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Abstract

Nutrient use efficiency (NUE) in agriculture is critical for sustainable food production, but conventional
fertilizers often achieve only ~30-40% nitrogen (N) and 10-20% phosphorus (P) use efficiency, leading to
environmental pollution. Emerging nano-fertilizers and “smart” input systems offer targeted delivery and
controlled release of nutrients to improve uptake and crop yield. Nano-fertilizers include nutrient-coated
nanoparticles (e.g. hydroxyapatite-urea, nano-DAP, nano-NPK) that release nutrients slowly,
synchronizing with plant demand. Smart inputs encompass precision irrigation and sensing networks,
drone-based application and advanced fertilizer coatings that respond to soil or plant cues. These
innovations have shown yield gains of 20-80% in various crops (e.g. wheat, maize, potato, tomato) at lower
fertilizer rates. We review global developments with a focus on India in nano-fertilizer research,
application trials and policy support (e.g. India’s nano-urea and nano-DAP initiatives). Case studies span
multiple cropping systems (cereals, pulses, vegetables, oilseeds). Tables summarize nano-fertilizer types,
NUE comparisons and field trial results. Diagrams illustrate nano-delivery mechanisms and loT-based
precision farming. In conclusion, nano-and smart inputs show promise to boost NUE and yield while
reducing losses, but challenges remain in cost, regulation and long-term safety. A coordinated research and
policy effort is needed to realize these benefits in sustainable agriculture.

Keywords: Nano-fertilizers, nutrient use efficiency, precision agriculture, smart inputs, controlled-release
fertilizers, India, sustainable agriculture

Introduction

Arnon and Stout (1939) [ provided the first rigorous, operational definition of essential plant
nutrients by establishing three criteria that an element must satisfy to be deemed truly
“essential”:

1) inits absence, a plant is unable to complete its life cycle;

2) its function cannot be replaced by another element; and

3) it is directly involved in the plant’s metabolism (Arnon & Stout, 1939) 2,

Under this definition, mineral elements are classified into macronutrients such as nitrogen (N),
phosphorus (P) and potassium (K)required in relatively large amounts and micronutrients such
as iron (Fe), manganese (Mn) and zinc (Zn)required in trace quantities (Marschner, 2012) ™.
Nitrogen is indispensable for the synthesis of amino acids, proteins, nucleic acids and
chlorophyll and its deficiency leads to stunted growth, chlorosis and reduced yield (Marschner,
2012) M. Phosphorus plays a pivotal role in energy transfer reactions through adenosine
triphosphate (ATP) and it is an integral component of nucleic acids; phosphorus deficiency
typically manifests as dark-green foliage, delayed maturity and poor root development
(Marschner, 2012) ™, Potassium functions primarily in osmotic regulation and enzyme
activation, influencing stomatal movement, water relations and carbohydrate translocation; its
shortage often results in wilting, necrotic spots on leaves and diminished disease resistance
(Marschner, 2012) [, Micronutrients such as iron and manganese serve as cofactors in redox
reactions, chlorophyll synthesis and the electron transport chain of photosynthesis and their
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deficiencies cause interveinal chlorosis, reduced photosynthetic
capacity and compromised plant vigor (Marschner, 2012). Each
essential  nutrient  contributes  uniquely to  structural,
physiological and biochemical processes: calcium (Ca) stabilizes
cell walls and membranes; magnesium (Mg) is the central atom
of the chlorophyll molecule; sulfur (S) is vital for certain amino
acids and coenzymes; and zinc, copper, boron, molybdenum and
chlorine participate in myriad enzymatic and regulatory
functions (Marschner, 2012) . The tightly regulated uptake,
translocation and compartmentalization of these nutrients ensure
that plants maintain homeostasis, optimize resource use
efficiency and respond adaptively to environmental stresses.
Adequate nutrient supply underpins key developmental stages
germination, vegetative growth, flowering and fruitingby
sustaining cell division, elongation, differentiation and
reproductive organ formation, thereby directly influencing
biomass accumulation and crop yield (Epstein & Bloom, 2005)
I3, Conversely, nutrient imbalances or deficiencies not only lead
to visible deficiency symptoms but also impair root architecture,
reduce photosynthetic rates, weaken plant immunity and
predispose crops to abiotic stresses such as drought and salinity,
as well as to biotic challenges including pathogens and pests
(Epstein & Bloom, 2005) Bl In modern agronomy, the Arnon
and Stout definition remains foundational for diagnosing
nutrient disorders, formulating balanced fertilizers and
developing precision nutrient management strategies that align
with sustainable intensification goals (Marschner, 2012) &, By
ensuring that each essential element is supplied in the right form,
concentration and timing, growers can optimize plant growth
and development, enhance resource use efficiency, minimize
environmental impacts and secure high-quality vyields
(Marschner, 2012) 41,

