

International Journal of Research in Agronomy

E-ISSN: 2618-0618
P-ISSN: 2618-060X
© Agronomy
NAAS Rating (2025): 5.20
www.agronomyjournals.com
2025; 8(12): 741-743
Received: 03-09-2025
Accepted: 09-10-2025

P Supriya
Department of Agronomy, Faculty
of Agriculture, Annamalai
University, Annamalai Nagar,
Tamil Nadu, India

A Sundari
Department of Agronomy, Faculty
of Agriculture, Annamalai
University, Annamalai Nagar,
Tamil Nadu, India

S Kalaisudarson
Department of Agronomy, Faculty
of Agriculture, Annamalai
University, Annamalai Nagar,
Tamil Nadu, India

Effect of weed management practices on weed observations, yield and economics of irrigated maize

P Supriya, A Sundari and S Kalaisudarson

DOI: <https://doi.org/10.33545/2618060X.2025.v8.i12k.4471>

Abstract

A field experiment was carried out during the *kharif*, 2021 (July - October) to evaluate the effect of weed management practices on weed dynamics and yield of irrigated maize and to work out the economics of different weed management practices in irrigated maize. The experiment was conducted in randomized block design with nine treatments and replicated thrice. The treatments includes T₁ - Unweeded control, T₂ - Twice hand weeding on 20 and 40 DAS, T₃ - Pre emergence Oxyfluorfen 23.5% EC @ 0.2 kg ha⁻¹ on 3 DAS, T₄ - Pre emergence Oxyfluorfen 23.5% EC @ 0.2 kg ha⁻¹ on 3 DAS + one hand weeding on 30 DAS, T₅ - Pre emergence Oxyfluorfen 23.5% EC @ 0.2 kg ha⁻¹ on 3 DAS + Post emergence Tembotrione 34.4% SC @ 100 g ha⁻¹ on 21 DAS, T₆ - Pre emergence Oxyfluorfen 23.5% EC @ 0.2 kg ha⁻¹ on 3 DAS + Intercrop with black gram, T₇ - Pre emergence Oxyfluorfen 23.5% EC @ 0.2 kg ha⁻¹ on 3 DAS + Mulching with sugarcane trash on 21 DAS, T₈ - Intercropping alone and T₉ - Mulching alone on 21 DAS. The least weed biomass, highest yield parameters with maximum net return and B:C ratio observed in the application of pre emergence oxyfluorfen 23.5% EC @ 0.2 kg ha⁻¹ on 3 DAS + intercrop with black gram(T₆). The results of the study showed to be efficient and economically feasible technology to manage the weeds and to realize better returns from the irrigated hybrid maize.

Keywords: Intercrop, oxyfluorfen, tembotrione, yield, economics, B:C ratio, mulching and weed management.

1. Introduction

Maize (*Zea mays* L.) is most important cereal crop for food and nutritional security. It is considered as "Queen of cereals" because of the highest yield potential among cereals and wider adaptability to different soil and climatic conditions (Parihar *et al.*, 2018) ^[9]. Maize is generally known as the Indian corn or simply corn and it is a worldwide cultivated cereal crop in a wide range of climatic condition. Comparing the world's production potential of maize, the low productivity of maize in India was attributed to several reasons. Among these weeds are the major problem; it will reduce the crop productivity. Weeds are omnipresent and substantially reduce the yield and quality of crops. A wider row spacing and sowing of the crop with onset of monsoon provides a favourable environment for growth of problematic weeds. Almost all type of weeds *viz.*, grassy, broad leaved weeds and sedges infest the maize field with an extent of yield loss varies from 30-40 per cent (Mundra *et al.*, 2002) ^[6]. Weeds reduce the crop yield because they compete with the crop plants for nutrients, water, space and light. Weeds also impede with the crop harvesting and intensify the cost of production (Amir Khatam *et al.*, 2013) ^[1]. Neelam Sharma and Manisha Rayamajhi (2022) ^[7] reported that the total losses in maize yield due to competition from weeds are estimated to be around 37 per cent globally. Reports concluded that weed infestation is the major cause for such maize yield reduction that has been estimated approximately 20 to 80 per cent in contrast to other causes. Maize based intercropping system is very important to provide effective and acceptable weed control for realizing high production (Shah *et al.*, 2011) ^[13]. In a recent overview of benefits of intercropping, intercrops were found to suppress weeds more than either of the sole crops in 86 per cent of the cases (Stomph *et al.*, 2020) ^[15]. Maize-legume intercropping system, besides increasing productivity and profitability also improves soil health, conserves soil moisture and increases total out turn (Padhi and Panigrahi (2006) ^[8]. This study was chosen to the how different weed management practices on weed observations, yield and economics on irrigated maize.

