

International Journal of Research in Agronomy

E-ISSN: 2618-0618
P-ISSN: 2618-060X
© Agronomy
NAAS Rating (2025): 5.20
www.agronomyjournals.com
2025; 8(12): 1222-1225
Received: 17-09-2025
Accepted: 19-10-2025

Dr. B Venkata Rajkumar
Scientist (Crop Production),
Telangana Rythu Vigyan Kendra,
Telangana, India

Dr. RVT Balazzii Naaiik
Principal Scientist (Agronomy),
ARI, PJTAU, Rajendranagar,
Hyderabad, Telangana, India

Mr. P Vijay Kumar
Subject Matter Specialist (Plant
Protection), KVK, Nizamabad,
Rudrur, Telangana, India

Dr. M Suresh
Assistant Professor, Agricultural
College, Adilabad, Telangana,
India

Dr. M Swetha
Subject Matter Specialist
(Agricultural Extension), KVK,
Nizamabad, Rudrur, Telangana,
India

Frontline demonstration on effect of use of banana bunch covers and bunch management for quality blemish-free fingers

B Venkata Rajkumar, RVT Balazzii Naaiik, P Vijay Kumar, M Suresh and M Swetha

DOI: <https://www.doi.org/10.33545/2618060X.2025.v8.i12q.4566>

Abstract

Banana is the 4th most important staple crop in the world after wheat, maize and rice produced in more than 135 countries in tropical and sub-tropical regions globally. In spite of major contributor to world's production, the productivity is lower (35.1 MTha^{-1}) with minimal exports for various reasons like external appearance, internal quality and market quality of bananas are influenced by several factors, including pre-harvest production practices. The present study was conducted in Hunsa village Bodhan Mandal, Nizamabad district of Telangana State during 2019-20 to 2021-22 to address the problems associated with damage to fruit bunches resulting in low quality fruits with less yields realizing low market price. During the demonstration period farmers were able to obtain quality blemish free banana bunches owing to the use of bunch covers and bunch management which helped in protecting the fruits from pest attack and external damage resulting in slightly higher yields (655.33 qha^{-1}) over check (643.83 qha^{-1}). The average extension gap and average technology gap are 11.5 q ha^{-1} and 94.67 q ha^{-1} respectively with the average technology index of 8.42 per cent during the demonstration years. It was revealed from the above experiment that banana bunch cover with white non-woven polypropylene skirt bag was very much effective to protect banana fruit from dust, heat and sucking pest infestation.

Keywords: Bunch covers, bunch management, frontline demonstration, polypropylene skirt bag, B:C ratio

Introduction

Banana is the 4th most important staple crop in the world after wheat, maize and rice. It is produced in more than 135 countries in tropical and sub-tropical regions globally. World-wide the total production of banana exceeded 116 Million MT for the year 2019 across an area of 5.15 Million ha (Anon., 2020) ^[1]. India is the largest producer with 27% share in global production with total production of 31.50 million MT. It is cheap and excellent source of energy, rich source of vitamins, minerals like potassium, phosphorus, calcium and magnesium and adds up to a healthy diet. The plant referred as *Kalpatharu* (a plant of virtues) owing to its multifaceted uses of its underground stem to male flower buds in various forms of foods.

In spite of major contributor to world's production, the productivity is lower (35.1 MTha^{-1}) with minimal exports for various reasons. External appearance, internal quality and market quality of bananas are influenced by several factors, including pre-harvest production practices. The external appearance includes key attributes such as colour, shape, size and free from defects. The internal attributes such as taste, texture, sweetness, aroma, acidity, flavour, shelf life and presumed nutritional values of the fruit are important in ensuring repeat buys for sustained repeat purchase (Hewett, 2006; Shewfelt, 2009) ^[6, 12].

It takes around 11-13 months to harvest for delicious banana fruits and insects or birds, elemental damage by winds is constant threat causing blowing dust and debris result in cellular damage and subsequent fruit scarring. Also, the blowing of adjacent leaves and rubbing of leaf petioles onto the developing bunch can impart considerable physical injury and abrasion damage to the fruit peels (Anon, 2003) ^[2]. Improper nutrient and bunch management also results in poor quality fruits and lower yields. The farmers of this region were experiencing damage to fruit bunches resulting in low quality fruits with less yields realizing low market price.

