

International Journal of Research in Agronomy

E-ISSN: 2618-0618
P-ISSN: 2618-060X
© Agronomy
NAAS Rating (2025): 5.20
www.agronomyjournals.com
2025; 8(12): 767-769
Received: 08-10-2025
Accepted: 13-11-2025

Somanaboina Ravi
M.Sc. Scholar, Department of
Agronomy, College of Agriculture,
Rajendranagar, PJTAU,
Telangana, India

K Naganjali
Associate Professor, Department of
Agronomy, Agriculture College,
Aswaraopet, Bhadravadi
Kothagudem, Telangana, India

YS Parameshwari
Scientist (Agronomy), Regional
Sugarcane and Rice Research
Station, Rudrur, Telangana, India

M Ramprasad
Assistant Professor, Department of
SSAC, Agriculture college,
Aswaraopet, Bhadravadi
Kothagudem, Telangana, India

Effect of Phosphate Rich Organic Manure (PROM) along with *Pseudomonas* on growth and yield of rabi groundnut

Somanaboina Ravi, K Naganjali, YS Parameshwari and M Ramprasad

DOI: <https://www.doi.org/10.33545/2618060X.2025.v8.i12k.4477>

Abstract

Groundnut (*Arachis hypogaea* L.) is an important oilseed crop whose productivity is largely constrained by the limited availability of phosphorus (P) in Indian soils. Phosphate Rich Organic Manure (PROM), when integrated with P-solubilizing microorganism, offers a promising strategy to enhance P availability and crop productivity. The field experiment was conducted during rabi 2024-25 at Agricultural College, Aswaraopet, to evaluate the effect of inorganics, PROM and *Pseudomonas fluorescens* on growth and yield of rabi groundnut. The experiment consisted of nine treatments laid out in a Randomized Block Design with three replications. Results indicated that combined application of 75% recommended dose of phosphorus (RDP) substituted through PROM + *Pseudomonas fluorescens* soil application @ 7.5 kg ha⁻¹ recorded significantly taller plants (30.6 cm), wider leaf area (1156.8 cm² plant⁻¹), maximum dry matter production (6847 kg ha⁻¹) and higher pod yield (2977 kg ha⁻¹), this was was statistically comparable with 100% RDF + *Pseudomonas fluorescens* and 100% RDF. The study demonstrated that integrating PROM with *Pseudomonas fluorescens* bacteria can partially replace chemical fertilizers while improving productivity in groundnut.

Keywords: Groundnut, phosphorus, PROM, *Pseudomonas*

Introduction

Groundnut (*Arachis hypogaea* L.) is one of the most important among edible oilseed crops in the world and belongs to Leguminaceae (Fabaceae) family. In India, 24.4 per cent of *yasangi* season groundnut is cultivated in Telangana state and lion share of area and production are contributed from Southern Telangana zone and little from Central Telangana zone (PJTAU, 2023). Although legumes can fix their own nitrogen, they often need phosphorus, calcium and other nutrients for good seed formation. Phosphorus (P) is the second most important nutrient which favours healthy growth and development of roots and promotes rhizobial activity resulting in increased nodulation and nitrogen fixation (Moharana *et al.*, 2015; Jangir *et al.*, 2016)^[4, 7]. In Indians soils only 16-18% of soil phosphorus is readily available and 80% of soils requires phosphorus application at recommended rates (Motsara, 2002)^[8]. Proper phosphorus management enhances root biomass, nodulation and pod yield of groundnut. Phosphate Rich Organic Manure (PROM) is effective alternative to water soluble phosphorus fertilizers, regardless of soil type (Sekhar *et al.*, 2012)^[10]. PROM is a value added product produced by composting different organic waste with high-grade (32% P₂O₅) rock phosphate in very fine size (80% finer than 54 microns) (Aechra *et al.*, 2021)^[11]. PROM contains significant amounts of phosphorus (9-10% P₂O₅), carbon-to-nitrogen (C: N) ratio less than 15:1 and a pH of 7.0-7.5 which makes it essential for plant growth, especially early development, root growth and considered as more environment friendly than synthetic fertilizers (Udawat, 2023)^[12]. Phosphorus solubilizing strains of the genus *Pseudomonas* (notably *P. fluorescens*) has the ability to improve the availability of nutrients like Ca, Zn, Mo, Cu etc (Jat and Ahlawat, 2008)^[5]. Integrating organic P sources like PROM with microbial inoculants such as phosphate solubilizing *Pseudomonas* offers theoretical and practical advantages like higher microbial activity, enhance the solubilization and mobilization of the P contained in PROM, thereby improving available P and crop uptake.

