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Abstract 
Nutrient use efficiency (NUE) in agriculture is critical for sustainable food production, but conventional 

fertilizers often achieve only ~30-40% nitrogen (N) and 10-20% phosphorus (P) use efficiency, leading to 

environmental pollution. Emerging nano-fertilizers and “smart” input systems offer targeted delivery and 

controlled release of nutrients to improve uptake and crop yield. Nano-fertilizers include nutrient-coated 

nanoparticles (e.g. hydroxyapatite-urea, nano-DAP, nano-NPK) that release nutrients slowly, 

synchronizing with plant demand. Smart inputs encompass precision irrigation and sensing networks, 

drone-based application and advanced fertilizer coatings that respond to soil or plant cues. These 

innovations have shown yield gains of 20-80% in various crops (e.g. wheat, maize, potato, tomato) at lower 

fertilizer rates. We review global developments with a focus on India in nano-fertilizer research, 

application trials and policy support (e.g. India’s nano-urea and nano-DAP initiatives). Case studies span 

multiple cropping systems (cereals, pulses, vegetables, oilseeds). Tables summarize nano-fertilizer types, 

NUE comparisons and field trial results. Diagrams illustrate nano-delivery mechanisms and IoT-based 

precision farming. In conclusion, nano-and smart inputs show promise to boost NUE and yield while 

reducing losses, but challenges remain in cost, regulation and long-term safety. A coordinated research and 

policy effort is needed to realize these benefits in sustainable agriculture. 

 

Keywords: Nano-fertilizers, nutrient use efficiency, precision agriculture, smart inputs, controlled-release 

fertilizers, India, sustainable agriculture 

 

Introduction  

Arnon and Stout (1939) [2] provided the first rigorous, operational definition of essential plant 

nutrients by establishing three criteria that an element must satisfy to be deemed truly 

“essential”:  

1) in its absence, a plant is unable to complete its life cycle;  

2) its function cannot be replaced by another element; and  

3) it is directly involved in the plant’s metabolism (Arnon & Stout, 1939) [2].  

 

Under this definition, mineral elements are classified into macronutrients such as nitrogen (N), 

phosphorus (P) and potassium (K)required in relatively large amounts and micronutrients such 

as iron (Fe), manganese (Mn) and zinc (Zn)required in trace quantities (Marschner, 2012) [4]. 

Nitrogen is indispensable for the synthesis of amino acids, proteins, nucleic acids and 

chlorophyll and its deficiency leads to stunted growth, chlorosis and reduced yield (Marschner, 

2012) [4]. Phosphorus plays a pivotal role in energy transfer reactions through adenosine 

triphosphate (ATP) and it is an integral component of nucleic acids; phosphorus deficiency 

typically manifests as dark-green foliage, delayed maturity and poor root development 

(Marschner, 2012) [4]. Potassium functions primarily in osmotic regulation and enzyme 

activation, influencing stomatal movement, water relations and carbohydrate translocation; its 

shortage often results in wilting, necrotic spots on leaves and diminished disease resistance 

(Marschner, 2012) [4]. Micronutrients such as iron and manganese serve as cofactors in redox 

reactions, chlorophyll synthesis and the electron transport chain of photosynthesis and their  
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deficiencies cause interveinal chlorosis, reduced photosynthetic 

capacity and compromised plant vigor (Marschner, 2012). Each 

essential nutrient contributes uniquely to structural, 

physiological and biochemical processes: calcium (Ca) stabilizes 

cell walls and membranes; magnesium (Mg) is the central atom 

of the chlorophyll molecule; sulfur (S) is vital for certain amino 

acids and coenzymes; and zinc, copper, boron, molybdenum and 

chlorine participate in myriad enzymatic and regulatory 

functions (Marschner, 2012) [4]. The tightly regulated uptake, 

translocation and compartmentalization of these nutrients ensure 

that plants maintain homeostasis, optimize resource use 

efficiency and respond adaptively to environmental stresses. 

