

International Journal of Research in Agronomy

E-ISSN: 2618-0618
P-ISSN: 2618-060X
© Agronomy
NAAS Rating (2025): 5.20
www.agronomyjournals.com
2025; 8(12): 1282-1287
Received: 20-10-2025
Accepted: 26-11-2025

P Tanuja
Ph.D. (Horticulture), Department of Fruit Science, College of Horticulture, Rajendranagar, Sri Konda Laxman Telangana State Horticultural University, Hyderabad, India

K Vanajalatha
Dean of Student Affairs, Sri Konda Laxman Telangana State Horticultural University, Mulugu, Siddipet, Telangana, India

M Hanuman Nayak
Senior Scientist, Vegetable Research Station, Rajendranagar, Sri Konda Laxman Telangana State Horticultural University, Hyderabad, India

Veena Joshi
Associate Professor (Hort), College of Horticulture, Mojerla, Mahabubnagar, Telangana, India

D Saida Naik
Associate Professor, Department of Crop Physiology, Prof. Jayashankar Telangana State Agricultural University, Hyderabad, India

D Srinivasa Chary
Associate Professor, Department of Statistics, Prof. Jayashankar Telangana State Agricultural University, Hyderabad, India

Corresponding Author:
P Tanuja
Ph.D. (Horticulture), Department of Fruit Science, College of Horticulture, Rajendranagar, Sri Konda Laxman Telangana State Horticultural University, Hyderabad, India

Effect of integrated nutrient management on growth and yield of banana Cv. Grand Naine (AAA) (ratoon crop)

P Tanuja, K Vanajalatha, M Hanuman Nayak, Veena Joshi, D Saida Naik and D Srinivasa Chary

DOI: <https://www.doi.org/10.33545/2618060X.2025.v8.i12q.4625>

Abstract

The present investigation was carried out during 2018-2019 at Horticultural Research Station, Aswaraopet, Bhadravati Kothagudem district, Telangana State. The experiment was carried by planting tissue culture banana Cv. Grand Naine plants at spacing of 1.8x1.8m with eleven treatment combinations with different fertilization levels along with organics like arka microbial consortium, neem cake, jeevamrutha with and without bunch covering which was conducted as a integrated study for ratoon crop with Randomized Block Design (RBD) and replicated thrice. For the growth characters like pseudo stem height, after three and five months of ratooning the treatment T₄ has recorded significantly highest at all the crop growth. The highest pseudo stem height (100.56 cm) was also recorded in T₄ whereas lowest pseudo stem height (95.63cm) was noticed in T₁. The likewise the other characters like pseudo stem girth, functional leaves, leaf length, leaf breadth, leaf area, leaf area index and number of suckers the results were found to be maximum in treatment which received 75 per cent fertilization with combination of all organic nutrients and minimum results were observed with Recommended Dose of Fertilizers (RDF). The maximum number of hands per bunch (10.74), highest finger length (18.80 cm) and finger girth (13.98 cm) highest finger weight (138.09 g) highest weight of hand (3.94 kg) highest yield per plant and per hectare (28.03 kg and 86.49t/ha) was noticed in While, the minimum results were obtained in T₁. The integrated use of organics *i.e.*, Arka Microbial Consortium (AMC), neem cake, jeevamrutha, panchagavya and inorganic nutrients through 75 per cent fertilization along with bunch protective measures has given the good results.

Keywords: Arka microbial consortium, Arka banana special, neem cake, Jeevamrutha, INM

Introduction

Banana (*Musa* spp.) belongs to the family Musaceae is one of the oldest fruits known to mankind. It is also known as Apple of Paradise and one of the most important sources of tropical fruits in the world as it is a significant staple food as well as a major export commodity (Rahman *et al.*, 2013) ^[8]. Banana is a fourth important food crop in terms of gross value exceeded only by paddy, wheat and milk products and forms an important crop for subsistence farmers.

