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Abstract

Pest and disease surveillance remains central to crop productivity and food security. Manual methods like
scouting and traditional traps are laborious, time-intensive, and susceptible to error, often causing delayed
interventions and excessive pesticide usage. Rapid strides in Artificial Intelligence (Al), Internet of Things
(loT), Unmanned Aerial Vehicles (UAVs), and remote sensing are enabling real-time, predictive, and
integrated pest management solutions. This review covers the technological advances, benefits, adoption
barriers, policy implications, and future research directions in smart pest surveillance—especially
contextualized for Indian agriculture.

Keywords: Pest surveillance, Artificial Intelligence, 10T, UAV, remote sensing, precision agriculture,
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1. Introduction

Pest and disease outbreaks represent one of the most critical constraints to achieving global food
security and sustainable agricultural productivity. The Food and Agriculture Organization (FAO,
2023) ©1 estimates that approximately 20-40% of global agricultural yields are lost annually due
to pests and diseases, amounting to hundreds of billions of dollars in economic losses. Such
extensive damage not only undermines production efficiency but also threatens the livelihoods
of smallholder farmers, particularly in developing economies where agriculture forms the
backbone of national income and employment.

In India, where agriculture contributes nearly 18% to the national GDP and sustains more than
half of the population, pest and pathogen-induced crop losses remain a major economic burden.
Studies by Dhaliwal, Jindal, and Dhawan (2015) [ revealed that the country suffers 25-30%
yield losses annually due to insect pests, weeds, and diseases, equating to billions of rupees in
economic losses across staple crops. For instance, the Fall Armyworm (Spodoptera frugiperda)
invasion, first reported in India during 2018, resulted in a 45% decline in maize yields in
affected regions (Prasanna et al., 2021) [ Similarly, the cotton bollworm complex
(Helicoverpa armigera) continues to cause annual losses exceeding 1,500 crore, despite
decades of integrated pest management efforts (Kranthi & Stone, 2020) [*71. Such outbreaks have
far-reaching implications—not only reducing productivity but also influencing input costs,
farmer profitability, export potential, and national food reserves.

Traditional pest surveillance techniques, including manual field scouting, pheromone trapping,
and visual inspection, remain the primary methods adopted across Indian agriculture (Reynolds,
Chapman, & Harrington, 2017) 3. However, these approaches are labor-intensive, time-
consuming, and spatially constrained, often producing inconsistent or delayed results. The
inherent delay between pest emergence and detection allows populations to exceed the
Economic Threshold Level (ETL), triggering indiscriminate pesticide use. This overreliance on
chemical control contributes to pest resistance, resurgence, biodiversity loss, environmental
contamination, and food safety concerns (Sharma, Singh, & Kumar, 2022) 19 41, Additionally,
the increasing influence of climate change, characterized by rising temperatures, altered rainfall
patterns, and shifting pest habitats, further complicates surveillance and management strategies,
necessitating more adaptive and data-driven systems.
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Fig 1: Crop yield losses from pests

In recent years, advances in digital agriculture and precision pest
management have revolutionized surveillance methodologies.
Technologies such as Artificial Intelligence (Al), Internet of
Things (loT), Unmanned Aerial Vehicles (UAVS), machine
vision, and remote sensing have enabled real-time, automated,
and predictive pest monitoring at various spatial and temporal
scales. These systems facilitate early warning, dynamic
threshold modeling, and climate-based pest forecasting, thereby
improving the timeliness and accuracy of decision-making
(FAO, 2023; Reynolds et al., 2017) & 41, Integration of such
technologies into Decision Support Systems (DSS) and
Integrated Pest Management (IPM) frameworks allows for
optimized pesticide use, cost reduction, and environmental
sustainability (Sharma et al., 2022) 451,

Globally, and particularly in India, the transition toward Al-

powered pest surveillance systems signifies a paradigm shift
from reactive to proactive pest management. By combining
field-level sensor data, satellite imagery, and machine learning
algorithms, modern surveillance networks can detect, quantify,
and forecast pest dynamics with unprecedented accuracy. These
innovations hold immense promise in mitigating crop losses,
enhancing food security, and promoting climate-resilient
agricultural systems (Prasanna et al., 2021; Kranthi & Stone,
2020) 17,371,

Hence, this review aims to comprehensively explore the
evolution, principles, and applications of digital and Al-based
pest surveillance systems, highlighting their role in
strengthening sustainable pest management and supporting the
long-term transformation of global and Indian agriculture.