Adequate nutrient supply underpins key developmental stages 

germination, vegetative growth, flowering and fruitingby 

sustaining cell division, elongation, differentiation and 

reproductive organ formation, thereby directly influencing 

biomass accumulation and crop yield (Epstein & Bloom, 2005) 

[3]. Conversely, nutrient imbalances or deficiencies not only lead 

to visible deficiency symptoms but also impair root architecture, 

reduce photosynthetic rates, weaken plant immunity and 

predispose crops to abiotic stresses such as drought and salinity, 

as well as to biotic challenges including pathogens and pests 

(Epstein & Bloom, 2005) [3]. In modern agronomy, the Arnon 

and Stout definition remains foundational for diagnosing 

nutrient disorders, formulating balanced fertilizers and 

developing precision nutrient management strategies that align 

with sustainable intensification goals (Marschner, 2012) [4]. By 

ensuring that each essential element is supplied in the right form, 

concentration and timing, growers can optimize plant growth 

and development, enhance resource use efficiency, minimize 

environmental impacts and secure high-quality yields 

(Marschner, 2012) [4]. 

Global agriculture faces the dual challenge of raising crop yields 

and reducing environmental impact from fertilizer use. 

Traditional nitrogen and phosphorus fertilizers often achieve 

only 30-40% (N) and 10-20% (P) use efficiency before losses to 

leaching, volatilization and runoff. This inefficiency not only 

wastes resources but also leads to soil degradation, water 

eutrophication and greenhouse gas emissions. Enhancing 

nutrient use efficiency (NUE) is therefore essential for food 

security and sustainability. Emerging solutions include nano-

fertilizers nutrients encapsulated or coated at the nanoscale and 

smart input systems such as precision application, sensor-guided 

dosing and controlled-release formulations. Nano-fertilizers can 

deliver nutrients more precisely to plants, while smart inputs 

(like IoT-based monitoring and drones) optimize timing and 

placement of all inputs. This article provides a comprehensive 

review of these technologies, examining how they improve 

NUE, summarizing global and Indian research trends and 

highlighting examples across diverse cropping systems. 

 

Nutrient Use Efficiency in Agriculture 

Nutrient use efficiency (NUE) is typically defined as the crop 

yield (or nutrient uptake) per unit of nutrient applied. In practice, 

NUE values are low: for example, only about 30-40% of applied 

nitrogen and 10-20% of phosphorus is taken up by crops, with 

the rest lost to the environment. This gap arises from miss-timed 

application, uneven distribution or chemical immobilization of 

nutrients. Improvements in NUE can reduce fertilizer costs and 

environmental risks. Precision agriculture has shown that 

variable-rate application of inputs guided by soil/crop sensors 

and GPS mapping can better match nutrient supply to crop 

demand in space and time. Hedley and Yule (2015) [42] note that 

precision sensor networks allow “variable rate control of inputs, 

matching strategic nitrogen fertiliser application to site-specific 

field conditions,” thereby reducing local excesses and losses. 

Likewise, nano-and smart fertilizers are engineered to 

synchronize nutrient release with plant needs. For example, 

nano-encapsulated fertilizers release nutrients slowly through 

plant root pores, while polymer-coated “smart” granules respond 

to soil moisture and pH. Together, these approaches aim to 

increase the proportion of applied nutrients captured by the crop, 

enhancing NUE and yield. 

 

Nano-Fertilizers: Types and Mechanisms 

Nano-fertilizers are formulations where plant nutrients (N, P, K 

or microelements) are incorporated into nanostructures or 

coatings. They include nanoscale particles of conventional 

nutrients, nutrient-loaded nanocarriers andnano-composites. 

Common types are summarized in Table 1. Examples include: 

 Nano-urea (N): Liquid urea encapsulated in nanoparticles 

or stabilized by nanocarriers, such as silica or polymer 

shells. 

 Nano-DAP (P): Phosphorus fertilizer at the nanoscale (e.g. 

nanophosphate or nano-hydroxyapatite). 

 Nano-NPK: Multi-nutrient formulations combining N, P, K 

in nanoparticulate form. 

 Nano-micronutrients: Essential elements like ZnO, Fe3O4 

or Fe2O3, CuO nanoparticles (often foliar-applied). 

 Nanocomposite fertilizers: Nutrients bound to nano-clays 

(e.g. zeolite composites), graphene oxide orbiochar-based 

nanosheets for slow release. 

 Polymer-coated nanofertilizers: Controlled-release 

fertilizers where nutrients are entrapped within 

biodegradable polymer nanoparticles or hydrogel networks. 

 

Each type exploits high surface area and tuneable reactivity of 

nanoscale materials. As Madlala et al. (2024) [94] explain, the 

crystalline structure of nanoparticle carriers can enable slow, 

sustained nutrient release and amorphous nanoscale forms often 

show further gains in NUE and crop yield. These nano-

structures can pass through root and leaf barriers more easily 

than bulk fertilizer particles. For instance, polymer-encapsulated 

urea nanoparticles release N gradually, prolonging availability. 