Global agriculture faces the dual challenge of raising crop yields
and reducing environmental impact from fertilizer use.
Traditional nitrogen and phosphorus fertilizers often achieve
only 30-40% (N) and 10-20% (P) use efficiency before losses to
leaching, volatilization and runoff. This inefficiency not only
wastes resources but also leads to soil degradation, water
eutrophication and greenhouse gas emissions. Enhancing
nutrient use efficiency (NUE) is therefore essential for food
security and sustainability. Emerging solutions include nano-
fertilizers nutrients encapsulated or coated at the nanoscale and
smart input systems such as precision application, sensor-guided
dosing and controlled-release formulations. Nano-fertilizers can
deliver nutrients more precisely to plants, while smart inputs
(like loT-based monitoring and drones) optimize timing and
placement of all inputs. This article provides a comprehensive
review of these technologies, examining how they improve
NUE, summarizing global and Indian research trends and
highlighting examples across diverse cropping systems.

Nutrient Use Efficiency in Agriculture

Nutrient use efficiency (NUE) is typically defined as the crop
yield (or nutrient uptake) per unit of nutrient applied. In practice,
NUE values are low: for example, only about 30-40% of applied
nitrogen and 10-20% of phosphorus is taken up by crops, with
the rest lost to the environment. This gap arises from miss-timed
application, uneven distribution or chemical immobilization of
nutrients. Improvements in NUE can reduce fertilizer costs and
environmental risks. Precision agriculture has shown that
variable-rate application of inputs guided by soil/crop sensors
and GPS mapping can better match nutrient supply to crop
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demand in space and time. Hedley and Yule (2015) [“? note that
precision sensor networks allow “variable rate control of inputs,
matching strategic nitrogen fertiliser application to site-specific
field conditions,” thereby reducing local excesses and losses.
Likewise, nano-and smart fertilizers are engineered to
synchronize nutrient release with plant needs. For example,
nano-encapsulated fertilizers release nutrients slowly through
plant root pores, while polymer-coated “smart” granules respond
to soil moisture and pH. Together, these approaches aim to
increase the proportion of applied nutrients captured by the crop,
enhancing NUE and yield.

Nano-Fertilizers: Types and Mechanisms

Nano-fertilizers are formulations where plant nutrients (N, P, K

or microelements) are incorporated into nanostructures or

coatings. They include nanoscale particles of conventional
nutrients, nutrient-loaded nanocarriers andnano-composites.

Common types are summarized in Table 1. Examples include:

e Nano-urea (N): Liquid urea encapsulated in nanoparticles
or stabilized by nanocarriers, such as silica or polymer
shells.

e Nano-DAP (P): Phosphorus fertilizer at the nanoscale (e.g.
nanophosphate or nano-hydroxyapatite).

e Nano-NPK: Multi-nutrient formulations combining N, P, K
in nanoparticulate form.

e Nano-micronutrients: Essential elements like ZnO, Fe;04
or Fe;03, CuO nanoparticles (often foliar-applied).

e Nanocomposite fertilizers: Nutrients bound to nano-clays
(e.g. zeolite composites), graphene oxide orbiochar-based
nanosheets for slow release.

e Polymer-coated nanofertilizers: Controlled-release
fertilizers where nutrients are entrapped  within
biodegradable polymer nanoparticles or hydrogel networks.

Each type exploits high surface area and tuneable reactivity of
nanoscale materials. As Madlala et al. (2024) 4 explain, the
crystalline structure of nanoparticle carriers can enable slow,
sustained nutrient release and amorphous nanoscale forms often
show further gains in NUE and crop yield. These nano-
structures can pass through root and leaf barriers more easily
than bulk fertilizer particles. For instance, polymer-encapsulated
urea nanoparticles release N gradually, prolonging availability.
Zeolite-nano-carbon composites have also been shown to adsorb
nutrients and release them over weeks.