Feature Traditional Methods

Smart Technologies (Al/locT/UAV)

Labor Required High (manual scouting)

Low (automated sensors/cameras)

Detection Speed Delayed (field symptoms only)

Real-time/predictive (remote sensing)

Accuracy Variable, observer-dependent High (Al analytics, imaging)
Pesticide Use Often excessive, blanket spraying Targeted, reduced applications

Coverage Limited (plot/field-scale) Scalable (village, regional, state)
Data Utility Paper records, subjective Digital, analyzed, mapped

References: Gupta et al., 2022; Mehta et al., 2024; Sharma et al., 2022; FAQ, 2023 [8. 10,27, 46]
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Fig 2: Conceptual framework of smart pest surveillance

2. Technologies for Smart Pest Surveillance

2.1 Trap-Based Camera and Sensor Systems

Recent advances in computer vision, edge computing, and
wireless sensor networks have significantly improved pest
detection accuracy and operational efficiency in agricultural
landscapes. These systems integrate optical imaging,
environmental sensors, and Al algorithms to autonomously
identify, count, and classify pests, transforming traditional traps
into intelligent surveillance tools.

The Smart Pest Guardian system (developed in Chennai, India)
combines Convolutional Neural Network (CNN)-based image
analysis with real-time data from temperature, humidity, and
light sensors. This integration enables automated identification
of bollworm species and dynamic prediction of population
surges, outperforming conventional pheromone traps in accuracy
and timeliness (Gupta et al., 2022) 1% The system’s cloud-
based dashboard supports remote monitoring and facilitates data
sharing for regional pest forecasting, a key component of
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precision Integrated Pest Management (IPM).

The BOLLWM dataset (Praveen et al., 2023) 8l represents one
of the largest labeled pest image datasets from Indian cotton
fields, collected under diverse climatic and lighting conditions.
It supports deep learning-based bollworm recognition with
enhanced robustness to field variability. This dataset underpins
several mobile applications that allow farmers to capture trap
images using smartphones for on-device pest classification using
lightweight neural networks such as MobileNetV2 and
EfficientNet-Lite.

Another notable system, Jute Pest Detect, applies transfer
learning on pre-trained CNN models (ResNet-50, InceptionV3,
and EfficientNet) to achieve multi-class classification of 17 jute
pest species with 99% accuracy, even under complex
backgrounds (Pramanik et al., 2023) [l This innovation
contributes to adaptive IPM decision support by providing
species-specific action thresholds and reducing pesticide misuse.
Beyond India, similar technologies are gaining traction globally.
For instance, the iScout® Smart Trap (Plantix GmbH, Germany)
uses solar-powered cameras and cloud-based Al to automatically
record and analyze pest counts, while TrapView® (EFQOS d.o.0.,
Slovenia) employs edge Al for real-time pest forecasting and
alert generation. These global benchmarks emphasize the
increasing relevance of Al-enabled trap systems in scalable and
sustainable pest management frameworks.

Collectively, these technologies mark a transition from reactive
to proactive pest control, where continuous surveillance,
automated diagnostics, and data analytics support precision
interventions, minimize chemical use, and enhance food safety.

2.2 UAV, Satellite, and Remote Sensing-Based Surveillance
The integration of Unmanned Aerial Vehicles (UAVS), satellite
remote sensing, and advanced image analytics has
revolutionized pest surveillance, enabling non-destructive,
scalable, and real-time monitoring of crop health. These tools
support early warning systems by identifying spectral signatures
associated with insect and pathogen-induced stress, often before
visible symptoms appear on the canopy.

Visualizing Spectral Stress Signatures:
Early Pest Detection
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Fig 3: Visualizing Spectral Stress Signatures image

Early Detection Using UAV Hyperspectral Imaging

UAVs equipped with multispectral and hyperspectral sensors
can detect subtle variations in reflectance across visible (VIS),
near-infrared (NIR), and shortwave infrared (SWIR) bands.
Pests and pathogens alter the physiological state of plants—such
as chlorophyll degradation, water imbalance, and changes in leaf
structure—which modify their spectral response.

https://www.agronomyjournals.com

A landmark study in Ningxia, China, on Lycium barbarum (goji
berry) plantations demonstrated the power of hyperspectral
imaging for pest discrimination. Using UAV-borne sensors
capturing 400-1000 nm spectral data, Sun et al. (2022) 3
developed a fully connected neural network (FCNN) that
distinguished between healthy plants and those infested by gall
mites and psyllids. The model achieved 96.8% classification
accuracy, identifying red and NIR bands as the most sensitive
regions for early stress detection. This approach allowed
identification five to seven days before visual symptoms
emerged, proving UAV hyperspectral imaging as an efficient
early-warning mechanism for perennial crops (Sun et al., 2022)
[53]

Beyond goji, similar hyperspectral approaches have been
reported for tea (Zhou et al., 2023), maize (Hu et al., 2022), and
citrus (Chen et al., 2024) ¥, showing that narrow-band spectral
features (especially 550-750 nm) can differentiate between
nutrient, disease, and pest stresses with high precision.