Application of inorganic fertilizers though increases the yield substantially but could not able to sustain the fertility status of the soil and have caused several undesirable consequences in the fragile soil eco-system, leading to gradual decline in productivity. Chemical fertilizers have some deleterious effects on fruit quality besides adverse effects on soil, water and environmental conditions (Dutta *et al.*, 2010) ^[3]. On the other hand, organic and microbial sources of nutrients have advantage of consistent and slow release of nutrients, maintaining ideal carbon and nitrogen ratio, improvement in water holding capacity and microbial biomass of soil profile, without having any adverse residual effects. In recent years, a new approach for utilization of available resources *viz.*, organic, inorganic and microbial inoculants with an integrated approach for sustainable economic yield termed as 'Integrated Nutrient Management' (INM) has emerged which has already been receiving wide attention for contributing substantially towards acceleration of crop productivity by maintaining chemical, physical and biological balance in soil plant system (Bhalerao *et al.*, 2010) ^[2]. The organics and biofertilizers help in better utilization of added inorganic fertilizers thus reduces its level of application as well as reduce the deleterious effect of harsh chemical residues that the inorganic fertilizers leave in the soil (Umar, 2007) ^[11].

Materials and Methods

The present investigation was carried at Horticultural Research Station, Ashwaraopet. The experiment field was thoroughly ploughed and was levelled and divided into plots as per the layout. Field was laid out in Randomized block design with three replications and eleven treatments. The treatment combinations are T₁-100% RDF of N and K (farmers practice with fertigation), T₂-75% RDF of N and K (fertigation) + 25% Neem cake + jeevamrutha @ 3.0 percent + Arka banana special @ 5% foliar spray+ Bunch covering, T₃-75% RDF of N and K (fertigation) + Arka microbial consortium(300g) + jeevamrutha @3.0 percent +Arka banana special @ 5% foliar spray Bunch covering, T₄-75% RDF of N and K (fertigation) + 25% Neem cake + Arka microbial consortium (300g)+ jeevamrutha @ 3.0 percent +Arka banana special@ 5% foliar spray Bunch covering, T₅-75% RDF of N and K (fertigation) + 25% Neem cake + Arka microbial consortium (300g), T₆-75% RDF of N and K (fertigation) + Arka microbial consortium (300g), T₇-50% RDF of N and K (fertigation) + 50% Neem cake + jeevamrutha @ 3.0 percent + Arka banana special @5% foliar spray +Bunch covering, T₈- 50% RDF of N and K(fertigation) +Arka microbial consortium(300g) + jeevamrutha@ 3.0 percent +Arka banana special @ 5% foliar spray+ Bunch covering, T₉-50% RDF of N and K (fertigation) + 50% Neem cake + Arka microbial consortium (300g) + jeevamrutha @ 3.0 percent +Arka banana special@ 5% foliar spray +Bunch covering, T₁₀-50% RDF of N and K (fertigation) + 50% Neem cake + Arka microbial consortium (300g), T₁₁-50% RDF of N and K (fertigation) + Arka microbial consortium (300g). The observations were recorded for the growth and yield parameters.

Results and Discussion

Pseudostem height (cm)

At all the crop growth stages the different nutrient treatments significantly affected the pseudostem height. The highest pseudostem height (100.56 cm) was also recorded in T₄ at three months after ratooning and which was at par with T₃ (98.88cm) followed by T₂ (98.65 cm), whereas lowest pseudostem height (95.63cm) was noticed in T₁. At five months after ratooning and shooting stages the highest pseudostem heights (152.74 cm and 226.22cm) respectively were recorded in treatment T₄ over rest of the treatments. Whereas the lowest pseudostem height (137.51cm and185.83cm) respectively were observed in (T₁).

Pseudostem girth (cm)

T₄ has recorded significantly higher pseudostem girth (56.37cm and 64.44 cm) at 5 MAR and at shooting respectively. Among different treatments, pseudostem girth was higher in T₄ at 5 MAP which was at par with T₃ (55.33 cm), T₂ (54.08cm) and T₅ (53.95cm) and at shooting stages T₄ was found to be dominant over rest of the treatments. T₁ has recorded lowest pseudostem girth (46.08cm and 52.36cm) at these stages.

The increased growth in terms of height and girth under higher fertigation in combination with consortium of biofertilizers is be due to increased turgidity of the cells leading to better cell enlargement and cell wall development (Senthil kumar *et al.*, 2016) ^[10].

In banana similar result was found by Yadav *et al.* (2010) ^[12]. Combination of micronutrients which helps to increase the plant growth like plant height, canopy spread this might be due to zinc is activator of enzyme, involve in the protein synthesis and had direct effect on the level of auxin in the plant as similar findings by Ram and Bose.

Time taken for initiation of suckers (days)

Lowest average number of days (45.47) taken for initiation of suckers in ratoon crop was found in T₄ which was statistically at par with T₂ (49.11), T₃ (45.85) and T₅ (50.15) and highest average number of days (65.44) taken for initiation of suckers was noticed in T₁.