The advantages of nano-fertilizers include precise delivery,
reduced losses and enhanced uptake. Kekeli et al. (2025) "4 note
that nano-fertilizers “enhance nutrient use efficiency, promote
crop growth and minimize environmental harm by enabling
precise nutrient delivery”. By releasing nutrients in synchrony
with root uptake, less fertilizer is needed for the same or higher
yield. For example, foliar sprays of nano-NPK at 25-50% of the
conventional dose achieved equal or greater potato yields
compared to full-dose conventional fertilizer. Maaz et al. (2025)
21 also highlight that nanofertilizers improve synchrony
between nutrient release and plant uptake, boosting NUE.
However, nano-fertilizers can have high production costs and
potential unknown risks. Their fate in soil and long-term effects
on microbes and soil health require more research.
Environmental interactions are a concern; for instance, silver
and copper NPs can be toxic to some soil microbes at high
doses. Therefore, safety-by-design (biodegradable carriers) and
clear regulations are important as these technologies scale up.
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Fig 1: Conceptual illustration of Nanoponics a nano-enabled nutrient delivery system. In this system, nutrient-rich aerosol (shown here) feeds plant
roots directly. Such nano-scale delivery could enhance uptake efficiency by minimizing losses.

Table 1: Lists major categories of nano-fertilizers and their key characteristics

Nano-fertilizer Type

Composition/Structure

Benefits/Notes

Urea encapsulated in silica, polymer or liquid

Higher N uptake, foliar application possible (e.g. nano-urea

Nano-Urea : - .
Nano suspension spray in India)
Nano-DAP Nano-scale dlam_monlum phosphate or Improved P availability, higher PUE
hydroxyapatite-encapsulated P
NPK nutrients combined in nano-carriers (e.g. . . .
Nano-NPK layered double hydroxides) Balanced multi-nutrient supply, synchronized release
Nano-Fe (iron oxide NPs) FesO40r Fe2Osnanoparticles Provides micronutrient Fe, can boost chlorophyll synthesis
Nano-Zn ZnO nanoparticles Zinc microelement in bioavailable form, often foliar-applied
Nano-Si Silicon nanoparticle or nanogel

Enhanced stress tolerance, nutrient use in some crops

Nano-clay/Zeolite composites

Nutrients adsorbed on nanoclay or nano-
zeolites (e.g. nano-zeolite composite)

Slow release, reduces leaching

Nano-Polymers (coated fertilizers)

Nutrients coated with polymeric nanomaterials
(biodegradable films)

Controlled release (e.g. polymer-coated urea)

Nano-Hydrogel fertilizers

Nutrients trapped in hydrogel matrix
(superabsorbent polymers)

Moisture-responsive release, water retention

Nanoshell/Encapsulated fertilizers

Nano-encapsulated single nutrient (e.g.
encapsulated K or P pellets)

Targeted dosing, one plant-use sync

Nano-Biofertilizers (nano-encapsulated
microbes)

Microbial inoculants carried on nano-carriers

Better colonization, combined ferti-bio function

Magnetic or Photoactive NPs

Nutrients within magnetic NPs (e.g. Fe oxide
with bound N)

Potential for controlled delivery using fields (theoretical)

Silica-based slow-release

Silicon dioxide nanoparticles with adsorbed N
or P

Very slow nutrient release, often foliar/soil use

Nano-fertilizer blends (mixed)

Mixtures of above (e.g. NPK +
biostimulantnano-combo)

Multi-effect (nutrition + pest repellent or biostim)

Agro-Nano emulsions

Nano-emulsified nutrients or oils (e.g.
polyherbalnano-suspensions)

Improved adhesion and uptake on plant surfaces

Nano-fertilizer mechanisms for

increased root penetration, foliar uptake and reduced nutrient
transformation losses. The small particle size allows penetration
through root epidermis or stomata, while coatings slow nutrient
diffusion. Madlala et al. (2024) [*41 emphasize that crystalline
nano-carriers promote slow nutrient release and markedly

increasing NUE include

improve nutrient absorption (by ~20-30% above conventional)

~ 1367 ~

due to prolonged availability. These properties synchronize
nutrient supply with plant demand, effectively reducing the
nitrogen application rate by up to 50% in some trials. For
instance, field studies in potato and wheat have shown that nano-
formulations can achieve the same yields at half the N dose
compared to standard urea.
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Smart Inputs and Precision Nutrient Management

Smart inputs extend beyond nano-formulations to include any

technology that makes nutrient management more responsive.

