODIS 

MSI 

0.5 km 

10-20 km 
NASA-EARTHDATA ESA 

Crop Mask 
Sentinel 1 

Sentinel 2 

SAR 

MSI 

20 m 

10 m 

Downloaded satellite data from Copernicus and 

developed crop mask 

Crop Sowing Date Ground Data - Mandal level Farmer interview during the field visit 

Harvest Index Ground CCE data - Mandal level Crop cutting experiment conducted 

Daily Tmin and Tmax Gridded data - 10 km Grid NASA Power 

 

4. Methodology 

4.1 Downloading and pre-processing of Sentinel -1A SAR 

data 

The Sentinel-1A satellite images covering the study area were 

obtained from the European Space Agency’s (ESA) Copernicus 

Data Space Ecosystem. Multi-temporal images collected 

between June and November, 2024 were pre-processed using 

SNAP software. 

 

4.1.1 Pre-processing of Sentinel -1A SAR data 

The SNAP software is utilized to pre-process Sentinel-1A 

satellite SAR data. Due to the large volume of Sentinel SAR 

data, extensive processing is required to eliminate noise and 

correct errors, thereby enhancing data quality. The pre-

processing workflow includes radiometric calibration, speckle 

filtering (using the Refined Lee filter) and terrain correction. 

Batch processing was employed to pre-process the satellite data

using the Batch Processing Module within SNAP’s Graphical 

Builder. Radiometric calibration was performed to generate 

sigma naught (σ°) images. To reduce speckle noise, the Lee 

Sigma filter with a 5x5 kernel was applied. Range Doppler 

Terrain correction was conducted using SRTM DEM to correct 

for geometric distortions due to topography. Finally, the 

processed data were converted from linear scale to decibels 

(dB). 

 

4.2 Computation of NDVI  

NDVI was computed from the Sentinel - 2A/2B optical data for 

the month of September, October and November, 2025. The 

formula for NDVI is given below: 

 

NDVI =  
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4.3 Crop area estimation using supervised machine learning 

algorithm 

Crop area was mapped using a supervised machine learning 

algorithm (Random Forest) applied to multi-source remote 

sensing datasets. Synthetic Aperture Radar (SAR) imagery from 

Sentinel-1A (VV & VH polarizations) was employed to capture 

key surface properties, including vegetation structure, soil 

moisture and surface roughness. These SAR datasets were 

further enhanced by incorporating optical data from Sentinel-2A 

and 2B platforms. A total of 15 layers were stacked six images 

of VV polarization, six images of VH polarization and three 

NDVI from September, October and November month. 

 

 
 

Fig 3: VV, VH and NDVI layer-stacked image for Mahabubnagar 

district kharif, 2024 

 

 
 

Fig 2: Flow chat for SAR data processing and crop area estimation 

 

Supervised machine learning using the Random Forest (RF) 

algorithm was implemented in ArcMap 10.5 with threshold 

values derived from temporal backscatter signatures and texture 

metrics to classify land cover types such as cropland, water 

bodies, urban areas, and natural vegetation (e.g., scrub and 

forest). These decision rules effectively captured crop-specific 

spatial and temporal patterns, enabling accurate identification of 

agricultural areas. 

To improve classification accuracy and validate initial results, 

the RF model was further trained using ground-truth data 

combined with multi-temporal SAR and optical imagery. This 

approach facilitated more precise mapping and delineation of 

crop zones across the study region. 

 

4.4 Yield Estimation 

A semi-physical model is a hybrid modelling approach that 

combines fundamental physical principles with empirical data or 

observed relationships to simulate real-world processes more 

accurately. Unlike pure empirical models that rely solely on 

statistical correlations, semi-physical models incorporate known 

physical laws such as radiation use, energy balance, or crop 

growth dynamics and enhance them through calibration with 

observed data. This approach offers a balance between 

theoretical understanding and practical applicability, making it 

especially useful in crop yield estimation. Each component of 

the semi physical model is described below. 

 

Photosynthetically Active Radiation (PAR) 

Photosynthetically Active Radiation (PAR) refers to the portion 

of electromagnetic radiation that green plants utilize as an 

energy source for photosynthesis (MJm−2 d−1). PAR was 

generated for the study area from INSAT 3DR INSOLATION 

data retrieved from MOSDAC data portal. After downloading 

the insolation data PAR was calculated using the formula: 

 

PAR = Daily Surface Insolation × 0.48 

 

The daily data was combined to prepare 8-day composites of 

PAR by summing up the daily insolation for the entire crop 

growth period in the study area. 

