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Abstract 
Pest and disease surveillance remains central to crop productivity and food security. Manual methods like 

scouting and traditional traps are laborious, time-intensive, and susceptible to error, often causing delayed 

interventions and excessive pesticide usage. Rapid strides in Artificial Intelligence (AI), Internet of Things 

(IoT), Unmanned Aerial Vehicles (UAVs), and remote sensing are enabling real-time, predictive, and 

integrated pest management solutions. This review covers the technological advances, benefits, adoption 

barriers, policy implications, and future research directions in smart pest surveillance—especially 

contextualized for Indian agriculture. 

 

Keywords: Pest surveillance, Artificial Intelligence, IoT, UAV, remote sensing, precision agriculture, 

decision support systems 

 

1. Introduction  
Pest and disease outbreaks represent one of the most critical constraints to achieving global food 
security and sustainable agricultural productivity. The Food and Agriculture Organization (FAO, 
2023) [8] estimates that approximately 20-40% of global agricultural yields are lost annually due 
to pests and diseases, amounting to hundreds of billions of dollars in economic losses. Such 
extensive damage not only undermines production efficiency but also threatens the livelihoods 
of smallholder farmers, particularly in developing economies where agriculture forms the 
backbone of national income and employment. 
In India, where agriculture contributes nearly 18% to the national GDP and sustains more than 
half of the population, pest and pathogen-induced crop losses remain a major economic burden. 
Studies by Dhaliwal, Jindal, and Dhawan (2015) [7] revealed that the country suffers 25-30% 
yield losses annually due to insect pests, weeds, and diseases, equating to billions of rupees in 
economic losses across staple crops. For instance, the Fall Armyworm (Spodoptera frugiperda) 
invasion, first reported in India during 2018, resulted in a 45% decline in maize yields in 
affected regions (Prasanna et al., 2021) [37]. Similarly, the cotton bollworm complex 
(Helicoverpa armigera) continues to cause annual losses exceeding ₹1,500 crore, despite 
decades of integrated pest management efforts (Kranthi & Stone, 2020) [17]. Such outbreaks have 
far-reaching implications—not only reducing productivity but also influencing input costs, 
farmer profitability, export potential, and national food reserves. 
Traditional pest surveillance techniques, including manual field scouting, pheromone trapping, 
and visual inspection, remain the primary methods adopted across Indian agriculture (Reynolds, 
Chapman, & Harrington, 2017) [41]. However, these approaches are labor-intensive, time-
consuming, and spatially constrained, often producing inconsistent or delayed results. The 
inherent delay between pest emergence and detection allows populations to exceed the 
Economic Threshold Level (ETL), triggering indiscriminate pesticide use. This overreliance on 
chemical control contributes to pest resistance, resurgence, biodiversity loss, environmental 
contamination, and food safety concerns (Sharma, Singh, & Kumar, 2022) [19, 45]. Additionally, 
the increasing influence of climate change, characterized by rising temperatures, altered rainfall 
patterns, and shifting pest habitats, further complicates surveillance and management strategies, 
necessitating more adaptive and data-driven systems.
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Fig 1: Crop yield losses from pests 

 

In recent years, advances in digital agriculture and precision pest 

management have revolutionized surveillance methodologies. 

Technologies such as Artificial Intelligence (AI), Internet of 

Things (IoT), Unmanned Aerial Vehicles (UAVs), machine 

vision, and remote sensing have enabled real-time, automated, 

and predictive pest monitoring at various spatial and temporal 

scales. These systems facilitate early warning, dynamic 

threshold modeling, and climate-based pest forecasting, thereby 

improving the timeliness and accuracy of decision-making 

(FAO, 2023; Reynolds et al., 2017) [8, 41]. Integration of such 

technologies into Decision Support Systems (DSS) and 

Integrated Pest Management (IPM) frameworks allows for 

optimized pesticide use, cost reduction, and environmental 

sustainability (Sharma et al., 2022) [45]. 

Globally, and particularly in India, the transition toward AI-

powered pest surveillance systems signifies a paradigm shift 

from reactive to proactive pest management. By combining 

field-level sensor data, satellite imagery, and machine learning 

algorithms, modern surveillance networks can detect, quantify, 

and forecast pest dynamics with unprecedented accuracy. These 

innovations hold immense promise in mitigating crop losses, 

enhancing food security, and promoting climate-resilient 

agricultural systems (Prasanna et al., 2021; Kranthi & Stone, 

2020) [17, 37]. 

Hence, this review aims to comprehensively explore the 

evolution, principles, and applications of digital and AI-based 

pest surveillance systems, highlighting their role in 

strengthening sustainable pest management and supporting the 

long-term transformation of global and Indian agriculture. 

