

International Journal of Research in Agronomy

E-ISSN: 2618-0618
P-ISSN: 2618-060X
© Agronomy
NAAS Rating (2025): 5.20
www.agronomyjournals.com
2025; 8(12): 1080-1086
Received: 25-10-2025
Accepted: 27-11-2025

R Girija
M.Sc. Scholar, Department of
Floriculture and Landscaping, Post
Graduate Institute of Horticultural
Sciences, SKLTGHU, Mulugu,
Siddipet, Telangana, India

N Seenivasan
Professor (Hort.) and Controller of
Examinations, Department of
Floriculture and Landscaping
SKLTGHU, Mulugu, Telangana,
India

D Laxminarayan
of Research, Department of
Floriculture and Landscaping,
SKLTGHU, Mulugu. Telangana,
India

P Prasanth
Associate Dean, Department of
Floriculture and Landscaping,
College of Horticulture,
Rajendranagar, SKLTGHU,
Hyderabad, Telangana, India

S Praneeth Kumar
Scientist, Crop Physiology,
Floriculture Research Station,
SKLTGHU, Rajendranagar,
Hyderabad, Telangana, India

Corresponding Author:

R Girija
M.Sc. Scholar, Department of
Floriculture and Landscaping, Post
Graduate Institute of Horticultural
Sciences, SKLTGHU, Mulugu,
Siddipet, Telangana, India

Effect of hydrogel incorporated growing media under various irrigation intervals on growth and quality of golden pothos (*Epipremnum aureum* Linden and Andre) for a vertical garden

R Girija, N Seenivasan, D Laxminarayan, P Prasanth and S Praneeth Kumar

DOI: <https://www.doi.org/10.33545/2618060X.2025.v8.i12o.4548>

Abstract

Climate change and shrinking urban land have intensified the need for vertical gardens as sustainable solutions. This study, conducted in summer 2024 at the College of Horticulture, Rajendranagar, evaluated Golden Pothos (*Epipremnum aureum*) growth under hydrogel-incorporated growing media and three irrigation intervals using a Factorial Completely Randomized Design with 15 treatments and 3 replications. Media combinations included cocopeat, red earth, vermicompost, and biochar (rice husk or wood) with hydrogel doses (20 g or 40 g). Results revealed that M2 (cocopeat + red earth + vermicompost + rice husk biochar + 40 g hydrogel) under daily irrigation (I1) consistently produced superior vegetative growth: vine length (38.56 cm), branch number (2.00), leaf count (22.40), stem diameter (5.52 mm), petiole length (11.50 cm), leaf area (42.70 cm²), and root number (10.00). In contrast, red earth alone (M5) with five-day irrigation (I3) recorded the lowest values (vine length 26.40 cm, branch number 1.00, leaf count 13.57, stem diameter 3.05 mm, petiole length 7.76 cm, leaf area 22.01 cm², root number 2.00). Findings confirm that rice husk biochar and hydrogel synergistically enhance soil structure, nutrient retention, and water availability, while frequent irrigation maximizes vegetative and root development. The M₂I₁ combination proved optimal, highlighting its potential for climate-resilient vertical garden systems in urban environments.

Keywords: Golden pothos, *Epipremnum aureum*, vertical garden, hydrogel

Introduction

Climate change has intensified the need for sustainable living spaces, and vertical gardens are emerging as effective tools to improve air quality and reduce urban heat while enhancing aesthetics (Payak *et al.*, 2021)^[1]. With shrinking land availability and rising high-rises, vertical gardens have become a key component of modern garden design (Kumar, 2018)^[2]. The success of these systems largely depends on the growing medium, where alternatives like cocopeat, vermicompost, and biochar have shown promise in supporting plant growth (Lehmann *et al.*, 2011; Rajkovich *et al.*, 2012)^[3, 4]. Biochar, in particular, improves soil properties and carbon sequestration, while carbonized rice husks enhance water retention (Haefele *et al.*, 2009)^[5]. Hydrogels further contribute by conserving water, improving soil porosity, and supporting ornamental plant growth under moisture stress (Changela *et al.*, 2022)^[6]. Together, these innovations highlight the potential of vertical gardens as climate-resilient solutions for urban environments.

Materials and Methods

The study, titled "Effect of Hydrogel-Incorporated Growing Media under Various Irrigation Intervals on Golden Pothos (*Epipremnum aureum*) for Vertical Garden", was conducted in summer 2024 at the College of Horticulture, Rajendranagar. Using a Factorial Completely Randomized Design with 15 treatments and 3 replications, Golden Pothos plants were grown in 4 × 5 inch pots. Media combinations enriched with 2 doses of hydrogel (20 g or 40 g) and three

irrigation intervals (alternate day, once in three days, and once in five days) were tested to evaluate their impact on plant growth and quality, with results analyzed and interpreted through statistical methods and prior research. Media compositions are M₁ - Cocopeat+ Red Earth + Vermicompost + Ricehusk Biochar (2:1:1:1) + 20 g hydrogel, M₂ - Cocopeat + Red earth + Vermicompost + Ricehusk Biochar (2:1:1:1) + 40 g hydrogel, M₃ - Cocopeat + Red Earth + Vermicompost + Wood Biochar (2:1:1:1) + 20 g hydrogel, M₄ - Cocopeat + Red Earth + Vermicompost + Wood Biochar (2:1:1:1) +40 g hydrogel, M₅ - Red earth (Control). The three irrigation intervals are I₁-one day irrigation interval, I₂-three days irrigation interval and I₃-five days irrigation interval.