Corresponding Author:
Dr. B Venkata Rajkumar
Scientist (Crop Production),
Telangana Rythu Vigyan Kendra,
Telangana, India

Keeping the above constraints in mind in banana cultivation Frontline demonstration was conducted to showcase the effect of use of banana bunch covers and bunch management for quality blemish-free fingers and reinforce the confidence of farmers in getting increased profitability with better productivity.

Materials and Methodology

The present study was conducted in Hunsa village Bodhan Mandal, Nizamabad district of Telangana State during 2019-20 to 2021-22 in a cluster.

The healthy tissue cultured banana suckers of cultivar Grand Naine was cultivated by the farmers. All the farmers were trained on the bunch management practices in Banana and use of bunch covers. The field was prepared by deep ploughing during summer and final field preparation was done using tractor operated Roto-rotovator. The suckers were planted in main field after marking the pits in at a spacing of 165 cm between rows as well as plants in a row. Recommended dose of farm yard manure was incorporated during the final land preparation. Weed management, need based plant protection chemicals were used to manage the problems.

Bunch management

- Covering of bunches with non-woven white polypropylene skirt bag with 17 GSM, 31.5 inch Diameter
- Practicing bunch management (Sulphate of Potash @ 5 g/l of water after 5 and 15 days after opening of last bunch of fingers for good growth of fingers and the bunch) for quality fingers development.

Being a demonstration the treatment of covering the bunch with nonwoven polypropylene skirt bag and bunch management was compared against the normal farmers' practice of without

covering the bunch and no bunch management. The bunches under the demonstration were covered at the time of opening of first hand. Both ends of the bag were tied with a thread. At the interval of 3-4 days, lower end of the cover was opened to clean opened bract, dried flower remnants, and male flower bud gradually. Randomly selected 10 bunches of each plot were selected and recorded the bunch yield per ha, Cost of cultivation, Net returns, Benefit to cost ratio and quality parameters like percent damage by pest and mechanical injuries (blemishes) under cover and check. They were also checked for general visual appearance.

In the present study, technology index was operationally defined as the technical feasibility obtained due to implementation of Front line Demonstrations in Banana to estimate the technology gap, extension gap and technology index following formulae used by Samui *et al.*, (2000) ^[11], Sagar and Chandra (2004) ^[10] have been used.

The data of adoption and horizontal spread of technologies were collected from the farmers with the interaction. The following formulae were used to assess the impact on different parameters of banana crop.

$$\text{Per cent increase in yield (\%)} = \left\{ \frac{\text{Demonstration yield} - \text{farmers practice yield}}{\text{Farmers practice yield}} \right\} \times 100$$

$$\text{Extension Gap (ha)} = \text{Di (Demonstration Yield)} - \text{Fi (Farmers yield)}$$

$$\text{Technology Gap (ha)} = \text{Pi (Potential Yield)} - \text{Di (Demonstration Yield)}$$

$$\text{Technology index (\%)} = \left\{ \frac{\text{Potential Yield} - \text{Demonstration yield}}{\text{potential yield}} \right\} \times 100$$

$$\text{Impact on horizontal Spread (ha)} = \text{After area (ha)} - \text{Before area (ha)}$$

Impact on adoption (% change)

$$= \left\{ \frac{\text{No. of adopters after demonstration} - \text{No. of adopters before demonstration}}{\text{No. of adopters before demonstration}} \right\} \times 100$$

Results and Discussion

The present demonstration was conducted to demonstrate the effect of use of white non-woven polypropylene banana bunch covers and bunch management for quality blemish-free fingers. These covers were tied after the opening of first hand in a bunch.