Zeolite-nano-carbon composites have also been shown to adsorb 

nutrients and release them over weeks. 

The advantages of nano-fertilizers include precise delivery, 

reduced losses and enhanced uptake. Kekeli et al. (2025) [74] note 

that nano-fertilizers “enhance nutrient use efficiency, promote 

crop growth and minimize environmental harm by enabling 

precise nutrient delivery”. By releasing nutrients in synchrony 

with root uptake, less fertilizer is needed for the same or higher 

yield. For example, foliar sprays of nano-NPK at 25-50% of the 

conventional dose achieved equal or greater potato yields 

compared to full-dose conventional fertilizer. Maaz et al. (2025) 

[92] also highlight that nanofertilizers improve synchrony 

between nutrient release and plant uptake, boosting NUE. 

However, nano-fertilizers can have high production costs and 

potential unknown risks. Their fate in soil and long-term effects 

on microbes and soil health require more research. 

Environmental interactions are a concern; for instance, silver 

and copper NPs can be toxic to some soil microbes at high 

doses. Therefore, safety-by-design (biodegradable carriers) and 

clear regulations are important as these technologies scale up. 

https://www.agronomyjournals.com/
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Fig 1: Conceptual illustration of Nanoponics a nano-enabled nutrient delivery system. In this system, nutrient-rich aerosol (shown here) feeds plant 

roots directly. Such nano-scale delivery could enhance uptake efficiency by minimizing losses. 
 

Table 1: Lists major categories of nano-fertilizers and their key characteristics 
 

Nano-fertilizer Type Composition/Structure Benefits/Notes 

Nano-Urea 
Urea encapsulated in silica, polymer or liquid 

Nano suspension 

Higher N uptake, foliar application possible (e.g. nano-urea 

spray in India) 

Nano-DAP 
Nano-scale diammonium phosphate or 

hydroxyapatite-encapsulated P 
Improved P availability, higher PUE 

Nano-NPK 
NPK nutrients combined in nano-carriers (e.g. 

layered double hydroxides) 
Balanced multi-nutrient supply, synchronized release 

Nano-Fe (iron oxide NPs) Fe3O4or Fe2O3nanoparticles Provides micronutrient Fe, can boost chlorophyll synthesis 

Nano-Zn ZnO nanoparticles Zinc microelement in bioavailable form, often foliar-applied 

Nano-Si Silicon nanoparticle or nanogel Enhanced stress tolerance, nutrient use in some crops 

Nano-clay/Zeolite composites 
Nutrients adsorbed on nanoclay or nano-

zeolites (e.g. nano-zeolite composite) 
Slow release, reduces leaching 

Nano-Polymers (coated fertilizers) 
Nutrients coated with polymeric nanomaterials 

(biodegradable films) 
Controlled release (e.g. polymer-coated urea) 

Nano-Hydrogel fertilizers 
Nutrients trapped in hydrogel matrix 

(superabsorbent polymers) 
Moisture-responsive release, water retention 

Nanoshell/Encapsulated fertilizers 
Nano-encapsulated single nutrient (e.g. 

encapsulated K or P pellets) 
Targeted dosing, one plant-use sync 

Nano-Biofertilizers (nano-encapsulated 

microbes) 
Microbial inoculants carried on nano-carriers Better colonization, combined ferti-bio function 

Magnetic or Photoactive NPs 
Nutrients within magnetic NPs (e.g. Fe oxide 

with bound N) 
Potential for controlled delivery using fields (theoretical) 

Silica-based slow-release 
Silicon dioxide nanoparticles with adsorbed N 

or P 
Very slow nutrient release, often foliar/soil use 

Nano-fertilizer blends (mixed) 
Mixtures of above (e.g. NPK + 

biostimulantnano-combo) 
Multi-effect (nutrition + pest repellent or biostim) 

Agro-Nano emulsions 
Nano-emulsified nutrients or oils (e.g. 

polyherbalnano-suspensions) 
Improved adhesion and uptake on plant surfaces 

 

Nano-fertilizer mechanisms for increasing NUE include 

increased root penetration, foliar uptake and reduced nutrient 

transformation losses. The small particle size allows penetration 

through root epidermis or stomata, while coatings slow nutrient 

diffusion. Madlala et al. (2024) [94] emphasize that crystalline 

nano-carriers promote slow nutrient release and markedly 

improve nutrient absorption (by ~20-30% above conventional) 

due to prolonged availability. These properties synchronize 

nutrient supply with plant demand, effectively reducing the 

nitrogen application rate by up to 50% in some trials. For 

instance, field studies in potato and wheat have shown that nano-

formulations can achieve the same yields at half the N dose 

compared to standard urea. 
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Smart Inputs and Precision Nutrient Management 

Smart inputs extend beyond nano-formulations to include any 

technology that makes nutrient management more responsive. 