Corresponding Author:
Somanaboina Ravi
M.Sc. Scholar, Department of
Agronomy, College of Agriculture,
Rajendranagar, PJTAU,
Telangana, India

Materials and Methods

The field experiment was carried out at College farm, Agricultural college, Aswaraopet during *rabi*, 2024-2025. Experimental farm lies between 19°47' N latitude and 74°18' E longitude with 435 m elevation above mean sea level. The soil of the experimental field was sandy loam in texture and nearly neutral in reaction (pH 7.65), low in organic carbon (0.47%), low in available nitrogen (218.53 kg ha⁻¹), low in available phosphorus (10.58 kg ha⁻¹) and medium in potassium status (208.52 kg ha⁻¹). Experiment was laid out in Randomized Block Design (RBD) with three replications and nine treatments. The treatments includes T₁: Absolute control, T₂: 100% RDF, T₃: 50% RDP substituted through PROM, T₄: 75% RDP substituted through PROM, T₅: 100% RDP substituted through PROM, T₆: T₃ + *Pseudomonas fluorescens* soil application @ 7.5 kg ha⁻¹, T₇: T₄ + *Pseudomonas fluorescens* soil application @ 7.5 kg ha⁻¹, T₈: T₅ + *Pseudomonas fluorescens* soil application @ 7.5 kg ha⁻¹, T₉: T₂ + *Pseudomonas fluorescens* soil application @ 7.5 kg ha⁻¹. Groundnut (variety K6) was sown with spacing of 22.5 cm x 10 cm. Recommended dose of fertilizer was 20:40:50 N:P₂O₅:K₂O kg ha⁻¹ was applied through urea, single super phosphate and murate of potash according to treatments. Phosphorus rich compost (PROM) and *Pseudomonas fluorescens* was applied and thoroughly mixed in soil before sowing as basal application as per treatment. Biometric observations during the crop growth period were recorded periodically on the selected plants. Plant height, leaf area, drymatter production and yield were recorded at harvest stage. Data were subjected to analysis of variance (ANOVA) using online statistical analysis package (OPSTAT) at 5% level of significance (p=0.05).

Results and Discussion

Growth parameters

PROM along with *Pseudomonas* significantly influenced the growth attributes of *rabi* groundnut (Table 1). Among the treatments, significantly taller plants (30.6 cm), wider leaf area (1156.8 cm² plant⁻¹) and higher drymatter production (6847 kg ha⁻¹) was recorded with application of 75% RDP substituted through PROM + *Pseudomonas fluorescens* soil application @ 7.5 kg ha⁻¹ (T₇), it was statistically on par with 100% RDF + *Pseudomonas fluorescens* soil application @ 7.5 kg ha⁻¹ and 100% RDF. These were followed by 75% RDP substituted