Plant height (or) vine length (cm)

The height of the plant or vine length was measured using a measuring scale from base of stem till tip of vine at 45 and 90 days after planting and the mean plant height was calculated and expressed in centimeters.

Number of branches per vine

The number of branches per plant was counted at 45 and 90 days after planting and the mean number of the branches per plant was calculated.

Number of leaves per vine

The number of leaves per vine was counted at 45 and 90 days after planting and the mean number of the leaves per plant was calculated.

Stem diameter (mm)

The stem diameter was measured using a venire calipers at 45 and 90 days after planting and the mean stem diameter was calculated and expressed in millimeters.

Petiole length (cm)

The petiole length was measured from the point of emergence to the stem leaf interaction point using a measuring scale at the 45 and 90 days after planting and the mean petiole length was calculated and expressed in centimeters.

Leaf area (cm²)

The leaf area was measured at 90 DAP using leaf area meter and the mean leaf area was calculated and expressed in centimeters square.

Number of roots

90 DAP with the help of sharp blade roots were separated from the cuttings on the paper and numbers of roots were counted on each selected plant. Mean number of roots per plant or vine calculated.

Statistical Analysis

The data obtained from all the above experiment were tabulated and subjected to statistical analysis (ANOVA) as per the method given by panse and sukhatme (1985). The appropriate standard error of mean SE (m⁺⁻) and the critical difference (CD) were calculated at 5% level of significance. The data have been depicted by suitable graphs and graphs and with appropriate tables.

Results and Discussion

Plant height (cm)

At both 45 and 90 days after planting, vine length of Golden Pothos was significantly influenced by hydrogel-enriched growing media, irrigation intervals, and their interactions. At 45

and 90 DAP, the maximum vine lengths (23.46, 35.74 cm) was recorded in M₂ (Cocopeat + Red earth + Vermicompost + Rice husk biochar with 40 g hydrogel), while the shortest (18.17, 28.16 cm) was in M₅ (Red earth). Irrigation intervals showed similar trends, with the one-day interval (I₁) producing the longest vines (24.86, 36.68 cm), compared to three-day (I₂, 21.09, 32.73 cm) and five-day (I₃, 18.16, 29.48 cm).

The interaction effect was most pronounced in M₂I₁ (27.26, 38.56 cm), whereas the lowest (16.08, 26.40 cm) was in M₅I₃. The results are in coordination with Asadi *et al.* (2021) ^[44], Li *et al.* (2023) ^[47], Dawlatzai *et al.* (2018) ^[45], Sahana and Sugirtharan (2021) ^[46]. These results confirm that rice husk biochar and hydrogels, combined with frequent irrigation, significantly enhanced vine elongation by improving soil structure, nutrient retention, and water availability, whereas longer irrigation intervals restricted growth due to moisture stress.

Number of Branches

The number of branches in Golden Pothos was significantly influenced by hydrogel-enriched media, irrigation intervals, and their interactions at both 45 and 90 days after planting. At 45 and 90 DAP, the maximum branch count (1.31, 1.58) was recorded in M₂ (Cocopeat + Red earth + Vermicompost + Rice husk biochar with 40 g hydrogel), while the lowest count (1.02, 1.07) was observed in M₅ (Red earth). Irrigation intervals showed a similar trend, with I₁ (one-day interval) producing the highest branch count (1.41, 1.77) and the lowest in I₃ (1.00, 1.03). The interaction effect was most pronounced in M₂I₁ (1.60, 2.00), while the minimum (1.00, 1.00) was noted in M₅I₃.

The superior performance of rice husk biochar (RHB) in M₂I₁ can be attributed to its ability to improve soil fertility, nutrient retention, and water-holding capacity, thereby enhancing vegetative growth (Ahmad, 2016; Vural *et al.*, 2025) ^[7, 8]. Hydrogels also played a critical role, as higher concentrations increased water availability around roots, buffered plants against moisture stress, and promoted branching through enhanced cell division and elongation (Johnson & Woodhouse, 1991; Mohebi, 2019; Kumar *et al.*, 2018; Anupama *et al.*, 2005) ^[9, 10, 13, 14]. Frequent irrigation further supported branch proliferation, as higher soil moisture improved plant water potential and vegetative growth, consistent with earlier findings in various crops (Mishra *et al.*, 2019; Piri & Sharma, 2006) ^[11, 12].

Number of Leaves

At both 45 and 90 DAP, leaf count per vine in Golden Pothos was significantly influenced by hydrogel-enriched media, irrigation intervals, and their interactions. At 45 and 90 DAP, M₂ (cocopeat + red earth + vermicompost + rice husk biochar + 40 g hydrogel) recorded the highest leaf number (15.52, 20.08), while the lowest was in M₅ (8.66, 14.93). Irrigation intervals showed similar trends, with I₁ (one-day interval) producing the maximum (15.91, 20.65) and I₃ (five-day interval) the minimum (10.91, 16.05). The interaction effect peaked in M₂I₁ (18.60, 22.40), while M₅I₃ (7.60, 13.57) was the lowest.