 
Feature Traditional Methods Smart Technologies (AI/IoT/UAV) 

Labor Required High (manual scouting) Low (automated sensors/cameras) 

Detection Speed Delayed (field symptoms only) Real-time/predictive (remote sensing) 

Accuracy Variable, observer-dependent High (AI analytics, imaging) 

Pesticide Use Often excessive, blanket spraying Targeted, reduced applications 

Coverage Limited (plot/field-scale) Scalable (village, regional, state) 

Data Utility Paper records, subjective Digital, analyzed, mapped 

References: Gupta et al., 2022; Mehta et al., 2024; Sharma et al., 2022; FAO, 2023 [8, 10, 27, 46]. 

 

 
 

Fig 2: Conceptual framework of smart pest surveillance 

 

2. Technologies for Smart Pest Surveillance 

2.1 Trap-Based Camera and Sensor Systems 
Recent advances in computer vision, edge computing, and 

wireless sensor networks have significantly improved pest 

detection accuracy and operational efficiency in agricultural 

landscapes. These systems integrate optical imaging, 

environmental sensors, and AI algorithms to autonomously 

identify, count, and classify pests, transforming traditional traps 

into intelligent surveillance tools. 

The Smart Pest Guardian system (developed in Chennai, India) 

combines Convolutional Neural Network (CNN)-based image 

analysis with real-time data from temperature, humidity, and 

light sensors. This integration enables automated identification 

of bollworm species and dynamic prediction of population 

surges, outperforming conventional pheromone traps in accuracy 

and timeliness (Gupta et al., 2022) [10]. The system’s cloud-

based dashboard supports remote monitoring and facilitates data 

sharing for regional pest forecasting, a key component of 
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precision Integrated Pest Management (IPM). 

The BOLLWM dataset (Praveen et al., 2023) [38] represents one 

of the largest labeled pest image datasets from Indian cotton 

fields, collected under diverse climatic and lighting conditions. 

It supports deep learning-based bollworm recognition with 

enhanced robustness to field variability. This dataset underpins 

several mobile applications that allow farmers to capture trap 

images using smartphones for on-device pest classification using 

lightweight neural networks such as MobileNetV2 and 

EfficientNet-Lite. 

Another notable system, Jute Pest Detect, applies transfer 

learning on pre-trained CNN models (ResNet-50, InceptionV3, 

and EfficientNet) to achieve multi-class classification of 17 jute 

pest species with 99% accuracy, even under complex 

backgrounds (Pramanik et al., 2023) [36]. This innovation 

contributes to adaptive IPM decision support by providing 

species-specific action thresholds and reducing pesticide misuse. 

Beyond India, similar technologies are gaining traction globally. 

For instance, the iScout® Smart Trap (Plantix GmbH, Germany) 

uses solar-powered cameras and cloud-based AI to automatically 

record and analyze pest counts, while TrapView® (EFOS d.o.o., 

Slovenia) employs edge AI for real-time pest forecasting and 

alert generation. These global benchmarks emphasize the 

increasing relevance of AI-enabled trap systems in scalable and 

sustainable pest management frameworks. 

Collectively, these technologies mark a transition from reactive 

to proactive pest control, where continuous surveillance, 

automated diagnostics, and data analytics support precision 

interventions, minimize chemical use, and enhance food safety. 

 

2.2 UAV, Satellite, and Remote Sensing-Based Surveillance 

The integration of Unmanned Aerial Vehicles (UAVs), satellite 

remote sensing, and advanced image analytics has 

revolutionized pest surveillance, enabling non-destructive, 

scalable, and real-time monitoring of crop health. These tools 

support early warning systems by identifying spectral signatures 

associated with insect and pathogen-induced stress, often before 

visible symptoms appear on the canopy. 

 

 
 

Fig 3: Visualizing Spectral Stress Signatures image 

 

Early Detection Using UAV Hyperspectral Imaging 

UAVs equipped with multispectral and hyperspectral sensors 

can detect subtle variations in reflectance across visible (VIS), 

near-infrared (NIR), and shortwave infrared (SWIR) bands. 

Pests and pathogens alter the physiological state of plants—such 

as chlorophyll degradation, water imbalance, and changes in leaf 

structure—which modify their spectral response. 

A landmark study in Ningxia, China, on Lycium barbarum (goji 

berry) plantations demonstrated the power of hyperspectral 

imaging for pest discrimination. Using UAV-borne sensors 

capturing 400-1000 nm spectral data, Sun et al. (2022) [53] 

developed a fully connected neural network (FCNN) that 

distinguished between healthy plants and those infested by gall 

mites and psyllids. The model achieved 96.8% classification 

accuracy, identifying red and NIR bands as the most sensitive 

regions for early stress detection. This approach allowed 

identification five to seven days before visual symptoms 

emerged, proving UAV hyperspectral imaging as an efficient 

early-warning mechanism for perennial crops (Sun et al., 2022) 
[53]. 