Remote Sensing for Crop Pest Monitoring in India

In India, where smallholder systems dominate, low-cost
multispectral UAVs and open-access satellite platforms such as
Sentinel-2 and Landsat-8 are increasingly applied in pest
surveillance. The Indian Council of Agricultural Research
(ICAR, 2022) [ demonstrated that NDVI (Normalized
Difference Vegetation Index) and red-edge spectral indices
derived from Sentinel-2 data effectively detected stem borer and
brown planthopper infestations in rice at least 10 days before
visible canopy yellowing. Similarly, Thirupathi and Prabhakar
(2021) B4 integrated Sentinel-2 imagery with field pheromone
trap data for cotton bollworm monitoring across Telangana,
achieving early stress mapping with ~85% predictive accuracy.
More recently, Reddy et al. (2024) B combined time-series
NDVI and temperature data from Sentinel-2 and MODIS
platforms to model spatial pest risk zones in central India. Their
work demonstrated that early anomalies in vegetation indices
correlated strongly (R? = 0.82) with subsequent pest outbreaks,
providing actionable insights for regional pest advisory systems.

Multispectral UAV Precision Spraying and Decision Support
At the field scale, multispectral UAVs have proven valuable in
precision IPM. Mehta et al. (2024) ?7] reported an 88% accuracy
in identifying bollworm hotspots in cotton fields of Guijarat
using five-band multispectral imagery (blue, green, red, red-
edge, NIR). The UAV data were linked with automated spot-
spray algorithms, reducing pesticide use by 32% while
maintaining yield levels. This study highlights UAVs’ potential
to transition from monitoring tools to active components of
precision-based pest management systems.

Integration of UAV and Satellite Data

Integration of UAV and satellite platforms offers a multi-scale
surveillance framework, where UAVs provide high-resolution
local diagnostics (cm-level) and satellites ensure temporal
continuity and regional coverage (m-level). Hybrid workflows—
combining UAV-based stress mapping with Sentinel-2 NDVI
anomaly tracking—enable continuous, scalable pest monitoring
that can feed into cloud-based Decision Support Systems (DSS)
for forecasting and advisory dissemination.

Such integration is central to India’s emerging Digital Pest
Surveillance Networks, being piloted in collaboration with
ICAR, ISRO, and agricultural universities to support real-time
crop protection recommendations.
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Research Gaps and Future Prospects

Despite these advances, key challenges remain:

e  Spectral overlap between pest, nutrient, and disease stresses
complicates discrimination.

e Calibration issues wunder variable illumination and
atmospheric conditions limit model transferability.

e High costs of hyperspectral sensors and limited technical
expertise restrict adoption among smallholders.

e Standardized pest-specific spectral libraries for Indian crops
are still lacking.

e Integration into DSS requires harmonization with field data,
IoT traps, and meteorological variables.

Addressing these constraints through Al-driven data fusion, low-
cost sensor innovation, and policy-backed digital infrastructure
will be critical for scaling remote sensing in national pest
management frameworks.

Smart Pest Surveillance Tech in India

Traps @ UAV @ Extension Programs @ Multispectral UAV

Fig 4: Geographic Distribution of Smart Pest Surveillance Pilots in
India

2.3 Edge-Al in Agricultural Pest Surveillance

Traditional cloud-based analytics often face constraints in rural
agricultural landscapes due to low internet connectivity, limited
bandwidth, and latency issues. To overcome these limitations,
Edge Artificial Intelligence (Edge-Al) brings computation closer
to the field—processing data locally on loT or embedded
devices rather than relying solely on cloud servers. This
paradigm enables real-time pest recognition, rapid decision-
making, and resource-efficient operations, particularly in remote
or smallholder-dominated farming systems (Zhang et al., 2023;
Johansson et al., 2023) [25 59,

Cloud-Al Architecture
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Edge-Al Architecture
(Decenalenzed)