Number of suckers per plant

The highest number of suckers (5.26) was recorded in T₄ which was significantly superior over rest of the treatments and lower number of suckers (2.32) was recorded in T₁. The number of suckers noticed per plant during 5 months after ratooning did not differ significantly with nutrient management practices. Whereas at shooting stages the highest number of suckers (11.20) per plant was recorded in T₄ which was superior compared to other treatments like T₃ (10.67) and T₂ (10.38) and are statistically at par and lower number of suckers (8.49) was recorded in T₁.

From the above results it can be concluded that early initiation and more number of suckers per plant in ratoon crop is mainly due to availability of more amount of nutrients from different sources. The presence of biofertilizers and organic sources around the plants throughout the period of growth, which are source of humus, N- fixers and nutrients, might have resulted in the higher values of vegetative parameters like number of suckers per plant and early initiation (Naik *et al.*, 2016) ^[6].

Time taken for the initiation of functional leaves (days)

The days taken for initiation of functional leaves in ratoon crop differed significantly among treatments. Significantly less number of days (7.26 days) were taken for initiation of leaves in T₄ and which are at par with T₃, T₂, T₅ and T₆ over rest of the treatments and significantly more number of days (8.66 days) was observed for initiation of leaves in T₁.

Number of functional leaves

The number of leaves per plant significantly differed among the treatments at all the stages of crop growth. The differences for average number of leaves per plant were significant among treatments. There was trend of gradual increase in number of leaves per plant at different months of ratooning and shooting stages. The highest numbers of leaves (8.81,18.53 and 14.57) were found in T₄ at 3,5 months after ratooning and at shooting stages respectively and the treatment T₄ was at par with T₃(8.15) in 3MAR while at 5MAR and shooting stage T₄ recorded the highest number of leaves which was at par with T₃, T₂, T₅ and T₆. While, the least number of leaves (4.25, 15.28 and 11.53) were observed with T₁ at all crop growth stages

From the results it can be concluded that there was gradual increase in all the leaf characters like time taken for initiation of functional leaves, number of functional leaves. The trend of increase may be due to more nutrient availability and photosynthetic activity. The increase in number of leaves per plant might be due to combination of organic and inorganic nutrients facilitates the transport of carbohydrates through cell membrane *i.e.* starch and sugars as well as plays an important role in the activator for many enzymes which promote the growth of the plant. Similar trend was also reported by Khalifa *et al.* (2011) ^[4].

Number of days taken for shooting

The early shooting (181.12 days) was recorded in treatment T₄ which was at par with other treatments like T₃ (184.06 days), T₂

(185.67days), T₅ (186.03days) and T₆ (186.30days) followed by T₇ (189.86 days). While late shooting was recorded in treatment T₁ (197.26 days).

Number of days taken from shooting to harvest

The number of days taken from shooting to harvest differed significantly among the treatments for the ratoon crop (table 4.4.5 and figure 4.20). The less number of days (97.54 days) from shooting to harvesting was recorded in treatment T₄ which was superior of all other treatments and it was followed by T₃ (102.80). While more number of days (119.40) from shooting to harvesting was recorded in treatment T₁.

Crop duration

The number of days taken from planting to harvest differed significantly among the different treatments for the ratoon crop. The effect of nutrients resulted in early (278.66 days) harvesting (T₄) which was significantly different from the rest of the treatments. The late harvesting was observed in T₁ which took about 316.66 days.

Early flowering in fertigated plants could be further explained by rapid production of leaves with larger leaf area which would have resulted in better photosynthetic activity, thus the required "net assimilation" presumably would have reached early in the plants receiving both nitrogen and potassium through fertigation. This might be due to extended vegetative phase, more availability of required nutrients and release of nutrients by the farm yard manure and biofertilizers (Bhalerao *et al.*, 2010) ^[2].

Number of hands in a bunch

The soil application of nutrients and foliar spray of micronutrients along with fertigation had significant influences on the number of hands per bunch among the treatments in ratoon banana Cv. Grand Naine. The maximum number of hands per bunch (10.74) was noticed in T₄ which was significantly at par with T₃ (10.38) T₅ (10.60) and followed by T₆ (10.08). The minimum number of hands per bunch (9.25) was recorded in the treatment T₁.