Key components include:

e Precision application systems: Use GPS-guided
machinery or drones to apply fertilizers variably across
fields according to soil maps or plant sensors, avoiding
blanket application. For example, drones equipped with
multispectral cameras can identify nutrient-deficient zones
and target them with fertilizer sprays. The Indian
government has even employed drone delivery for nano-
urea in some regions.

e Sensor networks and 1oT: In-field sensors monitor soil
moisture, temperature, pH and nutrient levels in real-time.
Data analytics then adjust fertilizer injection (in fertigation)
or recommend side-dressing. Figure 2 illustrates an loT-
enabled precision farming system. Sensors can detect nitrate
levels and moisture content and even identify plant stress or
disease, enabling time/location-specific nutrient application.

e Controlled-release “smart” fertilizers: These include
polymer-coated fertilizers and inhibitors that respond to
environmental triggers. For example, coated urea may
gradually release N when soil moisture triggers polymer

https://www.agronomyjournals.com

swelling. Enzyme inhibitors added to fertilizers (e.g. urease
or nitrification inhibitors) slow nutrient conversion,
effectively making them ‘“smart.” Nanomaterials can
enhance these effects, as discussed by Maaz et al. (2025)
[92]

e Bio-stimulant integration: Smart inputs also cover
combining fertilizers with bio stimulants (e.g. hormones or
beneficial microbes). The term “smart fertilizer” has been
used for products mixing nutrients with pest repellents or
microbial consortia, as noted by a recent industry survey.
These hybrids aim to improve root uptake or stress
resilience, further raising NUE.

Precision agriculture and smart inputs collectively work to apply
the right rate, right place, right time (the 4R principles) for each
field zone. Hedley and Yule (2015) (4?1 note that such variability
management “has the potential to improve production and
nutrient use efficiency, ensuring that nutrients do not leach from
or accumulate in excessive concentrations”. Figure 2 (below)
shows a conceptual diagram of loT-sensor-based precision
nutrient management. Sensors detect environmental factors and
nutrient status, transmitting data to farm management systems
that drive variable-rate applicators.

loT-Enabled Precision
Farming Network

Real-tlme data

SOIl Climate

Cameras

Adjusts fertilizer
application rates

Fig 2: loT-enabled precision farming network: sensors (soil, climate, cameras) send real-time data to a central controller that adjusts fertilizer
application rates spatially. Such smart systems allow on-the-go nutrient management.

Enhancing Nutrient Use Efficiency

Nano-fertilizers and smart inputs each contribute to NUE

enhancements via multiple mechanisms. Collectively, studies

report substantial increases in nutrient uptake and crop yield
with reduced fertilizer use:

e Higher uptake efficiency: Nano-fertilizers increase the
fraction of nutrient absorbed by roots. For example, field
trials have shown that nitrogen uptake efficiency can rise
from ~22% to over 40% with nano-urea sprays. Nano-

formulations often improve plant absorption by 20-30%
compared to conventional forms. Similarly, Goyal et al.
(2025) ™ report that nano-fertilizers have raised NUE and
crop yield dramatically in experiments: wheat yields up 20-
55%, maize up 22-50%, rice up 30-40% over controls.