Beyond goji, similar hyperspectral approaches have been 

reported for tea (Zhou et al., 2023), maize (Hu et al., 2022), and 

citrus (Chen et al., 2024) [3], showing that narrow-band spectral 

features (especially 550-750 nm) can differentiate between 

nutrient, disease, and pest stresses with high precision. 

 

Remote Sensing for Crop Pest Monitoring in India 

In India, where smallholder systems dominate, low-cost 

multispectral UAVs and open-access satellite platforms such as 

Sentinel-2 and Landsat-8 are increasingly applied in pest 

surveillance. The Indian Council of Agricultural Research 

(ICAR, 2022) [12] demonstrated that NDVI (Normalized 

Difference Vegetation Index) and red-edge spectral indices 

derived from Sentinel-2 data effectively detected stem borer and 

brown planthopper infestations in rice at least 10 days before 

visible canopy yellowing. Similarly, Thirupathi and Prabhakar 

(2021) [54] integrated Sentinel-2 imagery with field pheromone 

trap data for cotton bollworm monitoring across Telangana, 

achieving early stress mapping with ~85% predictive accuracy. 

More recently, Reddy et al. (2024) [39] combined time-series 

NDVI and temperature data from Sentinel-2 and MODIS 

platforms to model spatial pest risk zones in central India. Their 

work demonstrated that early anomalies in vegetation indices 

correlated strongly (R² = 0.82) with subsequent pest outbreaks, 

providing actionable insights for regional pest advisory systems. 

 

Multispectral UAV Precision Spraying and Decision Support 

At the field scale, multispectral UAVs have proven valuable in 

precision IPM. Mehta et al. (2024) [27] reported an 88% accuracy 

in identifying bollworm hotspots in cotton fields of Gujarat 

using five-band multispectral imagery (blue, green, red, red-

edge, NIR). The UAV data were linked with automated spot-

spray algorithms, reducing pesticide use by 32% while 

maintaining yield levels. This study highlights UAVs’ potential 

to transition from monitoring tools to active components of 

precision-based pest management systems. 

 

Integration of UAV and Satellite Data 
Integration of UAV and satellite platforms offers a multi-scale 

surveillance framework, where UAVs provide high-resolution 

local diagnostics (cm-level) and satellites ensure temporal 

continuity and regional coverage (m-level). Hybrid workflows—

combining UAV-based stress mapping with Sentinel-2 NDVI 

anomaly tracking—enable continuous, scalable pest monitoring 

that can feed into cloud-based Decision Support Systems (DSS) 

for forecasting and advisory dissemination. 

Such integration is central to India’s emerging Digital Pest 

Surveillance Networks, being piloted in collaboration with 

ICAR, ISRO, and agricultural universities to support real-time 

crop protection recommendations. 
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Research Gaps and Future Prospects 

Despite these advances, key challenges remain: 

 Spectral overlap between pest, nutrient, and disease stresses 

complicates discrimination. 

 Calibration issues under variable illumination and 

atmospheric conditions limit model transferability. 

 High costs of hyperspectral sensors and limited technical 

expertise restrict adoption among smallholders. 

 Standardized pest-specific spectral libraries for Indian crops 
are still lacking. 

 Integration into DSS requires harmonization with field data, 
IoT traps, and meteorological variables. 

 
Addressing these constraints through AI-driven data fusion, low-
cost sensor innovation, and policy-backed digital infrastructure 
will be critical for scaling remote sensing in national pest 
management frameworks. 
 

 
 

Fig 4: Geographic Distribution of Smart Pest Surveillance Pilots in 
India 

 

2.3 Edge-AI in Agricultural Pest Surveillance 
Traditional cloud-based analytics often face constraints in rural 
agricultural landscapes due to low internet connectivity, limited 
bandwidth, and latency issues. To overcome these limitations, 
Edge Artificial Intelligence (Edge-AI) brings computation closer 
to the field—processing data locally on IoT or embedded 
devices rather than relying solely on cloud servers. This 
paradigm enables real-time pest recognition, rapid decision-
making, and resource-efficient operations, particularly in remote 
or smallholder-dominated farming systems (Zhang et al., 2023; 
Johansson et al., 2023) [15, 59]. 
 

 
 

Fig 5: Edge-AI vs. Cloud-AI Architecture Comparison 

In India, Kumar et al. (2023) [18] demonstrated an innovative 

Edge-AI application for cashew pest and disease management. 