Finger length (cm) and Finger girth (cm)

The highest finger length (18.80 cm) and finger girth (13.98cm) was obtained in treatment T₄ in which finger length was at par with T₂ (18.55) followed by T₃ (18.67cm) and T₆ (18.42),

whereas the finger girth is statically at par with T₃, T₂, T₅ and T₆. The minimum finger length (17.81) and finger girth (12.80) was recorded in T₁.

Weight of the finger (g)

The highest finger weight (138.09g) was obtained in T₄, which was superior over other treatments and followed by T₃. While, the lowest finger weight (96.10 g) was recorded in T₁.

Weight of the hand (kg)

The highest weight of hand (3.94 kg) was obtained in T₄, which was significantly at par with T₃ (3.79 kg), T₂ (3.78kg), and T₅ (3.70kg) and T₆ (3.58 kg) followed by T₇ (3.37kg). While, the lowest weight of hand (2.54 kg) was recorded in T₁.

Fruit yield per plant (kg) and Fruit yield hectare (t)

The highest yield per plant and per hectare (28.03 kg and 86.49t/ha) was obtained in treatment T₄ which were significantly at par with T₃ (27.48kg and 84.80 tonnes/ha) and T₂ (26.66kg and 82.28 tonnes/ha). While, the minimum fruit yield (23.04 kg and 71.10 tonnes t/ha) was obtained in T₁.

Increase in the fruit length, fruit width, fruit weight and total yield might be due to better filling of finger under the bunch cover treatments which had more temperature than that of open-air temperature particularly during cold season. The higher temperature inside the bunch covers triggered the nitrate reductase activity in the plants. The reason behind this might be increased temperature within the bunch cover. There is a positive association of temperature during shooting to harvest that temperature sets a limiting factor for bunch weight. The larger size, volume and weight of individual finger had exerted influence in augmentation of bunch weight (Sarkar *et al.*, 2016) ^[9].

Higher yield response owing to application of organics ascribed to improved physical, chemical and biological properties of soil resulting in better supply of plant nutrients, which in turn led to good crop growth and yield. All the positive effects might have facilitated quick mobilization and availability of nutrients that would aid in increased plant height, number of leaves, leaf area, leaf area index and photosynthetic rate. This in turn would have assisted for the increased yield of banana. This is in confirmation with the findings of Patel *et al.* (2010) ^[7] and Aba *et al.* (2011) ^[1].

Table 1: Effect of integrated nutrient management on pseudostem height (cm) and pseudostem girth (cm) at different growth stages of banana Cv. Grand Naine in ratoon crop

Treatments	Pseudostem height (cm)			Pseudostem girth (cm)		
	3 MAR	5MAR	Shooting stage	3 MAR	5 MAR	Shooting stage
T ₁	95.63	137.51	185.83	31.80	46.08	52.36
T ₂	98.65	145.25	208.23	34.79	54.08	59.62
T ₃	98.88	149.33	216.98	35.33	55.33	61.27
T ₄	100.56	152.74	226.22	35.47	56.37	64.44
T ₅	98.08	145.10	196.53	34.77	53.95	58.59
T ₆	96.78	142.34	196.22	34.73	53.07	56.49
T ₇	96.09	140.25	191.01	34.55	50.28	54.77
T ₈	96.23	140.62	192.33	34.63	50.96	55.44
T ₉	96.70	141.34	193.58	34.67	51.23	56.35
T ₁₀	96.04	139.59	189.95	33.27	47.12	54.62
T ₁₁	96.03	139.26	189.21	32.77	46.83	54.33
CD(p=0.05)	1.85	2.7	2.81	NS	2.68	2.13
S.Em±	0.63	0.92	0.95	0.75	0.91	0.72

Table 2: Effect of integrated nutrient management on time taken for initiation of suckers (days) and number of suckers at different growth stages of banana Cv. Grand Naine in ratoon crop

Treatments	Time taken for initiation of suckers (days)	Number of suckers per plant		
		3 MAR	5 MAR	Shooting stage
T ₁	65.44	2.33	8.13	8.49
T ₂	49.11	4.18	9.43	10.38
T ₃	45.85	4.43	10.00	10.67
T ₄	45.47	5.26	10.40	11.20
T ₅	50.15	4.15	9.40	10.11
T ₆	51.93	4.07	9.20	9.77
T ₇	58.63	3.03	8.85	9.08
T ₈	56.44	3.20	8.90	9.27
T ₉	54.73	3.20	9.20	9.63
T ₁₀	61.54	2.56	8.73	8.66
T ₁₁	64.43	2.32	8.40	8.50
CD(p=0.05)	5.22	0.37	NS	1.13
SE.m±	1.77	0.13	0.48	0.38