Key components include: 

 Precision application systems: Use GPS-guided 

machinery or drones to apply fertilizers variably across 

fields according to soil maps or plant sensors, avoiding 

blanket application. For example, drones equipped with 

multispectral cameras can identify nutrient-deficient zones 

and target them with fertilizer sprays. The Indian 

government has even employed drone delivery for nano-

urea in some regions. 

 Sensor networks and IoT: In-field sensors monitor soil 

moisture, temperature, pH and nutrient levels in real-time. 

Data analytics then adjust fertilizer injection (in fertigation) 

or recommend side-dressing. Figure 2 illustrates an IoT-

enabled precision farming system. Sensors can detect nitrate 

levels and moisture content and even identify plant stress or 

disease, enabling time/location-specific nutrient application. 

 Controlled-release “smart” fertilizers: These include 

polymer-coated fertilizers and inhibitors that respond to 

environmental triggers. For example, coated urea may 

gradually release N when soil moisture triggers polymer 

swelling. Enzyme inhibitors added to fertilizers (e.g. urease 

or nitrification inhibitors) slow nutrient conversion, 

effectively making them “smart.” Nanomaterials can 

enhance these effects, as discussed by Maaz et al. (2025) 

[92]. 

 Bio-stimulant integration: Smart inputs also cover 

combining fertilizers with bio stimulants (e.g. hormones or 

beneficial microbes). The term “smart fertilizer” has been 

used for products mixing nutrients with pest repellents or 

microbial consortia, as noted by a recent industry survey. 

These hybrids aim to improve root uptake or stress 

resilience, further raising NUE. 

 

Precision agriculture and smart inputs collectively work to apply 

the right rate, right place, right time (the 4R principles) for each 

field zone. Hedley and Yule (2015) [42] note that such variability 

management “has the potential to improve production and 

nutrient use efficiency, ensuring that nutrients do not leach from 

or accumulate in excessive concentrations”. Figure 2 (below) 

shows a conceptual diagram of IoT-sensor-based precision 

nutrient management. Sensors detect environmental factors and 

nutrient status, transmitting data to farm management systems 

that drive variable-rate applicators. 

 

 
 

Fig 2: IoT-enabled precision farming network: sensors (soil, climate, cameras) send real-time data to a central controller that adjusts fertilizer 

application rates spatially. Such smart systems allow on-the-go nutrient management. 

 

Enhancing Nutrient Use Efficiency 

Nano-fertilizers and smart inputs each contribute to NUE 

enhancements via multiple mechanisms. Collectively, studies 

report substantial increases in nutrient uptake and crop yield 

with reduced fertilizer use: 

 Higher uptake efficiency: Nano-fertilizers increase the 

fraction of nutrient absorbed by roots. For example, field 

trials have shown that nitrogen uptake efficiency can rise 

from ~22% to over 40% with nano-urea sprays. Nano-

formulations often improve plant absorption by 20-30% 

compared to conventional forms. Similarly, Goyal et al. 

(2025) [41] report that nano-fertilizers have raised NUE and 

crop yield dramatically in experiments: wheat yields up 20-

55%, maize up 22-50%, rice up 30-40% over controls. 

 Reduced loss pathways: Slow-release nano-coatings and 

precise placement minimize leaching and volatilization. By 

retaining nutrients near the root zone, nano-formulations 

reduce runoff. For instance, combining graphene 

https://www.agronomyjournals.com/


International Journal of Research in Agronomy  https://www.agronomyjournals.com  

~ 1369 ~ 

nanoparticles with conventional fertilizer has cut nitrate 

leaching in trials. Enhanced-efficiency fertilizers, of which 

many nano-products are examples, aim specifically to curb 

losses. Maaz et al. (2025) [92] summarize that controlled-

release and stabilized fertilizers including nano-

encapsulated forms are explicitly designed to enhance NUE. 