A MobileNetV2-based convolutional neural network (CNN) was 

deployed on low-power NVIDIA Jetson Nano devices for on-

field disease recognition. The system achieved 95% 

classification accuracy across five major cashew pests and leaf 

diseases, providing real-time alerts through a mobile app 

interface. This on-device inference capability allowed farmers to 

act promptly—without needing constant internet access—thus 

representing a scalable model for rural precision agriculture. 

Similarly, ICAR’s Smart Pest Management Network (2024) [13] 

integrates IoT weather stations, pheromone traps, and soil-

microclimate sensors with AI algorithms to predict pest 

dynamics based on temperature, humidity, and host phenology. 

Field trials across Andhra Pradesh and Karnataka demonstrated 

20-30% reductions in pesticide sprays and up to 25% savings in 

labor costs, while maintaining yield stability. The system’s 

modular dashboard provides dynamic pest alerts, ETL 

(Economic Threshold Level) advisories, and spatial heatmaps, 

representing one of India’s first IoT-enabled pest forecasting 

frameworks. 

 

Global Edge-AI and IoT Innovations 

Globally, several edge-intelligent surveillance systems are 

emerging as benchmarks for scalable pest management: 

 Johansson et al. (2023) [15] developed an Edge-AI sticky 

trap system for greenhouse environments in Sweden. Using 

an embedded Raspberry Pi 4 with TensorFlow Lite, the trap 

achieved 98% insect recognition accuracy and processed 

images locally—eliminating the need for continuous data 

transmission to the cloud. This innovation notably reduced 

network dependency and energy consumption while 

providing instant pest alerts to growers. 

 In Sub-Saharan Africa, Ndlovu et al. (2024) [33] piloted an 

IoT-based light trap network for fall armyworm 

(Spodoptera frugiperda) surveillance in maize systems. The 

traps used LoRaWAN communication to send insect count 

and environmental data to edge processors equipped with 

TinyML (Tiny Machine Learning) models. The project 

demonstrated that edge-enabled systems can reduce the data 

load by up to 80% while maintaining real-time accuracy, 

proving their viability for resource-limited agricultural 

regions. 

 In China, Zhang et al. (2023) [61] introduced a 5G-Edge 

collaborative pest analytics platform for large-scale 

vegetable farms in Guangdong Province. The system 

integrates UAV imaging, IoT sensors, and edge AI modules 

to classify pest infestations and trigger precision spraying 

through autonomous drones. Real-time processing through 

5G edge nodes allowed instantaneous feedback loops 

between field devices and management centers, achieving 

40% faster response times than traditional cloud-based 

systems. 

 

These developments underscore how Edge-AI architectures, 

combined with IoT connectivity, are transforming pest 

management into a data-driven, decentralized ecosystem where 

each node can independently perform sensing, learning, and 

decision-making. 

 

Integration with Decision Support Systems (DSS) 

The true potential of Edge-AI and IoT platforms emerges when 

they are integrated into Decision Support Systems (DSS). DSS 

platforms consolidate real-time field data, pest incidence reports, 
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weather forecasts, and economic parameters to generate 

adaptive, site-specific pest control recommendations (Sharma et 

al., 2022; FAO, 2023) [8, 46]. 

Modern DSS frameworks employ dynamic threshold models 

that adjust Economic Threshold Levels (ETLs) based on real-

time pest counts, crop stage, and natural enemy abundance, 

supporting selective intervention rather than calendar-based 

pesticide spraying. For instance, the FAO’s Fall Armyworm 

Monitoring and Early Warning System (FAMEWS) leverages 

mobile-based IoT data, local AI classification, and cloud 

dashboards to provide national-level outbreak forecasts across 

Africa and Asia (FAO, 2023) [8]. 

Indian research institutions are now adopting similar approaches 

through ICAR’s AgroDSS platform, integrating AI-predicted 

pest risk maps with satellite-derived crop health indicators. This 

synergy between Edge-AI sensing, IoT data streams, and 

decision analytics represents a major step toward sustainable, 

predictive, and eco-efficient pest management. 

 

Challenges and Future Prospects 

Despite promising results, several challenges hinder large-scale 

implementation: 

 Hardware Constraints: Edge devices have limited 

computing power, memory, and energy capacity. Model 

optimization and compression techniques such as 

quantization and pruning are required to deploy deep 

networks effectively. 

 Interoperability Issues: IoT devices often operate across 

heterogeneous communication standards (LoRa, NB-IoT, 

Zigbee), creating data integration challenges. 

 Scalability and Maintenance: Networks require periodic 

calibration, sensor cleaning, and firmware updates, which 

may be difficult in remote regions. 

 Data Governance: With decentralized systems, ensuring 

data privacy, ownership, and standardization remains a 

pressing concern. 