These findings highlight the synergistic role of rice husk biochar and hydrogel in enhancing leaf proliferation by improving soil porosity, nutrient uptake, and moisture retention (Masinde *et al.*, 2022; Adebajo *et al.*, 2019; Rema *et al.*, 2019) ^[15, 16, 17]. Hydrogel further boosted leaf production by maintaining soil moisture and nutrient supply (Johnson & Woodhouse, 1990) ^[9]. Frequent irrigation also promoted leaf growth, consistent with earlier reports in chrysanthemum (Goto *et al.*, 2001) ^[18], mustard (Mishra *et al.*, 2019; Singh & Singh, 2014) ^[12, 20], and other crops (Hassanein, 2015) ^[19].

Stem diameter (mm)

At both 45 and 90 DAP, stem diameter of Golden Pothos was significantly influenced by hydrogel-enriched media, irrigation intervals, and their interactions. At 45 and 90 DAP, the largest stem diameter was recorded in M₂ (4.60, 4.71 mm) while the smallest was in M₅ (3.40, 3.48 mm). Irrigation intervals showed clear differences, with I₁ (4.96, 5.15 mm) outperforming I₂ (4.23, 4.30 mm) and I₃ (3.39, 3.49 mm). The interaction effect was strongest in M₂I₁ (5.35, 5.52 mm) and the lowest was in M₅I₃ (3.01, 3.05 mm).

These findings confirm that biochar improves substrate porosity, aeration, and nutrient uptake, thereby enhancing stem thickness (Masinde & Wahome, 2022; Adebajo *et al.*, 2019; Varela Milla *et al.*, 2022) [15, 16, 21]. Hydrogel supplementation further promoted vascular differentiation and stronger stems through gradual water release (Mangaiyarkarasi *et al.*, 2020; Deenavarman *et al.*, 2018; Tarun Kumar *et al.*, 2016) [22, 23, 24]. Frequent irrigation also supported stem diameter expansion by maintaining plant water status, consistent with studies in grapevine and carnation (Ru *et al.*, 2021; Kazaz *et al.*, 2010) [25, 26]. Overall, hydrogel-enriched biochar media combined with alternate day irrigation (I1) consistently produced the thickest stems, highlighting their synergistic role in vegetative growth.

Petiole length (cm)

At both 45 and 90 DAP, petiole length of Golden Pothos was significantly influenced by hydrogel-enriched media, irrigation intervals, and their interactions. At 45 and 90 DAP, the longest petiole was recorded in M₂ (9.91, 10.33 cm), while the shortest was in M₅ (7.98, 8.27 cm). Irrigation intervals showed clear differences, with I₁ (10.01, 10.39 cm) outperforming I₂ (9.24, 9.64 cm) and I₃ (8.35, 8.62 cm). The maximum interaction effect was observed in M₂I₁ (10.95, 11.50 cm), while the lowest was in M₅I₃ (7.46, 7.76 cm).

These results highlight the synergistic role of rice husk biochar and hydrogel in enhancing petiole elongation by improving silicon enrichment, porosity, and water retention (Karam *et al.*, 2022; Kartika *et al.*, 2018; Adebajo *et al.*, 2019; Rema *et al.*, 2019) [16, 17, 27, 28]. Hydrogel supplementation sustained turgor pressure and promoted cell elongation in petiole tissues (Madhu Bala, 2018; Vidyashree, 2018; Kumar *et al.*, 2016) [24, 29, 30]. Frequent irrigation further supported continuous cell expansion, consistent with findings in taro, clover, and thale cress (Silva *et al.*, 2008; Enkhbat *et al.*, 2022; Tsukaya *et al.*, 2002) [31, 32]. Overall, M₂I₁ consistently produced the longest petioles at both stages, confirming that hydrogel-enriched biochar media combined with daily irrigation is most effective for vegetative growth.

Leaf area (cm²)

At both 45 and 90 DAP, leaf area of Golden Pothos was significantly influenced by hydrogel-enriched media, irrigation intervals, and their interactions. At 45 and 90 DAP, the maximum leaf area was recorded in M₂ (28.42, 36.53 cm²), while the lowest was in M₅ (19.36, 25.48 cm²). Irrigation intervals showed clear differences, with I₁ (29.84, 38.21 cm²) outperforming I₂ (25.73, 34.03 cm²) and I₃ (20.15, 25.90 cm²). The highest interaction effect was observed in M₂I₁ (32.10, 42.70 cm²), while the lowest was in M₅I₃ (17.80, 22.01 cm²). These findings confirm that biochar enhances microbial activity and nutrient uptake, thereby increasing leaf area (Graber, 2010) [35]. Hydrogel supplementation improved water retention and sustained turgor pressure, promoting leaf expansion (Al-Harbi *et al.*, 1999; Yazdani *et al.*, 2007) [33, 34]. Frequent irrigation further supported leaf development, consistent with reports linking water stress to reduced cell division and smaller leaf area (Rascio *et al.*, 1990; Beese *et al.*, 1982; Adeoye *et al.*, 2014) [36, 37, 38]. Overall, M₂I₁ consistently produced the largest leaf area at both stages, highlighting the synergistic role of hydrogel-enriched biochar media with daily irrigation in maximizing vegetative growth.