Corresponding Author:

P Supriya
Department of Agronomy, Faculty
of Agriculture, Annamalai
University, Annamalai Nagar,
Tamil Nadu, India

2. Materials and Methods

Field experiment was conducted during the *kharif* (July - Oct), 2021 in farmer field, Daniyancheruvu village, Anantapur district, Andhra pradesh to evaluate the chemical and cultural weed management practices on maize. The experimental site geographically located at 14° 08' N latitude and 78° 33' E longitude at an altitude of 2.79 m above mean sea level. The weather of Daniyanicheruvu is moderately warm with hot summer months. The soil of the experimental field is clay loam in texture with a pH of 7.7 and EC 0.45 dSm⁻¹. The soil was low in available nitrogen, medium in available phosphorus and high in available potassium. The maize hybrid - Kaveri 25K55 was sown at 20 kg ha⁻¹ with the spacing of 60X20 cm and for intercrop black gram variety - TU 40 was chosen for the study of the experiment. The crop was grown with recommended package of practices except the weed management. Nine treatments comprising unweeded control, twice hand weeding on 20 and 40 DAS, pre emergence oxyfluorfen 23.5% EC @ 0.2 kg ha⁻¹ on 3 DAS, pre emergence oxyfluorfen 23.5% EC @ 0.2 kg ha⁻¹ on 3 DAS + one hand weeding on 30 DAS, pre emergence oxyfluorfen 23.5% EC @ 0.2 kg ha⁻¹ on 3 DAS + post emergence tembotrione 34.4% SC @ 100 g ha⁻¹ on 21 DAS, pre emergence oxyfluorfen 23.5% EC @ 0.2 kg ha⁻¹ on 3 DAS + intercrop with black gram, Pre emergence oxyfluorfen 23.5% EC @ 0.2 kg ha⁻¹ on 3 DAS + mulching with sugarcane trash on 21 DAS, intercropping alone, mulching alone on 21 DAS and their combination were tried in randomized block design with three replication with plot size 5X4 m. The pre emergence herbicide oxyfluorfen was sprayed on 3 DAS and the post emergence herbicide tembotrione was sprayed on 21 DAS with 500 liters of water ha⁻¹ through knapsack sprayer fitted with flood jet nozzle separately in specified plots as per the treatments. Black gram (TU-40) was intercropped with maize in between two maize rows as per the treatment schedule with seed to seed distance of 10 cm. Mulching with the sugarcane trash in between the rows of maize was done on 21 DAS as per the treatment schedule. Weed biomass were recorded on 30 and 60 DAS. The yield parameters yield and economics were recorded in respective treatments. The cost of cultivation was calculated by taking current market prices of inputs while monetary return was obtained by multiplying grain yield with market price of grain and stover. The benefit:cost (B:C) ratio was calculated by dividing the net returns by cost of cultivation. The critical difference at 5 per cent level of profitability was calculated for testing the significance of difference between any two means where ever 'F' test was significant.

3. Results and Discussion

The weed species recorded in the experimental field are *Cynodon dactylon*, *Cyperus rotundus*, *Trianthema portulacastrum*, *Phyllanthus niruri* and *Cleome viscosa*. All the weed control treatment showed significant influence on the population of these weeds, because of sporadic occurrence and lesser adaptability other weeds not significantly influenced by the treatments. Pre emergence oxyfluorfen @ 0.2 kg ha⁻¹ on 3 DAS + intercrop with black gram was on par with twice hand weeding on 20 and 40 DAS and followed by pre emergence oxyfluorfen @ 0.2 kg ha⁻¹ on 3 DAS + post emergence tembotrione @ 100 g ha⁻¹ on 21 DAS and registered the least amount of weed biomass, highest grain yield, stover yield (Table.1) and economics unrivaled over the treatments (Table.2).

The pre emergence application of oxyfluorfen and intercrop with black gram control all type of weeds because this may be due to oxyfluorfen reduce the enzyme activity in seed to suppress the