 

Future efforts must focus on developing open-source edge-AI 

frameworks, training local communities for maintenance, and 

integrating DSS outputs with agricultural extension systems. 

Together, these advances could make real-time, self-sufficient 

pest surveillance a core component of the next-generation digital 

agriculture ecosystem. 

 
Country Crop Tech Used Pesticide Reduction (%) Yield Increase (%) Reference 

India Cotton IoT, Mobile App 32 12 [Indian Agri Res] 

China Maize UAV/Cloud DSS 28 9 [Liu et al., 2023] [25] 

Africa Maize IoT Pheromone 24 7 [Ndlovu et al., 2024] [33] 

Europe Wheat Edge-AI Traps/DSS 15 5 [Müller et al., 2023] [31] 

 

3. AI and Data Analytics in Pest Surveillance 

3.1 High-Accuracy Pest Detection with Pre-Trained CNNs 

 

 
 

Fig 6: Classification Accuracy of AI Pest Surveillance Systems. 

 

Recent advancements in Convolutional Neural Networks 

(CNNs) have significantly enhanced the accuracy of pest 

detection systems. Pre-trained models such as DenseNet, 

Inception, and ResNet, when fine-tuned with domain-specific 

datasets, have achieved detection accuracies exceeding 99% in 

field trials. For instance, Aravind et al. (2023) [1] demonstrated 

that fine-tuning a pre-trained CNN with a multiclass support 

vector machine improved grape leaf disease classification 

https://www.agronomyjournals.com/
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accuracy to 99.23% Nature. 

 

3.2 Addressing Challenges in Sticky Trap Image Analysis 

Sticky traps are widely used for monitoring pest populations; 

however, overlapping or occluded pests in images pose 

significant challenges for accurate detection. Recent studies 

have employed advanced deep learning models to address these 

issues. Li et al. (2023) [21] utilized Cascade R-CNN for multi-

scale object detection, effectively identifying small and 

overlapping pests in sticky trap images. Similarly, Liu et al. 

(2023) [25] proposed improved annotation strategies to enhance 

the performance of deep learning models in complex trap 

images. 

 

3.3 Multimodal Models for Enhanced Detection 

Integrating multiple data modalities has shown promise in 

improving pest detection accuracy. Chen et al. (2024) [4] 

developed multimodal models that combine visual data from 

CNNs with phenological context, enhancing the detection of 

pests in complex field images. Additionally, Duan et al. (2023) 

introduced a multimodal deep learning framework that integrates 

visual data with textual information, further boosting detection 

capabilities in agricultural settings arXiv. 

 

3.4 Spectral Fusion for Pre-Symptomatic Stress Detection 

Early detection of plant stress is crucial for effective pest 

management. Wang et al. (2024) [57] demonstrated that spectral 

fusion techniques, combining RGB and multispectral imaging, 

enable the identification of pre-symptomatic stress in plants. 

This approach allows for timely interventions, potentially 

preventing pest outbreaks before they become visible. 

 

3.5 Advancements in Model Robustness 

Ensuring that pest detection models maintain high performance 

across diverse environmental conditions is essential. Singh et al. 

(2024) [49] explored domain adaptation and self-supervised 

learning techniques to enhance model robustness. These 

methods enable models to adapt to regional dataset variations, 

improving their generalization capabilities and reliability in real-

world applications. 

 

4. Case Studies and Implementation at Scale 

India: IoT-Connected Pest Traps and Mobile Advisories 

In India, the integration of IoT-enabled pest traps with farmer-

facing mobile advisories has led to significant improvements in 

pest management. Real-time monitoring of pest populations 

allows farmers to reduce pesticide applications by 20-40%, 

particularly in cotton, rice, and fruit crops (Raju et al., 2024; 

Singh et al., 2024) [52]. IoT traps collect data on pest density and 

environmental conditions, while mobile applications provide 

actionable alerts, enabling targeted interventions instead of 

blanket pesticide use. These systems have demonstrated both 

economic and environmental benefits, including reduced labor 

costs and minimized chemical residues in crops. 

Europe: Cooperative Community-Level DSS Models 

In Europe, community-based Decision Support Systems (DSS) 

coordinate pest management interventions among multiple 

farms. By sharing pest incidence data and synchronizing 

intervention schedules, these models reduce pesticide use while 

maintaining crop protection (Müller et al., 2023) [31]. Regional 

networks integrate meteorological data, crop phenology, and 

pest biology to generate coordinated action plans, resulting in 

improved resource efficiency and better ecological outcomes. 