 

Fraction of Photosynthetically Active Radiation 

The fAPAR represents fraction of solar radiation absorbed by 

active, green leaves for photosynthesis, focusing solely on the 

living components of the canopy. It indicates the vegetation 

canopy's ability to absorb energy and serves as a key 

physiological indicator of vegetation structure, as well as related 

material and energy exchange processes. This parameter plays a 

crucial role in estimating plant biomass. MODIS15A2H data 

have been downloaded. The 8-day composites of fAPAR were 

generated for the study region after multiplying with the scale 

factor and extracting the sub dataset.  

 

Water Stress (WS) 

The land surface water index (LSWI) was employed in 

modelling to capture canopy water stress, helping to reflect the 

impact of moisture stress on plants. It was calculated using 

reflectance values from the Near-Infrared (NIR) and Short-Wave 

Infrared (SWIR) bands, especially around the 2120 nm 

wavelength. LSWI is particularly responsive to the presence of 

vegetation water content and underlying soil background.  

 

 
 

The calculated LSWI was subsequently used to determine the 

water stress scalar following the equation provided by Xiao et 

al. (2005) [18]. 

 

Water Stress (Water Scalar) = 1+LSWI/1-LSWImax 
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This calculation for Water Stress was performed for the entire 

crop growth period across the study area. 

 

Temperature Stress (TS) 

Daily temperature records for the crop growing season were 

obtained from the NASA POWER web portal. Air temperature, 

maximum temperature and minimum temperature at 2 m height 

(°C) were used to generate 8-day composite temperature stress 

datasets aligned with the corresponding Julian dates. 

Temperature stress was then computed using the equation 

proposed by Raich et al. (1991) [15]. 

 

Temperature stress=  

 

Where, T = the daily mean temperature (°C); Tmin = minimum 

temperature for photosynthesis (°C); Tmax = maximum 

temperature for photosynthesis (°C); Topt = optimal temperature 

for photosynthesis (°C), Topt was taken as 30°C (optimum 

temperature for rice crop). Jha et al., 2022 [7] used 30°C as 

optimum temperature for rice yield estimation using semi 

physical model. 

 

Radiation Use Efficiency (RUE) 

RUE, indicates how efficiently a crop converts absorbed 

radiation into dry matter, varies by variety and growth stage. 

The RUE was calculated with the CCE data using the following 

formula:  

 

RUE (gMJ-1) = Biomass (gm-2) / PAR (MJm-2day-1) 

 

Net Primary Product (NPP) 

The NPP is the dry matter accumulated in plant over a period of 

time (gm-2d−1) in semi physical model was determined by the 

total amount of photosynthetically active radiation (PAR) and 

the plant's capacity to absorb this radiation (fAPAR) and convert 

it into dry matter through Radiation Use Efficiency (RUE). RUE 

represents how effectively a plant transforms absorbed radiation 

into biomass. The overall biomass is estimated using the 

following formula: 

 

 
 

The NPP was calculated for 8-day composite corresponding to 

the Julian dates of other datasets and then all the NPP was 

summed up to get the final NPP(Biomass). Once, the crop 

biomass was estimated the crop yield was estimated using the 

harvest index obtained during the crop cutting experiment. 

 

 
 

Finally, the yield is calculated for the study area by multiplying 

the net primary product with the harvest index. 

 

 

 

 
 

Fig 4: Methodology adopted for Yield Estimation using semi physical model 

 

Validation 

The yield estimates from this model were evaluated by 

comparing the estimated kharif rice yield with the crop cutting 

experiments. 

 

Results and Discussion  

Crop Area Estimation 

In Mahabubnagar district, crop area was estimated for the kharif 

season, 2024 using time-series C-band SAR and optical data. 

This included dual-polarization backscatter measurements (VV 

and VH) from Sentinel-1A along with NDVI derived from 

Sentinel-2A/2B MSI imagery. The ground truth points were 

collected during the field survey and those points were used to 

extract the SAR backscatter (dB) values during the crop growth 

period. The temporal crop signatures were then generated for 

each training site by extracting the mean dB values of rice crop 

at the field level, corresponding to different crop management 

stages initial land preparation, sowing, peak vegetative growth, 

reproductive phase and final harvest. These signatures were then 

analysed to discriminate the crop.  

During the initial transplanting phase of the rice crop, the 

backscatter values were at their lowest, with VH ranging 

between -21.43 and -20.42 dB, mainly due to the waterlogged 

conditions of the fields. As the crop progressed to the maximum 

tillering stage, these values rose markedly, corresponding to the 

increase in biomass, with VH values spanning from -18.46 to -

15.84 dB. By the maturity stage, backscatter values decreased 

again, indicating a reduction in canopy moisture and structural 

alterations, with VH values between -17.63 and -16.56 dB. 