A
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Fig 5: Edge-Al vs. Cloud-Al Architecture Comparison
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In India, Kumar et al. (2023) [*8 demonstrated an innovative
Edge-Al application for cashew pest and disease management.
A MobileNetV2-based convolutional neural network (CNN) was
deployed on low-power NVIDIA Jetson Nano devices for on-
field disease recognition. The system achieved 95%
classification accuracy across five major cashew pests and leaf
diseases, providing real-time alerts through a mobile app
interface. This on-device inference capability allowed farmers to
act promptly—without needing constant internet access—thus
representing a scalable model for rural precision agriculture.
Similarly, ICAR’s Smart Pest Management Network (2024) [*3]
integrates 10T weather stations, pheromone traps, and soil-
microclimate sensors with Al algorithms to predict pest
dynamics based on temperature, humidity, and host phenology.
Field trials across Andhra Pradesh and Karnataka demonstrated
20-30% reductions in pesticide sprays and up to 25% savings in
labor costs, while maintaining yield stability. The system’s
modular dashboard provides dynamic pest alerts, ETL
(Economic Threshold Level) advisories, and spatial heatmaps,
representing one of India’s first IoT-enabled pest forecasting
frameworks.

Global Edge-Al and loT Innovations

Globally, several edge-intelligent surveillance systems are

emerging as benchmarks for scalable pest management:

e Johansson et al. (2023) ™ developed an Edge-Al sticky
trap system for greenhouse environments in Sweden. Using
an embedded Raspberry Pi 4 with TensorFlow Lite, the trap
achieved 98% insect recognition accuracy and processed
images locally—eliminating the need for continuous data
transmission to the cloud. This innovation notably reduced
network dependency and energy consumption while
providing instant pest alerts to growers.

e In Sub-Saharan Africa, Ndlovu et al. (2024) ¥ piloted an
loT-based light trap network for fall armyworm
(Spodoptera frugiperda) surveillance in maize systems. The
traps used LoRaWAN communication to send insect count
and environmental data to edge processors equipped with
TinyML (Tiny Machine Learning) models. The project
demonstrated that edge-enabled systems can reduce the data
load by up to 80% while maintaining real-time accuracy,
proving their viability for resource-limited agricultural
regions.

e In China, Zhang et al. (2023) 54 introduced a 5G-Edge
collaborative pest analytics platform for large-scale
vegetable farms in Guangdong Province. The system
integrates UAV imaging, 10T sensors, and edge Al modules
to classify pest infestations and trigger precision spraying
through autonomous drones. Real-time processing through
5G edge nodes allowed instantaneous feedback loops
between field devices and management centers, achieving
40% faster response times than traditional cloud-based
systems.

These developments underscore how Edge-Al architectures,
combined with 10T connectivity, are transforming pest
management into a data-driven, decentralized ecosystem where
each node can independently perform sensing, learning, and
decision-making.

Integration with Decision Support Systems (DSS)

The true potential of Edge-Al and loT platforms emerges when
they are integrated into Decision Support Systems (DSS). DSS
platforms consolidate real-time field data, pest incidence reports,
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weather forecasts, and economic parameters to generate
adaptive, site-specific pest control recommendations (Sharma et
al., 2022; FAO, 2023) [& 461,

Modern DSS frameworks employ dynamic threshold models
that adjust Economic Threshold Levels (ETLs) based on real-
time pest counts, crop stage, and natural enemy abundance,
supporting selective intervention rather than calendar-based
pesticide spraying. For instance, the FAO’s Fall Armyworm
Monitoring and Early Warning System (FAMEWS) leverages
mobile-based 10T data, local Al classification, and cloud
dashboards to provide national-level outbreak forecasts across
Africa and Asia (FAO, 2023) B,

Indian research institutions are now adopting similar approaches
through ICAR’s AgroDSS platform, integrating Al-predicted
pest risk maps with satellite-derived crop health indicators. This
synergy between Edge-Al sensing, loT data streams, and
decision analytics represents a major step toward sustainable,
predictive, and eco-efficient pest management.

Challenges and Future Prospects
Despite promising results, several challenges hinder large-scale
implementation:

https://www.agronomyjournals.com

e Hardware Constraints: Edge devices have limited
computing power, memory, and energy capacity. Model
optimization and compression techniques such as
quantization and pruning are required to deploy deep
networks effectively.

e Interoperability Issues: 10T devices often operate across
heterogeneous communication standards (LoRa, NB-IoT,
Zigbee), creating data integration challenges.

e Scalability and Maintenance: Networks require periodic
calibration, sensor cleaning, and firmware updates, which
may be difficult in remote regions.

e Data Governance: With decentralized systems, ensuring
data privacy, ownership, and standardization remains a
pressing concern.