 

China: Large-Scale Cloud-Based DSS for Pest Prediction 

China has implemented cloud-based DSS platforms at a national 

scale that integrate environmental, crop, and pest data for 

accurate outbreak prediction. These systems provide 

instantaneous alerts to farmers and enable precision 

interventions, achieving up to 90% accuracy in predicting pest 

outbreaks (Liu et al., 2023) [26]. Such platforms optimize 

resource allocation, pesticide use, and timing of interventions, 

especially in intensive farming regions. 

 

Africa: Edge-IoT Pheromone Traps for Fall Armyworm 

In Africa, Edge-IoT-enabled pheromone traps have been 

deployed to monitor invasive pests such as Fall Armyworm 

(FAW) in maize fields. The combination of pheromone lures, 

IoT sensors, and on-device processing allows for real-time 

detection and rapid response (Ndlovu et al., 2024) [33]. This 

reduces the lag between infestation and intervention, enabling 

targeted pesticide application, lowering crop losses, and 

minimizing environmental impact. 

 

5. Demonstrated Benefits 

5.1 Reduction in Chemical Input and Sustainability 

Smart pest surveillance technologies have demonstrated 

significant reductions in chemical pesticide usage. UAV-assisted 

precision spraying, IoT-connected traps, and sensor-based 

monitoring have been shown to reduce pesticide applications by 

20-40% across Indian and Chinese field trials (Ramteke et al., 

2025; Shan et al., 2024) [14, 44]. These technologies also 

contribute to sustainable water management, as precision 

spraying avoids excessive irrigation overlap and runoff. 

Economic analyses indicate that farmers adopting smart 

surveillance systems achieve 10-15% higher net returns per 

hectare, reflecting both lower input costs and improved yield 

stability (FAO, 2023) [8]. 

 

5.2 Labor and Economic Efficiency 

Automated pest monitoring systems, including IoT traps and 

sensor networks, reduce the need for manual field inspections by 

30-40% (Reddy et al., 2023) [39]. This labor efficiency allows 

farmers to reallocate time toward other agronomic activities and 

reduces dependence on seasonal labor, which is often scarce or 

expensive. Furthermore, community-based monitoring and 

cooperative DSS models enable scalable, area-wide pest control, 

lowering operational costs and enhancing the overall 

effectiveness of integrated pest management programs (Wang et 

al., 2023) [56].  
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5.3 Targeted Control and Environmental Health 

Precision technologies, such as UAV imaging combined with 

spectral mapping, allow for spot-targeted pesticide application, 

minimizing the exposure of non-target organisms and reducing 

environmental contamination. Field studies in India demonstrate 

that integrating UAV-assisted spraying with IoT surveillance 

results in more accurate, selective pesticide use, thereby 

lowering risks to beneficial insects and surrounding ecosystems 

(Indian Agricultural Research Journals, 2024; Mehta et al., 

2024) [14, 27]. These approaches contribute to improved 

environmental health and sustainable crop protection, aligning 

with global agroecological targets. 

 

 
 

Fig 7: Pesticide Reduction After Smart Pest Surveillance Adoption. 

Adapted from [Indian Agricultural Research Journals, 2024] [14], 

[Mehta et al., 2024] [27], [Liu et al., 2023] [26], [Ndlovu et al., 2024] [33], 

[Müller et al., 2023] [31]. 

 

6. Challenges and Limitations 

6.1 Financial and Infrastructure Barriers 

The initial investment required for UAVs, spectral cameras, and 

IoT sensor networks remains prohibitively high for many 

smallholder farmers. Advanced surveillance technologies, 

though effective, are not universally affordable, limiting 

adoption in low-income regions. To overcome these barriers, 

cooperative or shared-service models, targeted subsidies, and 

custom financing schemes have been proposed to make these 

technologies accessible to small-scale farmers (Li et al., 2023)

[23]. 

 

6.2 Technical Robustness and Model Transferability 

While AI and ML models have achieved high accuracy in 

controlled datasets, their performance often drops significantly 

when deployed in different crops, regions, or environmental 

conditions (Chen et al., 2024) [5]. Differences in lighting, pest 

appearance, or crop phenology can reduce model reliability. 

Open-source benchmarks, diverse datasets, and domain 

adaptation techniques are essential to improve generalizability 

and ensure that models perform robustly across heterogeneous 

agricultural contexts. 

 

6.3 Connectivity and Power Constraints 

Many rural and rainfed regions lack stable electricity and 

reliable internet connectivity, which are prerequisites for 

continuous operation of IoT-based traps, edge devices, and 

cloud-enabled DSS platforms (Sharma & Reddy, 2023) [40, 47]. 

Limited connectivity can delay real-time alerts, reducing the 

effectiveness of early pest intervention. Solutions include solar-

powered edge devices, offline-capable AI models, and low-

bandwidth data transmission protocols. 