Similar patterns were observed by Bharothu et al. (2025) [2]. 
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Fig 7: Time-series of VH temporal profiles for rice crop 

 

The rice acreage map has been generated with supervised 

classification. From classification of satellite data, it was found 

that the estimated and reported area of rice was found to be 

76,577 ha and 75,993 ha, respectively in the kharif season 2024. 

Thus, the estimated area is 0.76% higher than the actual area. 

The overall accuracy and kappa coefficient were 98.33% and 

0.97 respectively.  

Similarly, Bharothu et al. (2025) [2] mapped kharif-season 

cotton, rice, and maize in two mandals of Nagarkurnool district, 

Telangana, using Sentinel-1A SAR data (June-December 2023). 

The Random Forest classifier with VH polarization delivered the 

highest performance, achieving 94.44% overall accuracy (kappa 

0.91) and closely matching official crop area records. 

Comparable results were also found by Neelima et al. (2022) [11] 

and Bhargav et al. (2022) [1]. 

 

 
 

Fig 6: Rice area map of Mahabubnagar district during kharif, 2024 

 

Yield Estimation by Using a Semi-Physical Model (SPM) 

In this model the yield was estimated using PAR, fAPAR, water 

stress and temperature stress were used as a component that 

were affecting the yield of rice crop. PAR was downloaded from 

the MOSDAC portal INSAT 3DR satellite data and insolation 

was converted to PAR by multiplying with 0.48 and then 8-day 

composites were generated. PAR, which plants absorb to drive 

photosynthesis, serves as a key indicator of crop growth 

throughout different stages (Kshetrimayum et al., 2024) [8].  

PAR values in the study area ranged from 8.2 to 81.1 MJm-2, 

with the highest values in October 2024 (73.34 to 81.1 MJm-2) 

and the lowest in November 2024 (8.2 to 8.6 MJm-2), likely due 

to decreased solar radiation. Similar results have been found by 

Dwivedi et al., 2019 [3] assessed SPM for rice yield estimation 

for during kharif, 2018 and found out that the PAR values 

ranged from 34 to 189 MJm-2 during August across India. 

fAPAR represents the actual fraction of PAR absorbed by crops 

and provides near real-time insights into crop health and 

development during the growing season. The fAPAR ranged 

between 0.2 to 1 in the study area. For water stress satellite data 

MODIS MOD09A1 dataset (8-day composite) was downloaded 

and then LSWI was computed. From the LSWI water stress was 

computed for the entire crop growth period across the study area 

and its value ranged from 0.3 to 0.8. Jha et al. (2022) [7] assessed 
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a semi-physical model for estimating rice yield and reported the 

water stress values varied between 0.679 and 1.  

Temperature stress in 8-day composites was computed from the 

temperature data acquired from the NASA power and its value 

ranges from 1: no stress to 0: maximum stress Tripathy et al. 

(2014) [16]. In the study area, temperature stress values ranged 

from 0.87 to 0.99. No significant temperature stress was 

recorded in June 2024 (0.99), whereas the highest stress 

occurred in August 2024 (0.87). 

Net Primary Productivity (NPP) is influenced by multiple 

factors, including Photosynthetically Active Radiation (PAR), 

the fraction of PAR absorbed by vegetation (fAPAR), Radiation 

Use Efficiency (RUE) and the effects of water and temperature 

stress. In the present context, estimation of rice yield is strongly 

dependent on the availability of PAR and the crop’s RUE. While 

PAR drives photosynthesis, RUE determines how effectively 

that energy is utilized for biomass formation. Variability in these 

parameters accounts for the yield differences observed at the 

mandal level. NPP happens to be a profound parameter from the 

perspective of yield for any crop (Tripathy et al. 2014) [16]. 

 

 
 

Fig 8: 8-day composite PAR maps for Mahabubnagar district during 

kharif, 2024 

 
 

Fig 9: 8-day composite fAPAR for Mahabubnagar district during 

kharif, 2024 

 

 
 

Fig 10: 8-day composites of water stress for Mahabubnagar district 

during kharif, 2024 
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Fig 7: Temperature Stress in Mahabubnagar district during kharif, 2024 

 
 

Fig 11: Rice crop yield map of Mahabubnagar district during kharif, 

2024 

 

 
 

Fig 12: Mandal average yield of Mahabubnagar district during kharif, 2024 

 

Validation of rice yield 

The yield was validated with the yield from crop cutting 

experiment conducted during the season. A total of 20 CCE was 

conducted across three mandals i.e., Nawabpet, Koilkonda and 

Devarkadra and the mandal average yield was compared with 

the model yield. 