T₁-100% RDF of N and K (farmers practice with fertigation)T₂-75% RDF of N and K (fertigation) + 25% Neem cake + jeevamrutham @ 3.0% + Arka banana special @ 5% foliar spray+Bunch coveringT₃-75% RDF of N and K (fertigation) + Arka microbial consortium + jeevamrutham @ 3.0% +Arka banana special @ 5% foliar spray+Bunch coveringT₄-75% RDF of N and K (fertigation) + 25% Neem cake + Arka microbial consortium + jeevamrutham @ 3.0% +Arka banana special @ 5% foliar spray+Bunch coveringT₅-75% RDF of N and K (fertigation) + 25% Neem cake + Arka microbial consortiumT₆-75% RDF of N and K (fertigation) + Arka microbial consortiumT₇- 50% RDF of N and K (fertigation) + 50% Neem cake + jeevamrutham @ 3.0% + Arka banana special @ 5% foliar spray+Bunch coveringT₈-50% RDF of N and K (fertigation) + Arka microbial consortium + jeevamrutham @ 3.0% +Arka banana special @ 5% foliar spray+Bunch coveringT₉-50% RDF of N and K (fertigation) + 50% Neem cake + Arka microbial consortium + jeevamrutham @ 3.0% +Arka banana special @ 5% foliar spray+Bunch coveringT₁₀-50% RDF of N and K (fertigation) + 50% Neem cake + Arka microbial consortiumT₁₁-50%RDF of N and K (fertigation) + Arka microbial consortium**MAR**- Months After Ratooning**Table 3:** Effect of integrated nutrient management on time taken for initiation of functional leaves and number of functional leaves at different growth stages of banana Cv. Grand Naine in ratoon crop

Treatments	Initiation of functional leaves	Number of functional leaves		
		3 MAR	5 MAR	Shooting stage
T ₁	8.66	4.25	15.28	11.53
T ₂	7.46	8.08	18.37	14.29
T ₃	7.30	8.15	18.45	14.45
T ₄	7.26	8.81	18.53	14.57
T ₅	7.58	7.75	18.07	14.25
T ₆	7.60	7.08	17.60	14.02
T ₇	8.23	6.01	16.93	12.38
T ₈	8.00	6.33	17.17	12.70
T ₉	7.83	6.84	17.32	13.73
T ₁₀	8.31	5.45	16.50	11.93
T ₁₁	8.41	4.61	15.75	11.56
CD(p=0.05)	0.45	0.83	1.63	1.17
SE.m±	0.15	0.8	0.55	0.4
T ₁ -100% RDF of N and K (farmers practice with fertigation)				
T ₂ -75% RDF of N and K (fertigation) + 25% Neem cake + jeevamrutham @ 3.0% + Arka banana special @ 5% foliar spray+Bunch covering				
T ₃ -75% RDF of N and K (fertigation) + Arka microbial consortium + jeevamrutham @ 3.0% +Arka banana special @ 5% foliar spray+Bunch covering				
T ₄ -75% RDF of N and K (fertigation) + 25% Neem cake + Arka microbial consortium + jeevamrutham @ 3.0% +Arka banana special @ 5% foliar spray+Bunch covering				
T ₅ -75% RDF of N and K (fertigation) + 25% Neem cake + Arka microbial consortium				
T ₆ -75% RDF of N and K (fertigation) + Arka microbial consortium				
T ₇ - 50% RDF of N and K (fertigation) + 50% Neem cake + jeevamrutham @ 3.0% + Arka banana special @ 5% foliar spray+Bunch covering				
T ₈ -50% RDF of N and K (fertigation) + Arka microbial consortium + jeevamrutham @ 3.0% +Arka banana special @ 5% foliar spray+Bunch covering				
T ₉ -50% RDF of N and K (fertigation) + 50% Neem cake + Arka microbial consortium + jeevamrutham @ 3.0% +Arka banana special @ 5% foliar spray+Bunch covering				
T ₁₀ -50% RDF of N and K (fertigation) + 50% Neem cake + Arka microbial consortium				
T ₁₁ -50%RDF of N and K (fertigation) + Arka microbial consortium				