Future efforts must focus on developing open-source edge-Al
frameworks, training local communities for maintenance, and
integrating DSS outputs with agricultural extension systems.
Together, these advances could make real-time, self-sufficient
pest surveillance a core component of the next-generation digital
agriculture ecosystem.

Country | Crop Tech Used Pesticide Reduction (%0) Yield Increase (%0) Reference
India Cotton 10T, Mobile App 32 12 [Indian Agri Res]
China Maize UAV/Cloud DSS 28 9 [Liu et al., 2023] [*°]
Africa | Maize IoT Pheromone 24 7 [Ndlovu et al., 2024] 33
Europe | Wheat Edge-Al Traps/DSS 15 5 [Miiller et al., 2023] B

3. Al and Data Analytics in Pest Surveillance
3.1 High-Accuracy Pest Detection with Pre-Trained CNNs
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Fig 6: Classification Accuracy of Al Pest Surveillance Systems.

Recent advancements in Convolutional Neural Networks
(CNNs) have significantly enhanced the accuracy of pest
detection systems. Pre-trained models such as DenseNet,
Inception, and ResNet, when fine-tuned with domain-specific

datasets, have achieved detection accuracies exceeding 99% in
field trials. For instance, Aravind et al. (2023) [ demonstrated
that fine-tuning a pre-trained CNN with a multiclass support
vector machine improved grape leaf disease classification
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accuracy to 99.23% Nature.

3.2 Addressing Challenges in Sticky Trap Image Analysis
Sticky traps are widely used for monitoring pest populations;
however, overlapping or occluded pests in images pose
significant challenges for accurate detection. Recent studies
have employed advanced deep learning models to address these
issues. Li et al. (2023) 21 ytilized Cascade R-CNN for multi-
scale object detection, effectively identifying small and
overlapping pests in sticky trap images. Similarly, Liu et al.
(2023) 2% proposed improved annotation strategies to enhance
the performance of deep learning models in complex trap
images.

3.3 Multimodal Models for Enhanced Detection

Integrating multiple data modalities has shown promise in
improving pest detection accuracy. Chen et al. (2024) M
developed multimodal models that combine visual data from
CNNs with phenological context, enhancing the detection of
pests in complex field images. Additionally, Duan et al. (2023)
introduced a multimodal deep learning framework that integrates
visual data with textual information, further boosting detection
capabilities in agricultural settings arXiv.

3.4 Spectral Fusion for Pre-Symptomatic Stress Detection
Early detection of plant stress is crucial for effective pest
management. Wang et al. (2024) 571 demonstrated that spectral
fusion techniques, combining RGB and multispectral imaging,
enable the identification of pre-symptomatic stress in plants.
This approach allows for timely interventions, potentially
preventing pest outbreaks before they become visible.

3.5 Advancements in Model Robustness

Ensuring that pest detection models maintain high performance
across diverse environmental conditions is essential. Singh et al.
(2024) ™ explored domain adaptation and self-supervised
learning techniques to enhance model robustness. These
methods enable models to adapt to regional dataset variations,
improving their generalization capabilities and reliability in real-
world applications.

4. Case Studies and Implementation at Scale

India: 10T-Connected Pest Traps and Mobile Advisories

In India, the integration of loT-enabled pest traps with farmer-
facing mobile advisories has led to significant improvements in
pest management. Real-time monitoring of pest populations
allows farmers to reduce pesticide applications by 20-40%,
particularly in cotton, rice, and fruit crops (Raju et al., 2024;
Singh et al., 2024) 52, |oT traps collect data on pest density and
environmental conditions, while mobile applications provide
actionable alerts, enabling targeted interventions instead of
blanket pesticide use. These systems have demonstrated both
economic and environmental benefits, including reduced labor
costs and minimized chemical residues in crops.

https://www.agronomyjournals.com

Europe: Cooperative Community-Level DSS Models

In Europe, community-based Decision Support Systems (DSS)
coordinate pest management interventions among multiple
farms. By sharing pest incidence data and synchronizing
intervention schedules, these models reduce pesticide use while
maintaining crop protection (Muller et al., 2023) U, Regional
networks integrate meteorological data, crop phenology, and
pest biology to generate coordinated action plans, resulting in
improved resource efficiency and better ecological outcomes.