weed seed germination in the soil. Oxyfluorfen is a diphenyl-ether herbicide structurally related to lactofen, fomesafen, acifluorfen. This herbicide is used for broad spectrum pre- and post-emergence control of annual broadleaf and grassy weeds in field crops. By forming a chemical barrier on the soil surface, oxyfluorfen affects the plants at emergence. This is because of the length of oxyfluorfen soil half-life, this barrier may last upto three months (USEPA 2007). The intercropping increases the spatial diversification of crops, resulting in competitive interactions with weeds and also controls weeds by shading more significantly compared with mono cropping. This result was similar with Seemantini Nadiger *et al.* (2013) ^[12] and weeding twice which efficiently removing the all types of weeds. This result was similar with Vinaya Lakshmi and Martin Luther (2017) ^[18]. This was followed by pre emergence oxyfluorfen and post emergence tembotrione because tembotrione(2-[2-chloro-4-(methylsulfonyl)-3[(2,2,2trifluoroethoxy)methyl]benzoyl]-1,3-cyclohexanaedione) triketone group herbicide. This will inhibit of the enzyme 4-hydroxyphenylpyruvate dioxygenase (HPPD) broad leaved and grassy annual weeds. As a result showed that formation of carotenoids is disrupted. The chlorophyll formation stopped and remaining will reduced. The plant parts then will and development of over necrosis before they finally die and this process is fast, as the herbicide exerts its full effect within few days. Similar result was also reported by Santel (2009) ^[11]. The heavy weed growth resulted in unweeded control resulted the highest weed count and weed biomass. This result was similar with the findings of Singh *et al.* (2017) ^[14] and Sandhya Rani (2021) ^[10].

Pre emergence oxyfluorfen @ 0.2 kg ha⁻¹ on 3 DAS + intercrop with black gram recorded significantly the highest yield and yield attributes viz., cob length, cob diameter, number of grains per cob, hundred grain weight, grain yield and stover yield. The results confirm with the findings of Ishaq Rahimi *et al.* (2017) ^[4] and Caihong Yang *et al.* (2018) ^[2]. The highest maize equivalent yield (MEY) obtained with pre emergence herbicide oxyfluorfen @ 0.2 kg ha⁻¹ on 3 DAS + intercrop with black gram compared to intercropping alone. The results confirm the findings of Choudary *et al.* (2014) ^[3]. Intercropping with legumes caused the wide range of microbes of plant rhizosphere to mobilize the inherent P and K and nutrients increasing their availability and uptake by plants which resulted more favorable environment for growth and development of crop plants. The unweeded control (T₁) recorded significantly the lowest yield and yield attributes viz., cob length, cob diameter, number of grains per cob, hundred grain weight, grain yield and stover yield. This may due to severe weed competition for light, space, water, nutrients, through out the crop growth period.

Table 1: Effect of weed biomass and yield of maize as influenced by weed management practices.

Treatments	Weed biomass on 60 DAS (g m ⁻²)	Grain yield (kg ha ⁻¹)	Stover yield (kg ha ⁻¹)	Maize equivalent yield (kg ha ⁻¹)
T ₁	175.20	3558	5584	3558
T ₂	19.40	6104	8752	6104
T ₃	62.14	4783	7054	4783
T ₄	44.20	5125	7489	5125
T ₅	33.40	5780	8331	5780
T ₆	15.80	6289	8947	8115
T ₇	40.00	5449	7913	5449
T ₈	90.97	4437	6613	5914
T ₉	99.20	4076	6176	4076
SEm ±	1.33	96.22	132.88	-
CD(P = 0.05)	4.02	290.95	401.80	-

T₁ - Unweeded control, T₂ - Twice hand weeding on 20 and 40 DAS, T₃ - Pre emergence Oxyfluorfen 23.5% EC @ 0.2 kg ha⁻¹ on 3 DAS, T₄ - Pre emergence Oxyfluorfen 23.5% EC @ 0.2 kg ha⁻¹ on 3 DAS + one hand weeding on 30 DAS, T₅ - Pre emergence Oxyfluorfen 23.5% EC @ 0.2 kg ha⁻¹ on 3 DAS + Post emergence Tembotrione 34.4% SC @ 100 g ha⁻¹ on 21 DAS, T₆ - Pre emergence Oxyfluorfen 23.5% EC @ 0.2 kg ha⁻¹ on 3 DAS + Intercrop with black gram, T₇ - Pre emergence Oxyfluorfen 23.5% EC @ 0.2 kg ha⁻¹ on 3 DAS + Mulching with sugarcane trash on 21 DAS, T₈ - Intercropping alone and T₉ - Mulching alone on 21 DAS.

Table 2: Economics of maize as influenced by weed management practices.

Treatments	Cost of cultivation (Rs. ha ⁻¹)	Gross income (Rs. ha ⁻¹)	Net income (Rs. ha ⁻¹)	B:C Ratio
T ₁	49934	87418	37488	1.75
T ₂	55010	146244	91214	2.65
T ₃	51540	117063	65523	2.27
T ₄	54073	125364	71291	2.31
T ₅	55441	141271	85830	2.54
T ₆	57024	153594	96570	2.69
T ₇	57417	133240	75823	2.32
T ₈	55428	108664	53236	1.96
T ₉	55820	99924	44104	1.79

Considering the economics of different weed control measures it was observed that pre emergence oxyfluorfen @ 0.2 kg ha⁻¹ on 3 DAS + intercrop with black gram (T₆) involving initial cost of Rs. 57024 ha⁻¹ resulted in attractive returns. The highest gross income (Rs. 153594 ha⁻¹), net income (Rs. 96570 ha⁻¹) B:C ratio (2.69) was recorded in that pre emergence Oxyfluorfen @ 0.2 kg ha⁻¹ on 3 DAS + intercrop with black gram. The lowest initial cost (Rs. 49934 ha⁻¹), gross income (Rs. 87418 ha⁻¹), net income (Rs. 37488 ha⁻¹) B:C ratio (1.75) was recorded in the unweeded control (T₁). The above result is line with the findings of (Sundari *et al.*, 2019) ^[16].