 Crop physiological improvements: Nanoparticles (e.g. 

ZnO, TiO2) can act as mild stressors that promote nutrient 

assimilation or photosynthesis. Several studies have found 

that nano-fertilizer-treated plants show greater chlorophyll, 

better root growth and stress tolerance, indirectly raising 

NUE. For example, zinc oxide NPs foliar spray increased 

maize Zn uptake by making zinc more plant-available. 

 Synergistic smart management: Sensor feedback and 

precision timing ensure that even conventional fertilizers 

perform better. For example, early-morning or split 

applications guided by real-time sensor data significantly 

enhance assimilation. Hedley & Yule (2015) [42] note that 

precision systems allow “in-season management” that aligns 

fertilizer timing with crop demand. 

 
Table 2: Quantifies comparative NUE under different approaches. For typical values, conventional urea may have NUE ~30-40%, whereas nano-

urea products claim >85% N use efficiency. Controlled-release and inhibitor-enhanced fertilizers typically improve NUE by 5-20 percentage points. 

Note that actual values vary by crop and environment. 
 

Input/Practice 
Nitrogen Use 

Efficiency (NUE) 

Phosphorus Use 

Efficiency (PUE) 

Potassium Use 

Efficiency (KUE) 
Notes/Source 

Conventional Urea ~30-40% - - Typically 30-40% N efficiency 

Nano-encapsulated Urea ~80-90% - - e.g. IFFCO Nano Urea (leaf-spray) 

Controlled-release Urea (polymer-

coated) 
~50-60% - - MR: slow release improves NUE by ~10% 

Urea + Nitrification inhibitor ~50% - - Some reports of 10-20 pp increase 

Conventional DAP (P) - ~10-15% - Typical crop PUE ~10-20% 

Nano-DAP (nano-phosphate) - ~20-40% - Reported 2-3× P uptake compared to DAP 

Conventional MOP (K) - - ~50-60% KUE often higher (50-70%) 

Nano-fertilizer blends (NPK) ~60-80% ~20-30% ~60% Across NPK, boost of 20-30% in NUE 

Smart-variable rate application 
+10-20%  

(over blanket) 
+10-20% +10-20% 

Hedley & Yule note precision tech 

improves local NUE 

Integrated 4R nutrient stewardship (Varies) (Varies) (Varies) Combines inputs; can yield best results 

Biofertilizer/microbial inoculants ~5-15% (N) N/A - Symbiotic N fixation adds N efficiently 

 

Applications across Cropping Systems 

Nano-fertilizers and smart inputs have been trailed in many 

crops, often with positive results. We highlight examples from 

cereals, pulses, vegetables and others: 

 Wheat (Triticum aestivum): Several studies report 

increased yield and NUE from nano-N and nano-NPK. 

Goyal et al. (2025) [41] cite up to 50% yield increase in 

wheat with nano-fertilizers. In India, Jitendra et al. (2024) 

found that combining nano-urea and nano-DAP improved 

wheat growth more than conventional NPK. Trials with 

nano-DAP in Pakistan saw 10-20% greater wheat yield and 

30% higher PUE than soluble P fertilizer. 

 Rice (Oryza sativa): Nano-N foliar sprays applied at 25-

50% of normal N rate gave rice yields comparable to full 

fertilizer doses. A nanoparticle-bound phosphorus source 

enhanced grain filling. In a greenhouse study, silver and 

copper nano-fertilizers improved rice root growth and 

nutrient content (with care needed to avoid toxicity). 

 Maize (Zea mays): Field tests of nano-N (urea) reported 

20-30% higher biomass and N uptake in maize. Nano-Zn 

treatments also boosted maize kernel Zn content. Precision 

placement of nano-N to the root zone raised both grain yield 

and nitrogen use efficiency (NUE rose from ~30% to ~55% 

in one report). 

 Pulses (e.g. chickpea, soybean): Foliar nano-NPK sprays 

have been used on chickpea, lentils and soy, showing 

improved nodulation and N assimilation. For instance, 

Chakrabartty et al. (2022) [11] report that nano-fertilizer 

application in chickpea increased protein content and seed 

number. Microbial “bio-nano” inoculants (symbiotic 

bacteria in nano-carriers) have shown promise to fix more N 

under stress. 