e Reduced loss pathways: Slow-release nano-coatings and
precise placement minimize leaching and volatilization. By
retaining nutrients near the root zone, nano-formulations
reduce runoff. For instance, combining graphene
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nanoparticles with conventional fertilizer has cut nitrate
leaching in trials. Enhanced-efficiency fertilizers, of which
many nano-products are examples, aim specifically to curb
losses. Maaz et al. (2025) °2 summarize that controlled-
release and stabilized fertilizers including nano-
encapsulated forms are explicitly designed to enhance NUE.
Crop physiological improvements: Nanoparticles (e.g.
Zn0, TiOy) can act as mild stressors that promote nutrient
assimilation or photosynthesis. Several studies have found
that nano-fertilizer-treated plants show greater chlorophyill,

https://www.agronomyjournals.com

better root growth and stress tolerance, indirectly raising
NUE. For example, zinc oxide NPs foliar spray increased
maize Zn uptake by making zinc more plant-available.
Synergistic smart management: Sensor feedback and
precision timing ensure that even conventional fertilizers
perform better. For example, early-morning or split
applications guided by real-time sensor data significantly
enhance assimilation. Hedley & Yule (2015) *4 note that
precision systems allow “in-season management” that aligns
fertilizer timing with crop demand.

Table 2: Quantifies comparative NUE under different approaches. For typical values, conventional urea may have NUE ~30-40%, whereas nano-

urea products claim >85% N use efficiency. Controlled-release and inhibitor-enhanced fertilizers typically improve NUE by 5-20 percentage points.
Note that actual values vary by crop and environment.

Input/Practice N.it'rogen Use Ph.os'phorus Use Pc_)tf:lssium Use Notes/Source
Efficiency (NUE) | Efficiency (PUE) Efficiency (KUE)

Conventional Urea ~30-40% - - Typically 30-40% N efficiency
Nano-encapsulated Urea ~80-90% - - e.g. IFFCO Nano Urea (leaf-spray)
Controlled-reLe;;tZ é;rea (polymer- ~50-60% - - MR: slow release improves NUE by ~10%
Urea + Nitrification inhibitor ~50% - - Some reports of 10-20 pp increase

Conventional DAP (P) - ~10-15% - Typical crop PUE ~10-20%
Nano-DAP (nano-phosphate) - ~20-40% - Reported 2-3x P uptake compared to DAP
Conventional MOP (K) - - ~50-60% KUE often higher (50-70%)
Nano-fertilizer blends (NPK) ~60-80% ~20-30% ~60% Across NPK, boost of 20-30% in NUE
Smart-variable rate application +10-20% +10-20% +10-20% Hedley_& Yule note precision tech
(over blanket) improves local NUE
Integrated 4R nutrient stewardship (Varies) (Varies) (\Varies) Combines inputs; can yield best results
Biofertilizer/microbial inoculants ~5-15% (N) N/A - Symbiotic N fixation adds N efficiently

Applications across Cropping Systems

Nano-fertilizers and smart inputs have been trailed in many
crops, often with positive results. We highlight examples from
cereals, pulses, vegetables and others:

Wheat (Triticum aestivum): Several studies report
increased yield and NUE from nano-N and nano-NPK.
Goyal et al. (2025) U cite up to 50% yield increase in
wheat with nano-fertilizers. In India, Jitendra et al. (2024)
found that combining nano-urea and nano-DAP improved
wheat growth more than conventional NPK. Trials with
nano-DAP in Pakistan saw 10-20% greater wheat yield and
30% higher PUE than soluble P fertilizer.

Rice (Oryza sativa): Nano-N foliar sprays applied at 25-
50% of normal N rate gave rice yields comparable to full
fertilizer doses. A nanoparticle-bound phosphorus source
enhanced grain filling. In a greenhouse study, silver and
copper nano-fertilizers improved rice root growth and
nutrient content (with care needed to avoid toxicity).

Maize (Zea mays): Field tests of nano-N (urea) reported
20-30% higher biomass and N uptake in maize. Nano-Zn
treatments also boosted maize kernel Zn content. Precision
placement of nano-N to the root zone raised both grain yield
and nitrogen use efficiency (NUE rose from ~30% to ~55%
in one report).

~ 1369 ~

Pulses (e.g. chickpea, soybean): Foliar nano-NPK sprays
have been used on chickpea, lentils and soy, showing
improved nodulation and N assimilation. For instance,
Chakrabartty et al. (2022) [ report that nano-fertilizer
application in chickpea increased protein content and seed
number. Microbial “bio-nano” inoculants (symbiotic
bacteria in nano-carriers) have shown promise to fix more N
under stress.