Extension Gap

The average extension gap (11.5 q ha^{-1}) between demonstrated technology and check was mostly due to the lack of adoption of improved production technology (Table 1). The results are in conformity with the findings of Teggelli *et al.* (2015) ^[15], who stated the progressive use of improved crop production technologies with high yielding varieties will subsequently change this alarming trend of galloping extension gap. It is directed to educate and emphasise the farmers for the adoption of demonstrated technologies so as to bridge the extension gap by planning and implementation of technologies through various means of extension. The results are in agreement with the research worker Mukharjee (2003), who stated that, location based problem identification and thereby specific interventions may have great implications in the enhancement of crop productivity

Technology Gap

As per the observation recorded (Table 1), the technology gap was 94.67 q ha^{-1} . Depicting the yield gap between demonstrated technology and potential yield which needs to be minimized by conducting large scale FLDs. The variation if any in technology

gap during the demonstration years may vary due to soil fertility, climatic condition of the area and management practices implemented by the farmers. Hence, more location specific recommendations and precise use of technology in the fields are necessary to bridge the technology gap as supported by Balai *et al.* (2013) ^[3]. Similarly yield enhancement Temperature may increase inside the cover, leading to changes in yield-related components and overall yield. Banana bunch covers acted as a physical barrier between the fruits and insects, helping to prevent fruit scarring caused by beetles and also reducing the incidence of Fusarium wilt and in confirmation to the studies conducted by Purnima *et al.*, (2017) ^[9].

Technology Index

The average technology index reported was 12.62% (Table 1). This actually depicts the feasibility in conducting a demonstration. However farmer perception towards the technology involving high initial costs and adverse climatic conditions resulted in the increasing trend of technology index values during the demonstration years. This in a long run over the years and with more penetration at field level may result in decreasing trend of the technology index with précis use of demonstrated technologies in the field and narrowing the gap to potential yields. As technology index denotes the gap between technology generated at research farm and farmer's field, lower the technology index more feasible will be the technology (Hiremath and Nagraju, 2010, Sagar and Chandra, 2004) ^[5, 10].

Table 1: Productivity, extension gap, technology gap and technology index in effect of bunch covers and bunch management in banana.

Year	Area (ha)	No. of farmers	Yield (q/ha)			% Increase in yield over check	Extension gap (q/ha)	Technology gap (q/ha)	Technology index (%)
			Potential	Demonstration	Check				
2019-20	4	10	750.00	660.00	652.50	1.15	7.50	90.00	12.00
2020-21	4	10	750.00	635.00	630.00	0.79	5.00	115.00	15.33
2021-22	2	5	750.00	671.00	649.00	3.39	22.00	79.00	10.53
Average			750.00	655.33	643.83	1.78	11.50	94.67	12.62

Economic Analysis

The data obtained regarding the economic analysis for the demonstrated technology was presented in Table 2. The data revealed that, monetary returns were directly influenced by the market price of Banana and cost of production during the successive years of demonstrations. During all the years of demonstrations, the increased gross monetary return and net monetary returns was obtained in the demonstrated technology over check. An average net monetary returns of Rs 1,40,600 and

B:C ratio of 1.49 was obtained in the demonstrated technology over check with net monetary returns of Rs 1,03,476.67 and B:C ratio 1.40. The returns were moderate and this was due to lower market prices than normal. But the overall returns were higher in demonstration is due to higher price realization, higher yields with attractive fruit size and superior fruit quality over fruits from check plots. The results are in confirmation with the findings of Tandel (2014)^[14] and Singh (2017)^[13].

Table 2: Comparative B:C analysis in effect of bunch covers and bunch management in banana and farmers practice

Year	Cost of Cultivation		Gross return (Rs./ha)		Net Returns (Rs./ha)		B:C Ratio	
	Demo.	Check*	Demo.	Check*	Demo.	Check*	Demo.	Check*
2019-20	279360	252200	402600	342560	123240	90360	1.44:1	1.36:1
2020-21	281250	258500	393700	333900	112450	75400	1.39:1	1.29:1
2021-22	290300	264200	460080	396270	169780	132070	1.58:1	1.50:1
Average	283636.67	258300.00	424236.67	361776.67	140600.00	103476.67	1.49:1	1.40:1