Number of roots

At both 45 and 90 DAP, root number in Golden Pothos was significantly influenced by hydrogel-enriched media, irrigation intervals, and their interactions. At 45 and 90 DAP, the maximum root count was recorded in M₂ (5.42, 6.87), while the lowest was in M₅ (2.05, 2.23). Irrigation intervals showed clear differences, with I₁ (6.12, 7.66) outperforming I₂ (4.36, 4.92) and I₃ (2.45, 2.84). The highest interaction effect was observed in M₂I₁ (7.80, 10.00), while the lowest was in M₅I₃ (1.90, 2.00). These findings confirm that rice husk biochar improves soil structure, porosity, and nutrient retention, thereby enhancing root initiation and branching (Thavanesan & Seran, 2018; Kartika *et al.*, 2018; Adebajo *et al.*, 2019; Rema *et al.*, 2019; Masinde & Wahome, 2022) [15, 16, 17, 28, 39]. Hydrogel supplementation sustained moisture availability, promoting continuous root elongation and lateral root formation (Madhubala, 2018; Deenavarman & Lourdusamy, 2018; Singh *et al.*, 2020) [23, 29, 40]. Frequent irrigation further supported root proliferation, consistent with studies in soybean, rice, and grapevine where higher water availability enhanced root growth (Bui *et al.*, 2022; Yang *et al.*, 2022; Zhang *et al.*, 2024; Ru *et al.*, 2021) [26, 41, 42, 43]. Overall, M₂I₁ consistently produced the highest root counts at both stages, highlighting the synergistic role of hydrogel-enriched biochar media with daily irrigation in maximizing root development.

Table 1: Effect of hydrogel incorporated growing media under various irrigation intervals on plant height or vein length (cm) of golden pothos (*Epipremnum aureum* Linden and Andre) for a vertical garden.

Different Media Incorporated with Hydrogel (M)	Vine Length (cm)							
	45 DAP				90 DAP			
	I ₁	I ₂	I ₃	MEAN (M)	I ₁	I ₂	I ₃	MEAN (M)
M ₁	25.18	21.64	18.22	21.68	37.82	33.46	29.72	33.67
M ₂	27.26	23.38	19.74	23.46	39.78	35.68	31.76	35.74
M ₃	24.26	20.92	17.98	21.05	36.74	32.42	28.66	32.61
M ₄	26.12	22.52	18.76	22.47	38.56	34.54	30.86	34.65
M ₅	21.46	16.96	16.08	18.17	30.49	27.58	26.40	28.16
MEAN (I)	24.86	21.09	18.16		36.68	32.74	29.48	
Factors (M)	SE(m)±		CD (5%)		SE(m)±		CD (5%)	
(I)	0.20		0.59		0.30		0.87	
Factors (M X I)	0.16		0.46		0.23		0.67	
	0.35		1.02		0.52		1.51	

M ₁	:	Cocopeat + Red earth + Vermicompost + Ricehusk Biochar (2:1:1:1) + 20 g hydrogel	I ₁	:	One day interval
M ₂	:	Cocopeat + Red earth + Vermicompost + Ricehusk Biochar (2:1:1:1) + 40 g hydrogel	I ₂	:	Three day interval
M ₃	:	Cocopeat + Red earth + Vermicompost + Wood Biochar (2:1:1:1) + 20 g hydrogel	I ₃	:	Five day interval
M ₄	:	Cocopeat + Red earth + Vermicompost + Wood Biochar (2:1:1:1) + 40 g hydrogel			
M ₅	:	Red earth(control)			

Table 2: Effect of hydrogel incorporated growing media under various irrigation intervals on number of branches of golden pothos (*Epipremnum aureum* Linden and Andre) for a vertical garden.

Different Media Incorporated with Hydrogel (M)	Number of Branches							
	Different Irrigation Intervals (I)							
	45 DAP				90 DAP			
	I ₁	I ₂	I ₃	MEAN (M)	I ₁	I ₂	I ₃	MEAN (M)
M ₁	1.47	1.20	1.00	1.22	1.88	1.53	1.00	1.47
M ₂	1.60	1.33	1.00	1.31	2.00	1.67	1.07	1.58
M ₃	1.40	1.13	1.00	1.18	1.87	1.47	1.00	1.44
M ₄	1.53	1.27	1.00	1.27	1.93	1.60	1.07	1.53
M ₅	1.07	1.00	1.00	1.02	1.20	1.00	1.00	1.07
MEAN (I)	1.41	1.19	1.00		1.77	1.45	1.03	
Factors	SE(m)±		CD (5%)		SE(m)±		CD (5%)	
(M)	0.024		0.071		0.033		0.096	
(I)	0.020		0.055		0.026		0.074	
Factors (M X I)	0.042		0.122		0.057		0.166	