MAR- Months After Ratooning

Table 4: Effect of integrated nutrient management on flowering characters and crop duration (days) of banana Cv. Grand Naine in ratoon crop

Treatments	Days taken for shooting	Days taken from shooting to harvest	Crop duration (days)
T ₁	197.26	119.40	316.66
T ₂	185.67	103.12	288.79
T ₃	184.06	102.80	286.86
T ₄	181.12	97.54	278.66
T ₅	186.03	103.84	289.87
T ₆	186.30	113.98	300.28
T ₇	189.86	115.96	305.82
T ₈	188.10	114.25	302.35
T ₉	187.70	114.11	301.81
T ₁₀	193.26	116.69	309.95
T ₁₁	195.22	118.27	313.49
CD(p=0.05)	7.95	4.26	4.82
SE.m±	2.69	1.44	1.63

T ₁ -100% RDF of N and K (farmers practice with fertigation)
T ₂ -75% RDF of N and K (fertigation) + 25% Neem cake + jeevamrutham @ 3.0% + Arka banana special @ 5% foliar spray+Bunch covering
T ₃ -75% RDF of N and K (fertigation) + Arka microbial consortium + jeevamrutham @ 3.0% +Arka banana special @ 5% foliar spray+Bunch covering
T ₄ -75% RDF of N and K (fertigation) + 25% Neem cake + Arka microbial consortium + jeevamrutham @ 3.0% +Arka banana special@ 5% foliar spray+Bunch covering
T ₅ -75% RDF of N and K (fertigation) + 25% Neem cake + Arka microbial consortium
T ₆ -75% RDF of N and K (fertigation) + Arka microbial consortium
T ₇ - 50% RDF of N and K (fertigation) + 50% Neem cake + jeevamrutham @ 3.0% + Arka banana special @ 5% foliar spray+Bunch covering
T ₈ -50% RDF of N and K (fertigation) + Arka microbial consortium + jeevamrutham @ 3.0% +Arka banana special @ 5% foliar spray+Bunch covering
T ₉ -50% RDF of N and K (fertigation) + 50% Neem cake + Arka microbial consortium + jeevamrutham @ 3.0% +Arka banana special@ 5% foliar spray+Bunch covering
T ₁₀ -50% RDF of N and K (fertigation) + 50% Neem cake + Arka microbial consortium
T ₁₁ -50%RDF of N and K (fertigation) + Arka microbial consortium

Table 5: Effect of integrated nutrient management on fruit characters of banana Cv. Grand Naine in ratoon crop

Treatments	Number of hands in a bunch	Finger length (cm)	Finger girth (cm)	Weight of finger (g)	Weight of hand (kg)	Fruit yield per plant (kg)	Fruit yield (t/ha)
T ₁	9.25	17.81	12.80	96.10	2.54	23.04	71.10
T ₂	10.38	18.55	13.70	125.50	3.78	26.66	82.28
T ₃	10.60	18.67	13.84	127.04	3.79	27.48	84.80
T ₄	10.74	18.80	13.98	138.09	3.94	28.03	86.49
T ₅	10.08	18.55	13.65	124.63	3.70	25.33	78.18
T ₆	9.94	18.42	13.57	111.05	3.58	25.29	78.05
T ₇	9.33	17.97	13.37	104.43	3.37	24.82	76.58
T ₈	9.44	18.11	13.38	106.00	3.48	25.03	77.23
T ₉	9.64	18.17	13.52	106.33	3.53	25.24	77.67
T ₁₀	9.28	17.93	13.24	100.61	3.14	24.75	76.37
T ₁₁	9.28	17.90	13.16	98.43	2.74	24.43	75.38
CD(p=0.05)	0.53	0.32	0.52	5.22	0.54	2.06	6.37
SE.m±	0.18	0.11	0.17	1.77	0.18	0.70	2.16