 

6.4 Human Factors: Literacy, Training, and Trust 

The success of smart pest surveillance systems depends heavily 

on farmer education, extension worker training, and trust in 

digital advisories (FAO, 2023) [8]. In regions with low literacy or 

minimal exposure to technology, farmers may struggle to 

interpret app-based alerts or adopt automated interventions. 

Continuous capacity-building programs, local language 

interfaces, and demonstrative pilot projects are critical to 

improve user acceptance and ensure sustained adoption. 

 

6.5 Ethical, Social, and Ecological Considerations 

Ethical and ecological concerns also limit adoption. Pheromone 

or sticky traps can inadvertently impact beneficial insect 

populations, and drone-based monitoring faces regulatory 

hurdles, including privacy and airspace restrictions (Miller & 

Gupta, 2025) [10, 29]. Socially, inequitable access to digital tools 

may widen the gap between well-resourced and marginalized 

farmers. Policies and guidelines addressing sustainability, data 

privacy, and equitable access are needed to ensure ethical 

implementation. 
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7. Deployment and Adoption Pathways 

7.1 Extension and Public Sector Initiatives 

In India, public sector institutions such as ICAR and State 

Agriculture Universities have played a pivotal role in promoting 

smart pest surveillance technologies. Through field pilots, on-

farm demonstrations, and extension-driven dissemination, these 

initiatives have significantly increased awareness and adoption 

among smallholder farmers (Raju et al., 2024; Singh et al., 

2024) [52]. Extension programs often combine hands-on training, 

mobile advisories, and participatory monitoring, allowing 

farmers to understand system functionalities and benefits before 

full-scale adoption. 

 

7.2 Cooperative and Farmer Producer Organization (FPO) 

Models 

Group-based adoption models, including FPOs and farmer 

cooperatives, enable resource pooling, reducing the financial 

burden of high-cost devices such as UAVs and IoT traps. Such 

cooperative frameworks make monitoring affordable and 

scalable, especially for smallholders who otherwise cannot 

individually invest in precision agriculture tools (FAO, 2023). 

Members share both the infrastructure and the data, facilitating 

collective decision-making and coordinated pest management, 

which enhances the effectiveness of interventions at the 

landscape level. 

 

7.3 Commercial Startups and Public-Private Partnerships 

Commercial startups in India and Southeast Asia have emerged 

as important enablers of digital agriculture. They provide 

affordable hardware, cloud analytics, and farmer-friendly apps, 

translating AI and IoT technologies into practical solutions for 

end users. When supported by policy incentives, agricultural 

insurance, and credit mechanisms, these startups improve 

adoption rates and return on investment (ROI) for farmers (Li et 

al., 2023) [22]. Public-private partnerships (PPP) further support 

research translation, supply chain integration, and scale-up, 

bridging the gap between technology innovation and field 

implementation. 

 

7.4 Hybrid and Community-Based Models 

Hybrid models combining community subscriptions with 

regional DSS platforms maximize the benefits of shared 

infrastructure. In Europe, such regional DSS networks 

synchronize pest management across multiple farms, reducing 

pesticide use and improving ecological outcomes (Müller et al., 

2024) [32]. Pilot programs in India have adapted this approach at 

a local scale, demonstrating that community-managed digital 

surveillance networks enhance both adoption and effectiveness, 

particularly in resource-constrained settings. 

 

8. Policy, Extension, and Regulatory Ecosystem 

Effective scaling and adoption of smart pest surveillance 

systems depend heavily on a supportive policy and regulatory 

framework. Governments and institutions must provide capital 

subsidies, shared digital infrastructure, and incentives to reduce 

financial barriers for smallholder farmers (FAO, 2023) [8]. 

Additionally, clear guidelines for UAV/drone operations, data 

privacy, and sensor deployment are crucial to ensure safe, 

ethical, and legally compliant implementation (Miller & Gupta, 

2025) [10, 30]. 

Equally important is capacity building for extension personnel. 

Training agricultural officers and field extension workers in AI-

enabled pest management, IoT-based monitoring, and DSS 

interpretation ensures that farmers receive accurate, actionable 

guidance. Integrating smart surveillance technologies into 

national Integrated Pest Management (IPM) strategies can 

promote widespread adoption and standardize best practices 

across regions, enhancing both efficiency and sustainability in 

crop protection. 

Furthermore, policy support for cooperative and FPO-based 

adoption models, coupled with public-private partnerships, can 

accelerate scaling by combining technical innovation with 

economic accessibility. Such a regulatory and extension 

ecosystem ensures that technological advances translate into 

tangible agronomic, economic, and environmental benefits at 

scale. 