 Vegetables (e.g. tomato, pepper): A controlled-release 

nano-fertilizer with 25% N-rate improved tomato fruit yield 

and quality relative to full-dose regular fertilizer. Nano-

phosphate treatments improved tomato plant growth. Nano-

Zn and Cu sprays enhanced fruit micronutrient levels. In 

cucurbits, nano-FE foliar sprays mitigated iron deficiency. 

 Oilseeds (Sunflower, canola): Combined use of nano-and 

conventional fertilizers in sunflower increased yield and oil 

content under semi-arid conditions. One Indian study 

showed sunflower yield up ~15% with nano-N+microbe 

over normal N fertilizer. 

 Horticulture and fruits: Nano-nutrients have been trailed 

in orchards (e.g. nano-Zn and nano-B sprays on 

pomegranate and apple, improving fruit set and quality). 

Greenhouse ornamentals (roses, gladiolus) also show better 

growth with nano-fertilizers. 
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Table 3: Presents selected field trial results (yields and NUE) comparing nano-enabled inputs versus controls in different systems. Most studies 

report 10-50% yield gains and higher nutrient uptake from nano-fertilizer treatments, often at lower application rates. 
 

Crop/System Fertilizer Treatment Yield (% of control) NUE Improvement 

Wheat (India, field) Nano-Urea + Nano-DAP (50% N, 50% P rate) +30-50% grain yield NUpE ↑ (from ~25% to 40%) 

Rice (Greenhouse) CRU (controlled-release nano-urea) @ 25% N rate ~100% (equal yield) NUpE 47-88% vs 33% 

Maize (India) Nano-NPK foliar spray +20-35% biomass N use ↑20-30% 

Chickpea (field) Nano-NPK foliar (30% dose) +15% pod yield ↑ protein, ↑ P uptake 

Tomato (field) Nanophosphate (50% P rate) +25% fruit yield PUE ↑ significant 

Sunflower (semi-arid) Nano-N + biofertilizer + 75% N rate +18% seed yield NUE ↑ 15% 

Lettuce (hydroponics) ZnO NPs foliar +10% biomass Zn uptake ↑ (biofortified) 

Tomato (India, govt trial) Nano Urea spray (farm trials) ~ equal or slightly ↑ Farmers reported 4-6% more yield 

Apple orchard Nano-Zn + Nano-B foliar (dormancy spray) +12% fruit set Fruit Zn ↑ 20% 

Rice (Pakistan) Nano-DAP (75% P rate) +22% grain yield PUE ↑ 25% 

Soybean (field) Nano-Urea seed coating +10% pod number NUE ↑ ~20% 

Corn (US research) Nano-urea + polymer U (field strip) +15% yield (under stress) NUE ↑ 10% 

Wheat (India) Conventional NPK (100%) vs 4R + nano-urea +25% yield (4R+nano) NUE ↑ 20% (4R vs conv) 

Vegetable mix (Italy) Nano-N + CRF blend +20% total yield N use ↓ (20% less N used) 

Maize (Africa, drought) Nano-ZnO seed treatment +18% stand biomass ↑ drought tolerance 

 

Global Developments and Indian Context 

Research on nano-fertilizers and smart inputs is expanding 

worldwide. Major efforts come from China, India, the USA and 

Europe. Both Goyal et al. (2025) [41] and Maaz et al. (2025) [92] 

note that Asia is a hotbed of nano-agriculture research. Chinese 

institutes have led field tests of various nanomaterials in rice and 

wheat. U.S. groups are also exploring smart irrigation with 

nano-sensors, while EU projects investigate biodegradable nano-

carriers. 

India has taken a prominent role recently. The government 

launched initiatives to promote nano-urea and nano-DAP as 

novel inputs. According to the Press Information Bureau (India), 

Nano Urea (a liquid nano-fertilizer developed by IFFCO) and 

Nano DAP have been approved and distributed via national 

programs. In 2024, the Department of Fertilizers reported 

awareness campaigns, manufacturing licenses for companies and 

drone-based demonstrations for nano-urea spraying. These 

efforts aim to reduce import costs: it was estimated that 

widespread nano-DAP use could save ~66 lakh tonnes of 

granular DAP imports (worth ~₹21800 crore). 

On-farm results in India are mixed: some agronomists report 

yield boosts with nano-urea spray at low rates, while others (e.g. 

trials by PAU) saw no benefit or slight yield drops. High labour 

cost and variable formulations are cited challenges. Nonetheless, 

research and demonstrations continue. ICAR institutes are 

testing nano-fertilizers in major crops under the “Green Urea 

Mission”. 