Vegetables (e.g. tomato, pepper): A controlled-release
nano-fertilizer with 25% N-rate improved tomato fruit yield
and quality relative to full-dose regular fertilizer. Nano-
phosphate treatments improved tomato plant growth. Nano-
Zn and Cu sprays enhanced fruit micronutrient levels. In
cucurbits, nano-FE foliar sprays mitigated iron deficiency.
Oilseeds (Sunflower, canola): Combined use of nano-and
conventional fertilizers in sunflower increased yield and oil
content under semi-arid conditions. One Indian study
showed sunflower yield up ~15% with nano-N+microbe
over normal N fertilizer.

Horticulture and fruits: Nano-nutrients have been trailed
in orchards (e.g. nano-Zn and nano-B sprays on
pomegranate and apple, improving fruit set and quality).
Greenhouse ornamentals (roses, gladiolus) also show better
growth with nano-fertilizers.
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Table 3: Presents selected field trial results (yields and NUE) comparing nano-enabled inputs versus controls in different systems. Most studies
report 10-50% yield gains and higher nutrient uptake from nano-fertilizer treatments, often at lower application rates.

Crop/System Fertilizer Treatment

Yield (% of control)

NUE Improvement

Wheat (India, field)

Nano-Urea + Nano-DAP (50% N, 50% P rate)

+30-50% grain yield

NUpE 1 (from ~25% to 40%)

Rice (Greenhouse)

CRU (controlled-release nano-urea) @ 25% N rate

~100% (equal yield)

NUpE 47-88% vs 33%

Maize (India) Nano-NPK foliar spray

+20-35% biomass

N use 120-30%

Chickpea (field) Nano-NPK foliar (30% dose)

+15% pod yield

1 protein, T P uptake

Tomato (field) Nanophosphate (50% P rate)

+25% fruit yield

PUE 1 significant

Sunflower (semi-arid) Nano-N + biofertilizer + 75% N rate

+18% seed yield

NUE 1 15%

Lettuce (hydroponics) ZnO NPs foliar

+10% biomass

Zn uptake 1 (biofortified)

Tomato (India, govt trial) Nano Urea spray (farm trials)

~ equal or slightly 1

Farmers reported 4-6% more yield

Apple orchard

Nano-Zn + Nano-B foliar (dormancy spray)

+12% fruit set

Fruit Zn 1 20%

Rice (Pakistan) Nano-DAP (75% P rate) +22% grain yield PUE 1 25%
Soybean (field) Nano-Urea seed coating +10% pod number NUE 1 ~20%
Corn (US research) Nano-urea + polymer U (field strip) +15% yield (under stress) NUE 1 10%

Wheat (India)

Conventional NPK (100%) vs 4R + nano-urea

+25% yield (4R+nano) NUE 1 20% (4R vs conv)

Vegetable mix (Italy) Nano-N + CRF blend

+20% total yield N use | (20% less N used)

Maize (Africa, drought) Nano-ZnO seed treatment

+18% stand biomass 1 drought tolerance

Global Developments and Indian Context

Research on nano-fertilizers and smart inputs is expanding
worldwide. Major efforts come from China, India, the USA and
Europe. Both Goyal et al. (2025) 4 and Maaz et al. (2025) [*2
note that Asia is a hotbed of nano-agriculture research. Chinese
institutes have led field tests of various nanomaterials in rice and
wheat. U.S. groups are also exploring smart irrigation with
nano-sensors, while EU projects investigate biodegradable nano-
carriers.

India has taken a prominent role recently. The government
launched initiatives to promote nano-urea and nano-DAP as
novel inputs. According to the Press Information Bureau (India),
Nano Urea (a liquid nano-fertilizer developed by IFFCO) and
Nano DAP have been approved and distributed via national
programs. In 2024, the Department of Fertilizers reported
awareness campaigns, manufacturing licenses for companies and
drone-based demonstrations for nano-urea spraying. These
efforts aim to reduce import costs: it was estimated that
widespread nano-DAP use could save ~66 lakh tonnes of
granular DAP imports (worth ~321800 crore).

On-farm results in India are mixed: some agronomists report
yield boosts with nano-urea spray at low rates, while others (e.g.
trials by PAU) saw no benefit or slight yield drops. High labour
cost and variable formulations are cited challenges. Nonetheless,
research and demonstrations continue. ICAR institutes are
testing nano-fertilizers in major crops under the “Green Urea
Mission”.