M ₁	:	Cocopeat + Red earth + Vermicompost + Ricehusk Biochar (2:1:1:1) + 20 g hydrogel	I ₁	:	One day interval
M ₂	:	Cocopeat + Red earth + Vermicompost + Ricehusk Biochar (2:1:1:1) + 40 g hydrogel	I ₂	:	Three day interval
M ₃	:	Cocopeat + Red earth + Vermicompost + Wood Biochar (2:1:1:1) + 20 g hydrogel	I ₃	:	Five day interval
M ₄	:	Cocopeat + Red earth + Vermicompost + Wood Biochar (2:1:1:1) + 40 g hydrogel			
M ₅	:	Red earth(control)			

Table 3: Effect of hydrogel incorporated growing media under various irrigation intervals on number of leaves of golden pothos (*Epipremnum aureum* Linden and Andre) for a vertical garden.

Different Media Incorporated with Hydrogel (M)	Number of Leaves Per Vine							
	Different Irrigation Intervals (I)							
	45 DAP				90 DAP			
	I ₁	I ₂	I ₃	MEAN (M)	I ₁	I ₂	I ₃	MEAN (M)
M ₁	17.20	14.00	11.77	14.32	21.53	19.23	16.47	19.07
M ₂	18.60	15.57	12.40	15.52	22.40	20.23	17.60	20.08
M ₃	16.40	13.60	10.60	13.53	20.83	18.40	15.63	18.29
M ₄	17.80	14.60	12.20	14.87	22.00	19.60	17.00	19.53
M ₅	9.57	8.80	7.60	8.66	16.40	14.83	13.57	14.93
Mean (I)	15.91	13.31	10.91		20.65	18.46	16.05	
Factors	SE(m)±		CD (5%)		SE(m)±		CD (5%)	
(M)	0.13		0.38		0.17		0.50	
(I)	0.10		0.30		0.13		0.39	
Factors (M X I)	0.23		0.66		0.30		0.87	

M ₁	:	Cocopeat + Red earth + Vermicompost + Ricehusk Biochar (2:1:1:1) + 20 g hydrogel	I ₁	:	One day interval
M ₂	:	Cocopeat + Red earth + Vermicompost + Ricehusk Biochar (2:1:1:1) + 40 g hydrogel	I ₂	:	Three day interval
M ₃	:	Cocopeat + Red earth + Vermicompost + Wood Biochar (2:1:1:1) + 20 g hydrogel	I ₃	:	Five day interval
M ₄	:	Cocopeat + Red earth + Vermicompost + Wood Biochar (2:1:1:1) + 40 g hydrogel			
M ₅	:	Red earth(control)			

Table 4: Effect of hydrogel incorporated growing media under various irrigation intervals on stem diameter (mm) of golden pothos (*Epipremnum aureum* Linden and Andre) for a vertical garden.

Different Media Incorporated with Hydrogel (M)	Stem Diameter (mm)							
	Different Irrigation Intervals (I)							
	45 DAP				90 DAP			
	I ₁	I ₂	I ₃	MEAN (M)	I ₁	I ₂	I ₃	MEAN (M)
M ₁	5.18	4.48	3.39	4.35	5.35	4.54	3.47	4.45
M ₂	5.35	4.63	3.82	4.60	5.52	4.71	3.89	4.71
M ₃	4.91	4.37	3.21	4.16	5.26	4.42	3.38	4.35
M ₄	5.30	4.51	3.54	4.45	5.43	4.63	3.67	4.58
M ₅	4.04	3.15	3.01	3.40	4.18	3.20	3.05	3.48
MEAN (I)	4.96	4.23	3.39		5.15	4.30	3.49	
Factors	SE(m)±		CD (5%)		SE(m)±		CD (5%)	
(M)	0.042		0.121		0.011		0.031	
(I)	0.032		0.094		0.008		0.024	
Factors (M X I)	0.072		0.210		0.019		0.054	

M ₁	:	Cocopeat + Red earth + Vermicompost + Ricehusk Biochar (2:1:1:1) + 20 g hydrogel	I ₁	:	One day interval
M ₂	:	Cocopeat + Red earth + Vermicompost + Ricehusk Biochar (2:1:1:1) + 40 g hydrogel	I ₂	:	Three day interval
M ₃	:	Cocopeat + Red earth + Vermicompost + Wood Biochar (2:1:1:1) + 20 g hydrogel	I ₃	:	Five day interval
M ₄	:	Cocopeat + Red earth + Vermicompost + Wood Biochar (2:1:1:1) + 40 g hydrogel			
M ₅	:	Red earth(control)			

Table 5: Effect of hydrogel incorporated growing media under various irrigation intervals on petiole length (cm) of golden pothos (*Epipremnum aureum* Linden and Andre) for a vertical garden.