Beyond India, nano-fertilizer products have entered markets 

(e.g. in China and Israel) and global companies are partnering on 

trials. The emerging consensus in reviews is that nano-and smart 

inputs can contribute to sustainable intensification, but adoption 

requires demonstrating cost-effectiveness and safety. A recent 

meta-analysis emphasized the need for standardized field trials 

across climates to confirm benefits. 

 

Challenges and Future Directions in Nano-Fertilizers and 

Smart Systems 

The integration of nanotechnology into fertilizers and 

precision-agriculture tools holds immense promise for 

enhancing nutrient use efficiency, reducing environmental 

footprints, and improving crop yields (Kah et al., 2020) [65]. 

However, before these innovations can be widely adopted, 

several critical challenges must be addressed. Key among these 

are potential environmental and health risks, cost and scalability 

constraints, gaps in fundamental and field research, 

technological integration hurdles, and the need for supportive 

policies and farmer training programs. This section elaborates on 

each of these areas and outlines strategic directions for future 

work. 

 

1. Environmental and Health Risk Assessment 

Nanoparticles used in fertilizers such as metal oxides (e.g., ZnO, 

TiO₂), polymeric Nano carriers, and carbon-based nanomaterials 

can persist in soils, bio-accumulate in organisms, and potentially 

enter food chains (Dimkpa & Bindraban, 2018) [26, 61]. Their 

small size and high reactivity raise concerns about phytotoxicity, 

microbial community disruptions, and off-target effects on 

beneficial soil fauna (Ge et al., 2021) [63]. To mitigate these risks, 

“safe-by-design” approaches advocate for biodegradable or 

stimuli-responsive carriers that degrade into benign by products 

only after delivering nutrients (Kah et al., 2020; Li et al., 2022) 

[54, 67]. For instance, encapsulating nutrients in chitosan-based 

nanoparticles can enhance controlled release while ensuring that 

the carrier material is naturally metabolized by soil microbes 

(Ahmad et al., 2019) [56]. Comprehensive life-cycle assessments 

and long-term fate studies spanning from nanoparticle synthesis 

through field application and post-harvest residues are essential 

to establish exposure thresholds and environmental guidelines 

(OECD, 2021) [69]. Regulatory bodies in Europe and North 

America are beginning to develop frameworks for 

nano-agrochemicals, but harmonized international standards are 

still lacking (EFSA, 2022) [62]. Developing standardized testing 

protocols for nanoparticle persistence, leaching potential, and 

Eco toxicological impacts will be critical to inform safe 

deployment strategies. 

 

2. Cost, Scalability, and Farmer Adoption 

While laboratory-scale synthesis of nano-fertilizers demonstrates 

impressive nutrient-use efficiencies, translating these methods to 

commercial production poses economic hurdles. High-purity 

precursors, specialized reactors, and quality-control processes 

inflate manufacturing costs compared to conventional fertilizers 

(DeRosa et al., 2010) [25, 60]. To achieve cost parity, research 

must focus on low-cost raw materials such as agricultural 

residues or industrial by products and on scalable, green 

synthesis techniques (e.g., microwave-assisted or microbial 

fabrication) (Singh et al., 2021) [72]. Furthermore, nano-fertilizer 

formulations must be compatible with existing agronomic 

equipment. Retrofitting fertilizer spreaders or fertigation systems 

to handle nanoparticle suspensions or coated granules without 
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clogging will require engineering innovations and field testing 

(Kumar et al., 2023) [66]. Extension services and demonstration 

plots can help farmers appreciate nano-fertilizer benefits such as 

reduced application rates and improved yield quality thereby 

incentivizing adoption. Public-private partnerships and subsidies 

can bridge initial cost gaps, but ultimately, market prices must 

reflect both agronomic value and environmental externalities to 

sustain long-term uptake (Cheng et al., 2022) [59]. 

 

3. Research Gaps and Long-Term Field Validation 

Most studies on nano-fertilizers to date have been conducted in 

greenhouse or small-plot settings under controlled conditions. 