 

9. Future Directions 

9.1 Benchmarking and Data Diversity 

To develop robust and generalizable AI models for pest 

detection, there is a critical need for global, multi-crop, multi-

region datasets. Current models often underperform when 

applied outside their original datasets due to limited training 

diversity. Standardized, openly available datasets will support 

cross-region adaptation, comparative benchmarking, and model 

reproducibility (Kumar et al., 2023) [20]. 

 

9.2 Federated Learning and Data Privacy 

Federated learning frameworks allow local, on-farm data to be 

used for improving AI models without transferring sensitive 

farm information, thereby protecting privacy while enhancing 

model accuracy. Such decentralized approaches are particularly 

promising for smallholders and cooperative networks, enabling 

broader adoption without compromising data security (Zhang et 

al., 2024) [60]. 

 

9.3 Energy Harvesting Innovations 

Continuous operation of IoT devices, UAVs, and edge-AI 

systems is often limited by power availability. Innovations in 

solar, kinetic, and hybrid energy harvesting can provide 

sustainable power, reduce maintenance, and allow uninterrupted 

data collection, particularly in remote and off-grid agricultural 

regions (RSIS International, 2023) [43]. 

 

9.4 Low-Cost Sensor Development 

Developing miniaturized and cost-effective multispectral sensors 

is critical to make precision surveillance accessible to 

smallholders. Advances in sensor technology aim to retain 

performance while reducing production and deployment costs, 

facilitating broader adoption across diverse farming systems 

(Chen et al., 2023) [2]. 

 

9.5 Strong Field Validation 

Future research must emphasize real-world validation, linking 

pest detection systems directly to yield outcomes, input savings, 

and profitability. Multi-location trials across different crops and 

agro-climatic zones are essential to ensure that smart pest 

surveillance technologies deliver tangible economic and 

environmental benefits (FAO, 2023; Singh et al., 2024) [8, 52]. 

 

10. Conclusion 

Smart pest surveillance represents a transformative advancement 

in modern agriculture, combining AI, IoT, UAVs, remote 

sensing, and decision support systems to address one of the most 

persistent challenges in crop production: pest and disease 

outbreaks. These technologies enable real-time monitoring, early 

detection of pest infestations, and predictive analytics, allowing 

farmers to implement targeted interventions that reduce crop 

https://www.agronomyjournals.com/


International Journal of Research in Agronomy  https://www.agronomyjournals.com  

~ 1249 ~ 

losses and minimize unnecessary pesticide applications. As a 

result, smart surveillance systems contribute to improved yield 

stability, higher economic returns, and enhanced environmental 

sustainability. 

The evidence from India, China, Europe, and Africa 

demonstrates the effectiveness of these technologies across 

diverse cropping systems. For instance, IoT-connected traps and 

mobile advisories have reduced pesticide use by 20-40%, UAV-

assisted precision spraying has increased efficiency and water 

savings, and community-based DSS networks have enabled 

coordinated, area-wide pest management. Additionally, the 

integration of edge-AI and federated learning frameworks is 

addressing challenges related to connectivity, data privacy, and 

model transferability, making these technologies increasingly 

adaptable to smallholder farming contexts. 

Despite these advances, the large-scale deployment and adoption 

of smart pest surveillance face several critical challenges. 

Financial barriers, high equipment costs, and limited access to 

digital infrastructure restrict adoption, particularly among 

smallholders. Technical limitations, such as model 

generalizability, robustness under diverse field conditions, and 

power constraints, must be addressed to ensure reliable 

performance. Social factors—including farmer literacy, training, 

trust, and equitable access—are equally important, as are 

regulatory and ethical considerations around drones, data 

privacy, and ecological impacts. 

Addressing these barriers requires holistic, multi-stakeholder 

approaches. Public sector extension services, cooperative and 

FPO-based models, and public-private partnerships can 

collectively reduce financial risks and enable widespread access 

to technology. Policy frameworks that provide capital subsidies, 

digital infrastructure support, and regulatory clarity will further 

enhance adoption. Simultaneously, robust field validation 

studies, standardized datasets, and energy-efficient sensor 

innovations will ensure that these systems are practical, scalable, 

and economically viable across diverse agro-climatic conditions. 

Looking forward, the synergistic integration of technology, 

policy, and community-driven models will determine the full 

potential of smart pest surveillance. By linking detection 

systems to tangible outcomes—such as yield improvement, 

input savings, and profitability—these tools can transform pest 

management from reactive to predictive, precise, and 

sustainable. Ultimately, smart pest surveillance has the potential 

to reshape global agriculture, supporting food security, 

environmental stewardship, and climate-resilient farming 

practices, while empowering farmers with digital intelligence 

and actionable insights. 
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