China: Large-Scale Cloud-Based DSS for Pest Prediction
China has implemented cloud-based DSS platforms at a national
scale that integrate environmental, crop, and pest data for
accurate outbreak prediction. These systems provide
instantaneous alerts to farmers and enable precision
interventions, achieving up to 90% accuracy in predicting pest
outbreaks (Liu et al., 2023) ¢ Such platforms optimize
resource allocation, pesticide use, and timing of interventions,
especially in intensive farming regions.

Africa: Edge-10T Pheromone Traps for Fall Armyworm

In Africa, Edge-loT-enabled pheromone traps have been
deployed to monitor invasive pests such as Fall Armyworm
(FAW) in maize fields. The combination of pheromone lures,
10T sensors, and on-device processing allows for real-time
detection and rapid response (Ndlovu et al., 2024) B3, This
reduces the lag between infestation and intervention, enabling
targeted pesticide application, lowering crop losses, and
minimizing environmental impact.

5. Demonstrated Benefits

5.1 Reduction in Chemical Input and Sustainability

Smart pest surveillance technologies have demonstrated
significant reductions in chemical pesticide usage. UAV-assisted
precision spraying, loT-connected traps, and sensor-based
monitoring have been shown to reduce pesticide applications by
20-40% across Indian and Chinese field trials (Ramteke et al.,
2025; Shan et al., 2024) [* 41 These technologies also
contribute to sustainable water management, as precision
spraying avoids excessive irrigation overlap and runoff.
Economic analyses indicate that farmers adopting smart
surveillance systems achieve 10-15% higher net returns per
hectare, reflecting both lower input costs and improved yield
stability (FAO, 2023) [,

5.2 Labor and Economic Efficiency

Automated pest monitoring systems, including loT traps and
sensor networks, reduce the need for manual field inspections by
30-40% (Reddy et al., 2023) B4, This labor efficiency allows
farmers to reallocate time toward other agronomic activities and
reduces dependence on seasonal labor, which is often scarce or
expensive. Furthermore, community-based monitoring and
cooperative DSS models enable scalable, area-wide pest control,
lowering operational costs and enhancing the overall
effectiveness of integrated pest management programs (Wang et
al., 2023) [561,
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Economic and Operational Efficiency Gains from Smart Surveillance
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5.3 Targeted Control and Environmental Health

Precision technologies, such as UAV imaging combined with
spectral mapping, allow for spot-targeted pesticide application,
minimizing the exposure of non-target organisms and reducing
environmental contamination. Field studies in India demonstrate
that integrating UAV-assisted spraying with loT surveillance
results in more accurate, selective pesticide use, thereby
lowering risks to beneficial insects and surrounding ecosystems
(Indian Agricultural Research Journals, 2024; Mehta et al.,
2024) 04 21 These approaches contribute to improved
environmental health and sustainable crop protection, aligning
with global agroecological targets.

Pesticide Reduction After Smart Surveillance

Reduction (%)

Country

Fig 7: Pesticide Reduction After Smart Pest Surveillance Adoption.
Adapted from [Indian Agricultural Research Journals, 2024] [,
[Mehta et al., 2024] #7, [Liu et al., 2023] [?], [Ndlovu et al., 2024] [33],
[Miiller et al., 2023] [34,

6. Challenges and Limitations

6.1 Financial and Infrastructure Barriers

The initial investment required for UAVS, spectral cameras, and
IoT sensor networks remains prohibitively high for many
smallholder farmers. Advanced surveillance technologies,
though effective, are not universally affordable, limiting
adoption in low-income regions. To overcome these barriers,
cooperative or shared-service models, targeted subsidies, and
custom financing schemes have been proposed to make these
technologies accessible to small-scale farmers (Li et al., 2023)

[231,

6.2 Technical Robustness and Model Transferability

While Al and ML models have achieved high accuracy in
controlled datasets, their performance often drops significantly
when deployed in different crops, regions, or environmental
conditions (Chen et al., 2024) Bl Differences in lighting, pest
appearance, or crop phenology can reduce model reliability.
Open-source benchmarks, diverse datasets, and domain
adaptation techniques are essential to improve generalizability
and ensure that models perform robustly across heterogeneous
agricultural contexts.