Beyond India, nano-fertilizer products have entered markets
(e.g. in China and Israel) and global companies are partnering on
trials. The emerging consensus in reviews is that nano-and smart
inputs can contribute to sustainable intensification, but adoption
requires demonstrating cost-effectiveness and safety. A recent
meta-analysis emphasized the need for standardized field trials
across climates to confirm benefits.

Challenges and Future Directions in Nano-Fertilizers and
Smart Systems

The integration of nanotechnology into fertilizers and
precision-agriculture tools holds immense promise for
enhancing nutrient use efficiency, reducing environmental
footprints, and improving crop yields (Kah et al., 2020) 53],
However, before these innovations can be widely adopted,
several critical challenges must be addressed. Key among these
are potential environmental and health risks, cost and scalability
constraints, gaps in fundamental and field research,

technological integration hurdles, and the need for supportive
policies and farmer training programs. This section elaborates on
each of these areas and outlines strategic directions for future
work.

1. Environmental and Health Risk Assessment

Nanoparticles used in fertilizers such as metal oxides (e.g., ZnO,
Ti0.), polymeric Nano carriers, and carbon-based nanomaterials
can persist in soils, bio-accumulate in organisms, and potentially
enter food chains (Dimkpa & Bindraban, 2018) [?% 81, Their
small size and high reactivity raise concerns about phytotoxicity,
microbial community disruptions, and off-target effects on
beneficial soil fauna (Ge et al., 2021) %], To mitigate these risks,
“safe-by-design” approaches advocate for biodegradable or
stimuli-responsive carriers that degrade into benign by products
only after delivering nutrients (Kah et al., 2020; Li et al., 2022)
154, 671 For instance, encapsulating nutrients in chitosan-based
nanoparticles can enhance controlled release while ensuring that
the carrier material is naturally metabolized by soil microbes
(Ahmad et al., 2019) 81, Comprehensive life-cycle assessments
and long-term fate studies spanning from nanoparticle synthesis
through field application and post-harvest residues are essential
to establish exposure thresholds and environmental guidelines
(OECD, 2021) . Regulatory bodies in Europe and North
America are beginning to develop frameworks for
nano-agrochemicals, but harmonized international standards are
still lacking (EFSA, 2022) 62, Developing standardized testing
protocols for nanoparticle persistence, leaching potential, and
Eco toxicological impacts will be critical to inform safe
deployment strategies.

2. Cost, Scalability, and Farmer Adoption

While laboratory-scale synthesis of nano-fertilizers demonstrates
impressive nutrient-use efficiencies, translating these methods to
commercial production poses economic hurdles. High-purity
precursors, specialized reactors, and quality-control processes
inflate manufacturing costs compared to conventional fertilizers
(DeRosa et al., 2010) 2> 81 To achieve cost parity, research
must focus on low-cost raw materials such as agricultural
residues or industrial by products and on scalable, green
synthesis techniques (e.g., microwave-assisted or microbial
fabrication) (Singh et al., 2021) [, Furthermore, nano-fertilizer
formulations must be compatible with existing agronomic
equipment. Retrofitting fertilizer spreaders or fertigation systems
to handle nanoparticle suspensions or coated granules without
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clogging will require engineering innovations and field testing
(Kumar et al., 2023) [%6], Extension services and demonstration
plots can help farmers appreciate nano-fertilizer benefits such as
reduced application rates and improved yield quality thereby
incentivizing adoption. Public-private partnerships and subsidies
can bridge initial cost gaps, but ultimately, market prices must
reflect both agronomic value and environmental externalities to
sustain long-term uptake (Cheng et al., 2022) [,