4. Conclusion

Based on the results of the present study, pre emergence oxyfluorfen @ 0.2 kg ha⁻¹ on 3 DAS + intercrop with black gram (T₆) showed to be efficient and economically feasible technology to manage the weeds and to realize better returns from the irrigated hybrid maize.

References

1. Khatam A, Khan MZ, Nawab K, Mian IA. Effect of various herbicides and manual control on yield, yield components and weeds of maize. *Pak J Weed Sci Res.* 2013;19(2):209-216.
2. Yang C, Fan Z, Chai Q. Agronomic and economic benefits of pea/maize intercropping systems in relation to N fertilizer and maize density. *Agronomy.* 2018;8(4):52.
3. Choudary VK, Kumar S, Dixit A, Chauhan BS. Productivity, weed dynamics, nutrient mining and monetary advantage of maize-legume intercropping in the eastern Himalayan region of India. *Plant Prod Sci.* 2014;4:342-352.
4. Rahimi TI, Ananthi, Amanullah MM. Influence of black gram intercropping and weed control measures on growth and yield of maize (*Zea mays* L.). *Int J Curr Microbiol Appl Sci.* 2017;6(12):3442-3450.
5. Mishra A, Tosh GC. Chemical weed control studies in dwarf wheat. *J Res Orissa Univ Agric Tech.* 1979;10:1-6.
6. Mundra SL, Vyas AK, Maliwal PL. Effect of weed and

nutrient management on nutrient uptake by maize (*Zea mays* L.) and weed. *Indian J Agron.* 2002;47(3):378-383.

7. Sharma N, Rayamajhi M. Different aspects of weed management in maize (*Zea mays* L.): a brief review. *Adv Agric.* 2022;2022:1-10.
8. Padhi AK, Panigrahi RK. Effect of intercrop and crop geometry on productivity, economics, energetic and soil fertility status of maize (*Zea mays* L.)-based intercropping system. *Indian J Agron.* 2006;51(3):174-177.
9. Parihar CM, Yadav MR, Jat SL, Singh AK, Kumar B, Pooniya V, *et al.* Long-term conservation agriculture and intensified cropping systems: effects on growth, yield, water and energy-use efficiency of maize in north-western India. *Pedosphere.* 2018;28(6):952-963.
10. Rani SB, Chandrika V, Reddy GP, Sudhakar P, Sagar GK. Weed management with pre- and post-emergence herbicides in maize under maize-green gram cropping system. *Indian J Weed Sci.* 2021;53(4):405-410.
11. Santel HJ. Laudis® OD—a new herbicide for selective post-emergence weed control in corn (*Zea mays* L.). *Bayer Crop Sci J.* 2009;62(1):95-108.
12. Nadiger S, Babu R, Kumar BN. Bioefficacy of pre-emergence herbicides on weed management in maize. *Karnataka J Agric Sci.* 2013;26(1):17-19.
13. Shah SN, Shroff JC, Patel RH, Usadadiya VP. Influence of intercropping and weed management practices on weed and yields of maize. *Int J Sci Nat.* 2011;2(1):47-50.
14. Singh VP, Guru SK, Kumar A, Banga A, Tripathi N. Bioefficacy of tembotrione against mixed weed complex in maize. *Indian J Weed Sci.* 2012;44(1):1-5.
15. Stomph TJ, Dordas C, Baranger A, De Rijk J, Dong B, Evers J, *et al.* Designing intercrops for high yield, yield stability and efficient use of resources: are there principles? *Adv Agron.* 2020;160:1-50.
16. Sundari A, Kalaisudarson S, Srinivasaperumal AP, Subashchandran S, Gowtham R. Response of irrigated maize to new herbicides. *Plant Arch.* 2019;19(2):2465-2468.
17. United States Environmental Protection Agency (USEPA). Reregistration eligibility decision (RED) for oxyfluorfen. Washington (DC): USEPA; 2007. <https://www.epa.gov/pesticides/reregistration/status.htm>
18. Lakshmi PV, Luther MM. Pre- and post-emergence herbicides for weed control in maize. *Indian J Weed Sci.* 2017;49(4):403-404.