 

 
 

Fig 13: Comparison of rice crop observed and estimated yield  

 

The model achieved a good predictive performance with an R² 

of 0.79, RMSE of 1159 kg ha-1 and nRMSE of 24.19% 

demonstrating its reliability in capturing spatial and temporal 

yield variations. The study demonstrates the model’s potential to 

accurately estimate paddy yield at the mandal level. It also 

enables the generation of spatial yield maps for kharif rice. 

Similar results were found by Pazhanivelan et al. (2020) [13] 

estimated rice yield in Tamil Nadu's Cauvery delta for the 2020-

2021 samba season using Sentinel-1A SAR data and a semi-

physical model. Average yield was 3076 kg ha-1, with Thanjavur 

recording the highest (3438 kg ha-1). Yield estimates showed 

strong agreement with observed data (R² = 0.78, RMSE = 532.74 

kg ha-1, nRMSE = 14.52%). Comparable results were also found 

by Gumma et al. (2024) [5], Jha et al. (2022) [7], Tripathy et al. 

(2014) [16] and Dwivedi et al. (2019) [3]. 

A major share of this error can be traced to the coarse spatial 

resolution of the satellite imagery that supplies key biophysical 

inputs such as PAR and fAPAR. In Mahabubnagar, rice fields 

are typically small and fragmented, which poses a challenge 

when using satellite data with coarser resolutions. These pixels 

often cover more than one field or even different crops, resulting 

in mixed pixel effects. Similar results were found by Peng et al. 

(2014) [14]. This blending of spectral information masks the 

actual variability in plant density, nutrient levels, and crop 

condition across individual fields. As a result, the semi-physical 

model which relies on these satellite-derived data to estimate 
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biomass and yield introduces a systematic bias. Areas with 

healthy, vigorous crops may be underestimated, while those 

under stress may be overestimated. This averaging effect 

increases the RMSE by distorting actual yield values, even 

though the overall spatial trend (as reflected by a high R²) 

remains consistent. 

Error is compounded by the model’s simplified representation of 

water stress. Many semi-physical frameworks infer water 

limitations from meteorological water stress indices that ignore 

fine-scale irrigation patterns. In practice, farmers in the 

command areas partially or fully offset rainfall deficits through 

canal or tube-well irrigation, particularly during the sensitive 

reproductive window. If the model penalizes growth during 

periods when the crop was actually well watered or if the stress 

coincides with phenological stages that are inherently more 

tolerant, the simulated yield will be systematically depressed 

relative to CCE measurements. 

Phenological mis-calibration and varietal specificity add a third 

layer of uncertainty. Growth-stage timing determines how 

strongly the crop responds to solar radiation and water deficits. 

When transplanting dates differ across villages or when short-

duration varieties like RNR 15048 are widely used, relying 

solely on remote sensing without incorporating local phenology 

and variety-specific parameters can misrepresent stress periods 

and radiation-use efficiency and harvest index peaks. As a result, 

even an accurate satellite-based depiction of crop greenness may 

fail to translate into precise grain yield estimates. Similarly, 

Gumma et al. (2024) [5] found that semi physical model cannot 

adapt to dynamic and rapidly changing environmental 

conditions, potentially impacting their overall adaptability. 

 

Conclusion 

In this study, rice acreage map for Mahabubnagar district was 

generated by integrating microwave and optical remote sensing 

data from Sentinel-1A and Sentinel-2A/2B satellites. The area 

estimation exhibited a marginal overestimation of 0.76% 

compared to official statistics. Using the Monteith (1977) [10] 

approach, a semi-physical spectral yield model was applied to 

estimate the Net Primary Productivity (NPP) of kharif rice. 

At the mandal level, the model achieved an RMSE of 1159 kg 

ha⁻¹, indicating a moderate deviation from crop-cutting 

experiment (CCE) yields. Results underscore that rice yield is 

primarily influenced by absorbed photosynthetically active 

radiation (APAR), with Radiation Use Efficiency (RUE) and 

Harvest Index (HI) derived from field measurements playing a 

significant role in overall productivity. The approach 

demonstrated the capability to provide kharif rice yield estimates 

by September with approximately 75% accuracy. 

Observed discrepancies may be attributed to the coarse 

resolution of satellite imagery, which can mask field-scale 

variability in crop growth and management. Additionally, the 

model may have overestimated the effects of water stress by not 

fully accounting for supplemental irrigation or less sensitive 

crop stages. Future improvements should focus on integrating 

higher-resolution datasets, refining phenological calibration and 

incorporating local agronomic and irrigation practices to 

enhance yield estimation accuracy. 
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