Different Media Incorporated with Hydrogel (M)	Petiole Length (cm)							
	Different Irrigation Intervals (I)							
	45 DAP				90 DAP			
	I ₁	I ₂	I ₃	MEAN (M)	I ₁	I ₂	I ₃	MEAN (M)
M ₁	10.17	9.45	8.41	9.34	10.54	9.88	8.64	9.69
M ₂	10.95	9.84	8.94	9.91	11.50	10.26	9.24	10.33
M ₃	10.14	9.24	8.22	9.20	10.42	9.64	8.42	9.49
M ₄	10.36	9.65	8.70	9.57	10.78	10.08	9.02	9.96
M ₅	8.44	8.04	7.46	7.98	8.72	8.32	7.76	8.27
MEAN (I)	10.01	9.24	8.35		10.39	9.64	8.62	
Factors	SE(m)±		CD (5%)		SE(m)±		CD (5%)	
(M)	0.008		0.023		0.091		0.265	
(I)	0.006		0.018		0.071		0.205	
Factors (M X I)	0.014		0.040		0.158		0.459	

M ₁	:	Cocopeat + Red earth + Vermicompost + Ricehusk Biochar (2:1:1:1) + 20 g hydrogel	I ₁	:	One day interval
M ₂	:	Cocopeat + Red earth + Vermicompost + Ricehusk Biochar (2:1:1:1) + 40 g hydrogel	I ₂	:	Three day interval
M ₃	:	Cocopeat + Red earth + Vermicompost + Wood Biochar (2:1:1:1) + 20 g hydrogel	I ₃	:	Five day interval
M ₄	:	Cocopeat + Red earth + Vermicompost + Wood Biochar (2:1:1:1) + 40 g hydrogel			
M ₅	:	Red earth(control)			

Table 6: Effect of hydrogel incorporated growing media under various irrigation intervals on leaf area (cm²) of golden pothos (*Epipremnum aureum* Linden and Andre) for a vertical garden.

Different Media Incorporated with Hydrogel (M)	Leaf Area(cm ²)							
	Different Irrigation Intervals (I)							
	At the end of experiment				MEAN (M)			
	I ₁	I ₂	I ₃	MEAN (M)				
M ₁	40.09	35.35	26.42		33.95			
M ₂	42.70	38.41	28.48		36.53			
M ₃	39.54	32.30	25.12		32.32			
M ₄	40.98	37.38	27.47		35.27			
M ₅	27.73	26.70	22.01		25.48			
MEAN (I)	38.21	34.03	25.90					
Factors	SE(m)±		CD (5%)					
(M)	0.31		0.89					
(I)	0.24		0.69					
Factors (M X I)	0.53		1.55					

M ₁	:	Cocopeat + Red earth + Vermicompost + Ricehusk Biochar (2:1:1:1) + 20 g hydrogel	I ₁	:	One day interval
M ₂	:	Cocopeat + Red earth + Vermicompost + Ricehusk Biochar (2:1:1:1) + 40 g hydrogel	I ₂	:	Three day interval
M ₃	:	Cocopeat + Red earth + Vermicompost + Wood Biochar (2:1:1:1) + 20 g hydrogel	I ₃	:	Five day interval
M ₄	:	Cocopeat + Red earth + Vermicompost + Wood Biochar (2:1:1:1) + 40 g hydrogel			
M ₅	:	Red earth(control)			

Table 7: Effect of hydrogel incorporated growing media under various irrigation intervals on number of roots of golden pothos (*Epipremnum aureum* Linden and Andre) for a vertical garden.

Different Media Incorporated with Hydrogel (M)	Number of Roots							
	Different Irrigation Intervals (I)							
	At the end of experiment				MEAN (M)			
	I ₁	I ₂	I ₃	MEAN (M)				
M ₁	8.60	5.00	2.60		5.40			
M ₂	10.00	6.60	4.00		6.87			
M ₃	7.80	4.80	2.40		5.00			
M ₄	9.40	6.00	3.20		6.20			
M ₅	2.50	2.20	2.00		2.23			
MEAN (I)	7.66	4.92	2.84					
Factors	SE(m)±		CD (5%)					
(M)	0.05		0.15					
(I)	0.04		0.12					
Factors (M X I)	0.09		0.26					

M ₁ :	Cocopeat + Red earth + Vermicompost + Ricehusk Biochar (2:1:1:1) + 20 g hydrogel	I ₁ :	One day interval
M ₂ :	Cocopeat + Red earth + Vermicompost + Ricehusk Biochar (2:1:1:1) + 40 g hydrogel	I ₂ :	Three day interval
M ₃ :	Cocopeat + Red earth + Vermicompost + Wood Biochar (2:1:1:1) + 20 g hydrogel	I ₃ :	Five day interval
M ₄ :	Cocopeat + Red earth + Vermicompost + Wood Biochar (2:1:1:1) + 40 g hydrogel		
M ₅ :	Red earth(control)		

Conclusion

From the study demonstrated we can say that Golden Pothos growth parameters—including vine length, branch number, leaf count, stem diameter, petiole length, leaf area, and root number—were consistently maximized in M₂ (cocopeat + red earth + vermicompost + rice husk biochar in 2:1:1:1 ratio along with 40 g hydrogel/5kg media) under alternate day irrigation (I₁). In contrast, the lowest values were observed in M₅ (red earth alone) with five-day irrigation (I₃). These findings may confirm that the synergistic use of rice husk biochar and hydrogel, combined with frequent irrigation, significantly enhances vegetative growth and root development by improving soil structure, nutrient retention, and water availability. Among all tested combinations, we can say that M₂I₁ proved optimal, ensuring maximum vegetative performance of Golden Pothos under vertical garden conditions.