6.3 Connectivity and Power Constraints

Many rural and rainfed regions lack stable electricity and
reliable internet connectivity, which are prerequisites for
continuous operation of loT-based traps, edge devices, and
cloud-enabled DSS platforms (Sharma & Reddy, 2023) [0 471,
Limited connectivity can delay real-time alerts, reducing the
effectiveness of early pest intervention. Solutions include solar-
powered edge devices, offline-capable Al models, and low-
bandwidth data transmission protocols.

6.4 Human Factors: Literacy, Training, and Trust

The success of smart pest surveillance systems depends heavily
on farmer education, extension worker training, and trust in
digital advisories (FAO, 2023) [, In regions with low literacy or
minimal exposure to technology, farmers may struggle to
interpret app-based alerts or adopt automated interventions.
Continuous capacity-building programs, local language
interfaces, and demonstrative pilot projects are critical to
improve user acceptance and ensure sustained adoption.

6.5 Ethical, Social, and Ecological Considerations

Ethical and ecological concerns also limit adoption. Pheromone
or sticky traps can inadvertently impact beneficial insect
populations, and drone-based monitoring faces regulatory
hurdles, including privacy and airspace restrictions (Miller &
Gupta, 2025) 110 291 Socially, inequitable access to digital tools
may widen the gap between well-resourced and marginalized
farmers. Policies and guidelines addressing sustainability, data
privacy, and equitable access are needed to ensure ethical
implementation.
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7. Deployment and Adoption Pathways

7.1 Extension and Public Sector Initiatives

In India, public sector institutions such as ICAR and State
Agriculture Universities have played a pivotal role in promoting
smart pest surveillance technologies. Through field pilots, on-
farm demonstrations, and extension-driven dissemination, these
initiatives have significantly increased awareness and adoption
among smallholder farmers (Raju et al., 2024; Singh et al.,
2024) 52, Extension programs often combine hands-on training,
mobile advisories, and participatory monitoring, allowing
farmers to understand system functionalities and benefits before
full-scale adoption.

7.2 Cooperative and Farmer Producer Organization (FPO)
Models

Group-based adoption models, including FPOs and farmer
cooperatives, enable resource pooling, reducing the financial
burden of high-cost devices such as UAVs and 10T traps. Such
cooperative frameworks make monitoring affordable and
scalable, especially for smallholders who otherwise cannot
individually invest in precision agriculture tools (FAO, 2023).
Members share both the infrastructure and the data, facilitating
collective decision-making and coordinated pest management,
which enhances the effectiveness of interventions at the
landscape level.

7.3 Commercial Startups and Public-Private Partnerships
Commercial startups in India and Southeast Asia have emerged
as important enablers of digital agriculture. They provide
affordable hardware, cloud analytics, and farmer-friendly apps,
translating Al and loT technologies into practical solutions for
end users. When supported by policy incentives, agricultural
insurance, and credit mechanisms, these startups improve
adoption rates and return on investment (ROI) for farmers (Li et
al., 2023) %2, Public-private partnerships (PPP) further support
research translation, supply chain integration, and scale-up,
bridging the gap between technology innovation and field
implementation.

7.4 Hybrid and Community-Based Models

Hybrid models combining community subscriptions with
regional DSS platforms maximize the benefits of shared
infrastructure. In Europe, such regional DSS networks
synchronize pest management across multiple farms, reducing
pesticide use and improving ecological outcomes (Miiller et al.,
2024) 1321, Pilot programs in India have adapted this approach at
a local scale, demonstrating that community-managed digital
surveillance networks enhance both adoption and effectiveness,
particularly in resource-constrained settings.

8. Policy, Extension, and Regulatory Ecosystem

Effective scaling and adoption of smart pest surveillance
systems depend heavily on a supportive policy and regulatory
framework. Governments and institutions must provide capital
subsidies, shared digital infrastructure, and incentives to reduce
financial barriers for smallholder farmers (FAO, 2023) [8l
Additionally, clear guidelines for UAV/drone operations, data
privacy, and sensor deployment are crucial to ensure safe,
ethical, and legally compliant implementation (Miller & Gupta,
2025) [10.30]

Equally important is capacity building for extension personnel.
Training agricultural officers and field extension workers in Al-
enabled pest management, loT-based monitoring, and DSS
interpretation ensures that farmers receive accurate, actionable
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guidance. Integrating smart surveillance technologies into
national Integrated Pest Management (IPM) strategies can
promote widespread adoption and standardize best practices
across regions, enhancing both efficiency and sustainability in
crop protection.