T ₁ -100% RDF of N and K (farmers practice with fertigation)
T ₂ -75% RDF of N and K (fertigation) + 25% Neem cake + jeevamrutham @ 3.0% + Arka banana special @5% foliar spray+Bunch covering
T ₃ -75% RDF of N and K (fertigation) + Arka microbial consortium + jeevamrutham @ 3.0% +Arka banana special @ 5% foliar spray+Bunch covering
T ₄ -75% RDF of N and K (fertigation) + 25% Neem cake + Arka microbial consortium + jeevamrutham @ 3.0% +Arka banana special@ 5% foliar spray+Bunch covering
T ₅ -75% RDF of N and K (fertigation) + 25% Neem cake + Arka microbial consortium
T ₆ -75%RDF of N and K (fertigation) + Arka microbial consortium
T ₇ - 50% RDF of N and K (fertigation) + 50% Neem cake + jeevamrutham @ 3.0% + Arka banana special @ 5% foliar spray+Bunch covering
T ₈ -50% RDF of N and K (fertigation) + Arka microbial consortium + jeevamrutham @ 3.0% +Arka banana special @ 5% foliar spray+Bunch covering
T ₉ -50% RDF of N and K (fertigation) + 50% Neem cake + Arka microbial consortium + jeevamrutham @ 3.0% +Arka banana special@ 5% foliar spray+Bunch covering
T ₁₀ -50% RDF of N and K (fertigation) + 50% Neem cake + Arka microbial consortium
T ₁₁ -50%RDF of N and K (fertigation) + Arka microbial consortium

Conclusion

From the investigation, it is concluded that banana responded favourably to organic nutrients in combination with chemical fertilizers. The integrated use of organics *i.e.*, Arka Microbial Consortium (AMC), neem cake, jeevamrutha, panchagavya and inorganic nutrients through 75 per cent fertigation along with bunch protective measures has given the good results. Hence the integrated nutrient management practices in banana crop have been found to be an ideal option to improve yield.

References

1. Aba SC, Baiyeri PK, Tenkouano A. Impact of poultry manure on growth behaviour, black sigatoka disease response and yield attributes of two plantain (*Musa* spp. AAB) genotypes. *Tropicatura*. 2011;29(1):20-27.
2. Bhalerao NM, Pujari CV, Patil NM. Effect of organics by substituting inorganic N fertilizers on soil properties, nematode population and yield. *Asian Journal of Soil Science*. 2010;4:239-240.
3. Dutta P, Kundu S, Bauri FK, Talang H, Majumder D. Effect of biofertilizers on physico-chemical qualities and leaf mineral composition of guava grown in alluvial zone of West Bengal. *Journal of Crop and Weed*. 2010;10(2):268-271.
4. Khalifa R, Shaabana SH, Rawia A. Effect of foliar application of zinc sulphate and boric acid on growth, yield and chemical constituents of Iris plants. *Ozean Journal of Applied Sciences*. 2011;4(2):129-132.
5. Kuttimani RK, Velayudham K, Somasundaram E. Growth and yield parameters and nutrient uptake of banana as influenced by integrated nutrient management practices. *International Journal of Recent Scientific Research*. 2013;4(5):680-686.
6. Naik H, Vanajalatha K, Ramesh T, Prasanth P. Impact of high density planting and fertigation on leaf and soil nutrient status of banana (*Musa acuminata* L.) cv. Grand Naine for main and ratoon crop. *Plant Archives*. 2016;16(2):839-844.
7. Patel PS, Kolamble BN, Patel HM, Patel TU. Quality of banana as influenced by organic farming. *International Journal of Bioscience*. 2010;8:175-176.
8. Rahman S, Biswas N, Hassan MM, Ahmed MG, Mamun ANK, Islam MR, Moniruzzaman M, Haque ME. Micropropagation of banana (*Musa* spp.) cv. Agnishwar by *in vitro* shoot tip culture. *International Research Journal of Biotechnology*. 2013;4(4):83-88.
9. Sarkar S, Ganesh D, Suraj S, Sankar S, Sujan B. Frontline demonstration on effect of bunch cover in banana for quality production of banana fruits. *International Journal of Green Pharmacy*. 2016;10(4):61-61.
10. Senthil Kumar M, Ganesh S, Srinivas K, Panneerselvam P, Nagaraja A, Kasinath BL. Fertigation for effective nutrition and higher productivity in banana: A review. *International Journal of Current Microbiology and Applied Sciences*. 2016;6(7):2104-2122.
11. Umar I. Studies on integrated nutrient management in strawberry (*Fragaria ananassa* Duch.) cultivar Chandler. Jammu: Sher-e-Kashmir University of Agricultural Sciences and Technology; 2007.
12. Yadav MK, Patel NL, Parmar BR, Kirtibarthan, Singh P. Effect of micronutrients on growth and crop duration of banana cv. Grand Naine. *Progressive Horticulture*. 2011;42(2):162-164.