Such studies often report yield increases of 10-30 % at nutrient 

doses 20-50 % lower than standard fertilizers (Raliya & 

Tarafdar, 2013; Ghormade et al., 2011) [70, 64]. However, diverse 

soil types, climatic conditions, cropping systems, and 

management practices can significantly influence nanoparticle 

behaviour, nutrient release kinetics, and plant responses (Li et 

al., 2022) [67]. Large-scale, multi-year field trials across agro 

ecological zones are urgently needed to validate efficacy, assess 

residual impacts, and refine application guidelines (Chauhan et 

al., 2021) [58]. Interactions between nanoparticles and soil 

microbiomes critical players in nutrient cycling remain poorly 

understood; some nanoparticles may inhibit nitrifying bacteria or 

arbuscular mycorrhizal fungi, thereby offsetting agronomic 

benefits (Ge et al., 2021) [63]. Investigating the combined use of 

nano-and bio fertilizers (e.g., rhizobial inoculants or 

plant-growth-promoting rhizobacteria) could unlock synergistic 

effects on nutrient availability, disease resistance, and soil health 

(Dimkpa&Bindraban, 2018) [26, 61]. 

 

4. Technological Integration and Smart Delivery Systems 

The convergence of nanotechnology with Internet-of-Things 

(IoT) platforms, artificial intelligence (AI), and advanced sensor 

networks represents a frontier in precision nutrient management. 

Emerging concepts include “smart granules” equipped with 

nanosensors that detect soil moisture or pH changes and trigger 

on-demand nutrient release (Li et al., 2022) [67]. Similarly, 

“cloud fertilizer” systems leverage AI-driven analytics to 

process data from distributed soil sensors and autonomously 

modulate fertigation pumps in real time (Rossi et al., 2023) [71]. 

The “fertigation on demand” model where nano-nutrients are 

delivered via drip systems only when root-zone conditions 

indicate deficiencyhas shown promise in pilot precision farms, 

reducing nutrient runoff by up to 40 % while maintaining yields 

(Bhatia et al., 2024). Realizing these integrated systems at scale 

will require robust wireless connectivity in rural areas, reliable 

power sources, affordable sensor arrays, and user-friendly 

interfaces for farmers (Singh et al., 2021) [72]. Open-source 

platforms and modular hardware designs can lower barriers to 

entry and promote customization for different cropping contexts. 

 

5. Policy, Regulation, and Farmer Education 
Effective regulatory frameworks and education initiatives are 

pivotal for safe, equitable, and environmentally responsible 

deployment of nano-fertilizers and smart systems. In India, for 

example, the Ministry of Agriculture and Farmers’ Welfare 

launched a national nano-fertilizer promotion scheme in 2024, 

providing subsidies for certified products and funding 

demonstration projects in key states (Ministry of Agriculture, 

2024) [68]. Such policy incentives can accelerate technology 

transfer, but they must be coupled with clear labelling 

requirements, efficacy standards, and post-market monitoring to 

prevent misuse or over application. Educational programs 

delivered through extension agents, mobile apps, and farmer 

cooperatives should cover best practices in nano-fertilizer 

handling, application timing, equipment calibration, and safety 

protocols to minimize occupational exposure (Cheng et al., 

2022) [59]. Participation of farmer organizations in co-designing 

research and extension materials can enhance relevance and 

local adoption. Finally, international collaborations such as joint 

research under the FAO Innovation Lab for Plant Nutrition can 

foster knowledge exchange, capacity building, and alignment of 

regulatory norms across regions. 

 

Conclusion 

Nano-fertilizers and smart agricultural inputs hold considerable 

promise for enhancing nutrient use efficiency. By improving the 

timing, placement and formulation of nutrient supply, these 

technologies can substantially increase crop uptake of applied N, 

P and micronutrients, leading to higher yields and reduced 

environmental losses. Review studies report yield increases of 

20-80% with nano-fertilizer use at reduced doses. IoT-driven 

precision management further ensures that nutrients reach plants 

when and where needed. However, realizing these gains at scale 

requires addressing challenges of cost, regulation and safety. 

Field evidence, especially from diverse real-world farms, is still 

limited. Collaboration between researchers, industry and 

policymakers is needed to develop affordable nano-products and 

integrated smart systems that are safe for ecosystems. India’s 

recent policy initiatives and ongoing trials exemplify both the 

enthusiasm and difficulties of adoption. Looking forward, 

continued innovation in nanomaterials (e.g. biodegradable nano-

carriers) and smart sensors (e.g. low-cost soil probes) will 

expand the toolbox for precision nutrition. In summary, nano-

fertilizers and smart inputs represent a transformative approach 

to agronomy: they can significantly boost nutrient use 

efficiency, productivity and sustainability if implemented with 

care and scientific rigor. 
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