3. Research Gaps and Long-Term Field Validation

Most studies on nano-fertilizers to date have been conducted in
greenhouse or small-plot settings under controlled conditions.
Such studies often report yield increases of 10-30 % at nutrient
doses 20-50% lower than standard fertilizers (Raliya &
Tarafdar, 2013; Ghormade et al., 2011) [°- 4. However, diverse
soil types, climatic conditions, cropping systems, and
management practices can significantly influence nanoparticle
behaviour, nutrient release kinetics, and plant responses (Li et
al., 2022) 571, Large-scale, multi-year field trials across agro
ecological zones are urgently needed to validate efficacy, assess
residual impacts, and refine application guidelines (Chauhan et
al., 2021) B8, Interactions between nanoparticles and soil
microbiomes critical players in nutrient cycling remain poorly
understood; some nanoparticles may inhibit nitrifying bacteria or
arbuscular mycorrhizal fungi, thereby offsetting agronomic
benefits (Ge et al., 2021) [, Investigating the combined use of
nano-and bhio fertilizers (e.g., rhizobial inoculants or
plant-growth-promoting rhizobacteria) could unlock synergistic
effects on nutrient availability, disease resistance, and soil health
(Dimkpa&Bindraban, 2018) [26. 611,

4. Technological Integration and Smart Delivery Systems

The convergence of nanotechnology with Internet-of-Things
(IoT) platforms, artificial intelligence (Al), and advanced sensor
networks represents a frontier in precision nutrient management.
Emerging concepts include “smart granules” equipped with
nanosensors that detect soil moisture or pH changes and trigger
on-demand nutrient release (Li et al., 2022) (7, Similarly,
“cloud fertilizer” systems leverage Al-driven analytics to
process data from distributed soil sensors and autonomously
modulate fertigation pumps in real time (Rossi et al., 2023) ['4,
The “fertigation on demand” model where nano-nutrients are
delivered via drip systems only when root-zone conditions
indicate deficiencyhas shown promise in pilot precision farms,
reducing nutrient runoff by up to 40 % while maintaining yields
(Bhatia et al., 2024). Realizing these integrated systems at scale
will require robust wireless connectivity in rural areas, reliable
power sources, affordable sensor arrays, and user-friendly
interfaces for farmers (Singh et al., 2021) 2. Open-source
platforms and modular hardware designs can lower barriers to
entry and promote customization for different cropping contexts.

5. Policy, Regulation, and Farmer Education

Effective regulatory frameworks and education initiatives are
pivotal for safe, equitable, and environmentally responsible
deployment of nano-fertilizers and smart systems. In India, for
example, the Ministry of Agriculture and Farmers’ Welfare
launched a national nano-fertilizer promotion scheme in 2024,
providing subsidies for certified products and funding
demonstration projects in key states (Ministry of Agriculture,
2024) 8 Such policy incentives can accelerate technology
transfer, but they must be coupled with clear labelling
requirements, efficacy standards, and post-market monitoring to
prevent misuse or over application. Educational programs
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delivered through extension agents, mobile apps, and farmer
cooperatives should cover best practices in nano-fertilizer
handling, application timing, equipment calibration, and safety
protocols to minimize occupational exposure (Cheng et al.,
2022) B9, Participation of farmer organizations in co-designing
research and extension materials can enhance relevance and
local adoption. Finally, international collaborations such as joint
research under the FAO Innovation Lab for Plant Nutrition can
foster knowledge exchange, capacity building, and alignment of
regulatory norms across regions.

Conclusion

Nano-fertilizers and smart agricultural inputs hold considerable
promise for enhancing nutrient use efficiency. By improving the
timing, placement and formulation of nutrient supply, these
technologies can substantially increase crop uptake of applied N,
P and micronutrients, leading to higher yields and reduced
environmental losses. Review studies report yield increases of
20-80% with nano-fertilizer use at reduced doses. loT-driven
precision management further ensures that nutrients reach plants
when and where needed. However, realizing these gains at scale
requires addressing challenges of cost, regulation and safety.
Field evidence, especially from diverse real-world farms, is still
limited. Collaboration between researchers, industry and
policymakers is needed to develop affordable nano-products and
integrated smart systems that are safe for ecosystems. India’s
recent policy initiatives and ongoing trials exemplify both the
enthusiasm and difficulties of adoption. Looking forward,
continued innovation in nanomaterials (e.g. biodegradable nano-
carriers) and smart sensors (e.g. low-cost soil probes) will
expand the toolbox for precision nutrition. In summary, nano-
fertilizers and smart inputs represent a transformative approach
to agronomy: they can significantly boost nutrient use
efficiency, productivity and sustainability if implemented with
care and scientific rigor.
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