Furthermore, policy support for cooperative and FPO-based
adoption models, coupled with public-private partnerships, can
accelerate scaling by combining technical innovation with
economic accessibility. Such a regulatory and extension
ecosystem ensures that technological advances translate into
tangible agronomic, economic, and environmental benefits at
scale.

9. Future Directions

9.1 Benchmarking and Data Diversity

To develop robust and generalizable Al models for pest
detection, there is a critical need for global, multi-crop, multi-
region datasets. Current models often underperform when
applied outside their original datasets due to limited training
diversity. Standardized, openly available datasets will support
cross-region adaptation, comparative benchmarking, and model
reproducibility (Kumar et al., 2023) 20,

9.2 Federated Learning and Data Privacy

Federated learning frameworks allow local, on-farm data to be
used for improving Al models without transferring sensitive
farm information, thereby protecting privacy while enhancing
model accuracy. Such decentralized approaches are particularly
promising for smallholders and cooperative networks, enabling
broader adoption without compromising data security (Zhang et
al., 2024) 601,

9.3 Energy Harvesting Innovations

Continuous operation of 10T devices, UAVs, and edge-Al
systems is often limited by power availability. Innovations in
solar, kinetic, and hybrid energy harvesting can provide
sustainable power, reduce maintenance, and allow uninterrupted
data collection, particularly in remote and off-grid agricultural
regions (RSIS International, 2023) “21,

9.4 Low-Cost Sensor Development

Developing miniaturized and cost-effective multispectral sensors
is critical to make precision surveillance accessible to
smallholders. Advances in sensor technology aim to retain
performance while reducing production and deployment costs,
facilitating broader adoption across diverse farming systems
(Chen et al., 2023) [,

9.5 Strong Field Validation

Future research must emphasize real-world validation, linking
pest detection systems directly to yield outcomes, input savings,
and profitability. Multi-location trials across different crops and
agro-climatic zones are essential to ensure that smart pest
surveillance technologies deliver tangible economic and
environmental benefits (FAO, 2023; Singh et al., 2024) 8521,

10. Conclusion

Smart pest surveillance represents a transformative advancement
in modern agriculture, combining Al, loT, UAVs, remote
sensing, and decision support systems to address one of the most
persistent challenges in crop production: pest and disease
outbreaks. These technologies enable real-time monitoring, early
detection of pest infestations, and predictive analytics, allowing
farmers to implement targeted interventions that reduce crop
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losses and minimize unnecessary pesticide applications. As a
result, smart surveillance systems contribute to improved yield
stability, higher economic returns, and enhanced environmental
sustainability.

The evidence from India, China, Europe, and Africa
demonstrates the effectiveness of these technologies across
diverse cropping systems. For instance, loT-connected traps and
mobile advisories have reduced pesticide use by 20-40%, UAV-
assisted precision spraying has increased efficiency and water
savings, and community-based DSS networks have enabled
coordinated, area-wide pest management. Additionally, the
integration of edge-Al and federated learning frameworks is
addressing challenges related to connectivity, data privacy, and
model transferability, making these technologies increasingly
adaptable to smallholder farming contexts.

Despite these advances, the large-scale deployment and adoption
of smart pest surveillance face several critical challenges.
Financial barriers, high equipment costs, and limited access to
digital infrastructure restrict adoption, particularly among
smallholders. ~ Technical limitations, such as model
generalizability, robustness under diverse field conditions, and
power constraints, must be addressed to ensure reliable
performance. Social factors—including farmer literacy, training,
trust, and equitable access—are equally important, as are
regulatory and ethical considerations around drones, data
privacy, and ecological impacts.

Addressing these barriers requires holistic, multi-stakeholder
approaches. Public sector extension services, cooperative and
FPO-based models, and public-private partnerships can
collectively reduce financial risks and enable widespread access
to technology. Policy frameworks that provide capital subsidies,
digital infrastructure support, and regulatory clarity will further
enhance adoption. Simultaneously, robust field validation
studies, standardized datasets, and energy-efficient sensor
innovations will ensure that these systems are practical, scalable,
and economically viable across diverse agro-climatic conditions.
Looking forward, the synergistic integration of technology,
policy, and community-driven models will determine the full
potential of smart pest surveillance. By linking detection
systems to tangible outcomes—such as yield improvement,
input savings, and profitability—these tools can transform pest
management from reactive to predictive, precise, and
sustainable. Ultimately, smart pest surveillance has the potential
to reshape global agriculture, supporting food security,
environmental stewardship, and climate-resilient farming
practices, while empowering farmers with digital intelligence
and actionable insights.
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