References

1. Payak M, Pandya D, Mankad A, Pandya H. Study of selected vertical gardens of Ahmedabad city. *Int J Ecol Environ Sci.* 2021;3(2):248-251.
2. Kumar RS. Studies on vertical garden system: a new landscape concept for urban living space. *J Floric Landsc.* 2018;4:1-4.
3. Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D. Biochar effects on soil biota: a review. *Soil Biol Biochem.* 2011;43(9):1812-1836.
4. Rajkovich S, Enders A, Hanley K, Hyland C, Zimmerman AR, Lehmann J. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. *Biol Fertil Soils.* 2012;48(3):271-284.
5. Haefele SM, Knoblauch C, Gummert M, Konboon Y, Koyama S. Black carbon (biochar) in rice-based systems: characteristics and opportunities. In: Amazonian dark earths: Wim Sombroek's vision. Dordrecht: Springer; 2009. p. 445-463.
6. Changela Y, Bhatt DS, Tandel BM, Bhatt ST, Patel HM. Prospective of hydrogel for ornamental plants. *Pharma Innov J.* 2022;11(10):1343-1347.
7. Ahmad M. Biochar application for land reclamation: enhancing soil fertility and nutrient use efficiency. *J Soils Sediments.* 2016;16(6):939-953.
8. Vural GY, Erdem H, Yildiz K. Optimizing biochar applications for improved growth and nutritional quality of basil plants using rice and corn biochars. *Turk J Agric Food Sci Technol.* 2025;13(4):941-945.
9. Woodhouse J, Johnson MS. Effect of superabsorbent polymers on survival and growth of crop seedlings. *Agric Water Manag.* 1991;20(1):63-70.
10. Mohebi A. Effects of superabsorbents on growth and physiological responses of date palm seedlings under water deficit conditions. *Int Palm J.* 2019;6(1):77-88.
11. Piri ISSA, Sharma SN. Physiological analysis of growth and yield of Indian mustard as affected by irrigation and sulphur. *Indian J Plant Physiol.* 2006;11(3):253-260.
12. Mishra J, Singh RK, Yadaw D, Das A, Sahoo S. Effect of tillage and irrigation frequency on growth of Indian mustard [*Brassica juncea* (L.) Czern & Coss.]. *Int J Chem Stud.* 2019;7:2127-2130.
13. Kumar RR, Nadukeri S, Kolakar SS, Hanumanthappa M, Shivaprasad M, Dhananjaya BN. Effect of hydrogel on growth, fresh yield and essential oil content of ginger (*Zingiber officinale* Rosc.). *J Pharmacogn Phytochem.* 2018;7(3):482-485.
14. Anupama MC, Singh KP, Singh DP, Sirohi NPS. Response studies in chrysanthemum (*Dendranthema grandiflora*) plugs grown in gel-amended media. *J Ornamental Hortic.* 2005;8(3):225-227.
15. Masinde PW, Wahome BM. Effect of rice husk biochar on evapotranspiration, vegetative growth and fruit yield of greenhouse tomato. *Afr J Food Agric Nutr Dev.* 2022;22(5):20280-20299.
16. Adebajo SO, Akintokun PO, Ojo AE, Ajamu IA. Effects of rice husk biochar on growth characteristics, rhizospheric microflora and yield of tomato plants. *J Agric Sci Environ.* 2019;19(1):60-72.
17. Rema B, Shipa RD, Geeta K. Impact of rice husk biochar and inorganic amendments on growth attributes of wheat (*Triticum aestivum* L.). *J Pharmacogn Phytochem.* 2019;8(3):185-188.
18. Goto T, Takaya N, Yoshioka N, Yoshida Y, Kageyama Y, Konishi K. Effects of water and nutrient stresses on vegetative growth reduction in chrysanthemum. *J Jpn Soc Hortic Sci.* 2001;70(6):760-766.
19. Hassanein AM. Effects of irrigation and fertilization methods on growth and flowering of potted chrysanthemum. *J Hort Sci Ornamental Plants.* 2015;7(3):80-86.
20. Singh PK, Singh AK. Effect of sowing dates and irrigation scheduling on growth and yield of mustard (*Brassica juncea* L.). *J Progressive Agric.* 2014;5(2):18-21.
21. Varela Milla O, Rivera EB, Huang WJ, Chien C, Wang YM. Agronomic properties of rice husk and wood biochars and their effect on water spinach growth. *J Soil Sci Plant Nutr.* 2013;13(2):251-266.
22. Mangaiyarkarasi R, Thamaraiselvi SP, Arunkumar P. Effects of hydrogel on growth and development of foliage plants. *J Pharmacogn Phytochem.* 2020;9(2):1567-1568.
23. Deenavarman M, Lourdusamy DK. Effect of Pusa hydrogel-incorporated media on growth and watering frequency of arrowhead (*Syngonium podophyllum*). *Ann Hortic.* 2018;11(1):67-69.
24. Kumar AT, Kameswari PL, Girwani A. Impact of Pusa hydrogel on floral characters and yield of pot mums. *Int J Agric Sci Res.* 2016;6:195-200.
25. Kazaz S, Ucar Y, Askin MA, Aydinsakir K, Senyigit U, Kadayifci A. Effects of irrigation regimes on yield and quality of carnation. *Sci Res Essays.* 2010;5(19):2921-2930.
26. Ru C, Hu X, Wang W, Ran H, Song T, Guo Y. Stem diameter variation signals for diagnosing drip irrigation deficit in grapevine. *Horticulturae.* 2021;7(6):154.
27. Karam DS, Nagabovanalli P, Rajoo KS, Ishak CF, Abdu A, Rosli Z, et al. Rice husk biochar preparation, properties and agricultural application: a review. *J Saudi Soc Agric Sci.* 2022;21(3):149-159.
28. Kartika K, Lakitan B, Wijaya A, Kadir S, Widuri LI, Siaga