Table 3: Impact of Front Line Demonstration (FLDs) on horizontal spread with use of bunch covers and bunch management in banana

Variety	Area (ha)		Change in area (ha)	Impact (% Change)
	Before demonstration	After demonstration		
Bunch covers and Bunch management	1	7	6	600

Conclusion

It was revealed from the above experiment that banana bunch cover with white non-woven polypropylene skirt bag was very much effective to protect banana fruit from dust, heat and sucking pest infestation. The major problem of banana cultivation was due to climatic condition of this region. Hence, it can be concluded that the practice of covering banana bunches resulted in more visually appealing fruits, improved appearance, uniform maturity, and increased productivity, which led to higher market prices and significantly higher net profit for farmers compared to the Check.

Acknowledgement

This study was financially supported by Krishi Vigyan Kendra, Nizamabad (Rudrur) and authors are grateful to PJTSAU, Rajendranagar and ICAR- ATARI, Zone - X, Hyderabad and for necessary support and guidance to complete this work successfully.

References

- Anonymous. Indian Horticulture Database 2019-20. National Horticulture Board, Ministry of Agriculture, Government of India; 2020. p. 1-458.
- Anonymous. Bunch covers for improving plantain and banana peel quality. National Agriculture Research Institute. Technical Bull. no. 4; 2003. Available from: www.agrinetguyana.org.gymoa
- Balai CM, Jalwania R, Verma LN, Bairwa RK, Regar PC. Economic impact of front line demonstrations on vegetables in tribal belt of Rajasthan. Curr Agric Res J. 2013;1(2):69-77.
- Dhaka BL, Poonia MK, Meena BS, Bairwa RK. Yield and economic viability of coriander under front line demonstrations in Bundi district of Rajasthan. J Hort Sci. 2015;1092:226-228.
- Hiremath SM, Nagaraju MV. Evaluation of frontline demonstration on onion in Haveri district of Karnataka. Karnataka J Agric Sci. 2009;22(5):1092-1093.
- Hewett EW. An overview of pre-harvest factors influencing post-harvest quality of horticultural products. Int J Postharvest Technol Innov. 2006;1:4-15.
- Misra PK, Singh PN, Singh SN, Kumar P. Adoption extent and horizontal spread of tomato (*Lycopersicon esculentum* Mill.) cultivation through frontline demonstration in eastern Uttar Pradesh of India. Eur J Biotechnol Biosci. 2014;4(6):40-44.
- Mukherjee N. Participatory learning and action. New Delhi: Concept Publishing Company; 2003. p. 63-65.
- Purnima P, Kumar BR, Baishya BK, Das U, Das J. A review of works done regarding the impact of bunch cover application in banana. Int J Curr Microbiol Appl Sci. 2017;6(7):2181-2194.
- Sagar RL, Chandra G. Evaluation of front line demonstrations on mustard in Sunderban, West Bengal. Indian J Exten Edu. 2004;40:96-97.
- Samui SK, Maitra S, Roy DK, Mondal AK, Saha D. Evaluation of front line demonstration on groundnut (*Arachis hypogaea* L.). J Indian Soc Coastal Agric Res. 2000;18:180-183.
- Shewfelt RL. Measuring quality and maturity. In: Florkowski WJ, Shewfelt RL, Brueckner B, Prussia SE, editors. Postharvest Handling - A Systems Approach.

London: Academic Press; 2009. p. 461-481.

- 13. Singh D. Impact of front line demonstrations on the yield and economics of tomato in Bharatpur district of Eastern Rajasthan. *Int J Curr Microbiol App Sci.* 2017;6(6):1556-1561.
- 14. Tandel BM, Shah KA, Nayaka P, Tandel YN. Yield and impact analysis of training and FLDs regarding scientific cultivation of brinjal. *Agri Update.* 2014;9(3):288-291.
- 15. Teggelli RG, Patil DH, Ananda Naik, Zaheer Ahamed B, Patil MC. Impact of frontline demonstration on the yield and economics of pigeonpea in Kalaburgi district of Karnataka state. *Int J Sci Nat.* 2015;6(2):224-227.