E, *et al.* Effects of rice husk biochar particle size and rate on soil properties and rice yield. *Aust J Crop Sci.* 2018;12(5):817-826.

29. Madhu Bala. Effect of Pusa hydrogel-incorporated potting media on foliage plants of *Philodendron xanadu*. *Bull Environ Pharmacol Life Sci.* 2018;8(1):95-98.

30. Vidyashree NH. Studies on efficacy of Pusa hydrogel and vermiwash on foliage quality of *Philodendron martianum* [PhD thesis]. Bengaluru: University of Agricultural Sciences; 2018.

31. Tsukaya H, Kozuka T, Kim GT. Genetic control of petiole length in *Arabidopsis thaliana*. *Plant Cell Physiol.* 2002;43(10):1221-1228.

32. Enkhbat G, Ryan MH, Nichols PG, Foster KJ, Inukai Y, Erskine W. Petiole length reduction as an indicator of waterlogging stress. *Plant Soil.* 2022;475(1):645-667.

33. Al-Harbi AR, Al-Omran AM, Shalaby AA, Choudhary MI. Decline in efficacy of hydrophilic polymer with time. *J Hortic Sci.* 1999;34(2):223-224.

34. Yazdani F, Allahdadi I, Akbari GA. Impact of superabsorbent polymer on soybean under drought stress. *Pak J Biol Sci.* 2007;10(23):4190-4196.

35. Gruber ER, Meller Harel Y, Kolton M, Cytryn E, Silber A, Rav David D, *et al.* Biochar impact on pepper and tomato productivity in soilless media. *Plant Soil.* 2010;337:481-496.

36. Rascio A, Cedola MC, Toponi M, Flagella Z, Wittmer G. Leaf morphology and water status in durum wheat under stress. *Physiol Plant.* 1990;78(3):462-467.

37. Beese F, Horton R, Wierenga PJ. Growth and yield response of chile pepper to trickle irrigation. *Agron J.* 1982;74(3):556-561.

38. Adeoye PA, Adesiji RA, Oloruntade AJ, Njemanze C. Effect of irrigation intervals on bell pepper yield. *Am J Exp Agric.* 2014;4(5):515-524.

39. Thavanesan S, Seran TH. Effect of rice straw and husk biochar on rice growth and yield. *Int J Crop Sci Technol.* 2018;4(2):49-56.

40. Singh S, Mishra S, Jamwal SS, Bahadur V. Effect of Pusa hydrogel and PGRs on strawberry. *Int Res J Pure Appl Chem.* 2020;21(6):17-24.

41. Bui KT, Naruse T, Yoshida H, Toda Y, Omori Y, Tsuda M, *et al.* Irrigation effects on soybean root growth. *Front Plant Sci.* 2022;13:1047563.

42. Yang X, Fan J, Ge J, Luo Z. Effect of activated water irrigation on hydroponic rice and wheat. *Agronomy.* 2022;12(5):1068.

43. Zhang L, Li L, Tang Q, Xu H, Zheng H, Wang F, *et al.* Intermittent irrigation for reduced emissions and higher yields in ratoon rice. *Plant Soil.* 2024;501(1):225-236.

44. Asadi H, Ghorbani M, Rezaei-Rashti M, Abrishamkesh S, Amirahmadi E, Chen CH, Gorji M. Rice husk biochar for sustainable agriculture and environment. *Rice Sci.* 2021;28(4):325-343.

45. Dawlatzai AS, Jayanthi R, Prasad SS, Deeksha N. Efficacy of Pusa hydrogel in coleus potting media. *Int J Chem Stud.* 2018;6(5):3225-3228.

46. Sahana MF, Sugirtharan M. Effect of irrigation intervals on chilli in sandy soil. *AGRIEAST J Agric Sci.* 2021;15(1).

47. Li Z, Zheng Z, Li H, Xu D, Li X, Xiang L, *et al.* Rice husk biochar as an adsorbent for soil and water remediation: a review. *J Plant Sci.* 2023;12(7):1524.