through PROM (T₄), 50% RDP substituted through PROM + *Pseudomonas fluorescens* soil application @ 7.5 kg ha⁻¹ (T₆), 50% RDP substituted through PROM (T₃) being on par with other. 100% RDP substitution through PROM+ *Pseudomonas fluorescens* soil application @ 7.5 kg ha⁻¹ and sole 100% RDP substitution through PROM registered lower growth attributes among nutrient application treatments whereas the shorter plants (17.4 cm), lower leaf area (525.2 cm² plant⁻¹) and drymatter production (3833 kg ha⁻¹) was observed in the absolute control (T₁). Integrating 75% RDP through PROM + *Pseudomonas fluorescens* @ 7.5 kg ha⁻¹ effectively enhanced nutrient availability, particularly phosphorus, improved root growth which might have resulted taller plants, leaf expansion and improved drymatter production. These results were consistent with the findings Singh *et al.* (2014) ^[11], Ramakrishna *et al.* (2015) ^[9], Khangarot *et al.* (2022) ^[6], Yadav *et al.* (2024) and Bachate *et al.* (2024) ^[3].

Pod yield

The pod yield of *rabi* groundnut were markedly influenced by PROM with *Pseudomonas* application (Table 1). Among the treatments, 75% RDP substituted through PROM + *Pseudomonas fluorescens* soil application @ 7.5 kg ha⁻¹ recorded the higher pod yield (2977 kg ha⁻¹). This treatment was statistically comparable with 100% RDF + *Pseudomonas fluorescens* @ 7.5 kg ha⁻¹ (2910 kg ha⁻¹) and 100% RDF (2875 kg ha⁻¹). Followed by 75% RDP substituted through PROM (T₄), 50% RDP substituted through PROM + *Pseudomonas fluorescens* soil application @ 7.5 kg ha⁻¹ (T₆), 50% RDP substituted through PROM (T₃) recorded moderate pod yield being on par with other. Application of full phosphorus through PROM (T₇) and 100% RDP through PROM + *Pseudomonas fluorescens* (T₈) recorded lower pod yield (2006, 2260 kg ha⁻¹) of *rabi* groundnut among nutrient management treatments. While untreated control treatment registered significantly lower pod yield (1691 kg ha⁻¹) due to insufficient nutrient supply to crop. Combined application of 75% RDP substituted through PROM + *Pseudomonas fluorescens* contributed to greater assimilate production, which in turn translated into higher reproductive yield. Aechra *et al.* (2017) ^[1], Wahane *et al.* (2022) ^[13], Arslan *et al.* (2024) and Bachate *et al.* (2024) ^[3] reported similar results with PROM and phosphorus solubilizing bacteria integration.

Table 1: Effect of inorganics, PROM with *Pseudomonas* on growth attributes and pod yield of *rabi* groundnut

Treatments	Plant height (cm)	Leaf area (cm ² plant ⁻¹)	Drymatter production (kg ha ⁻¹)	Pod yield (kg ha ⁻¹)
T ₁ : Absolute control	17.4	525.2	3833	1691
T ₂ : 100% RDF	29.6	1074.5	6643	2875
T ₃ : 50% RDP substituted through PROM	25.8	880.9	5806	2517
T ₄ : 75% RDP substituted through PROM	26.7	960.4	6009	2598
T ₅ : 100% RDP substituted through PROM	20.1	645.4	4530	2006
T ₆ : T ₃ + <i>Pseudomonas fluorescens</i> soil application @ 7.5 kg ha ⁻¹	26.3	919.0	5877	2545
T ₇ : T ₄ + <i>Pseudomonas fluorescens</i> soil application @ 7.5 kg ha ⁻¹	30.6	1156.8	6847	2977
T ₈ : T ₅ + <i>Pseudomonas fluorescens</i> soil application @ 7.5 kg ha ⁻¹	23.0	761.0	5177	2260
T ₉ : T ₂ + <i>Pseudomonas fluorescens</i> soil application @ 7.5 kg ha ⁻¹	30.1	1107.8	6717	2910
S.Em ±	0.89	34.79	188	83.9
CD (p=0.05)	2.67	104.31	563	241.6

Conclusion

The results emphasized that application of 75% RDP substituted through PROM + *Pseudomonas fluorescens* @ 7.5 kg ha⁻¹ proved to be the most effective treatment, recording maximum plant height, leaf area, dry matter production and pod yield. This treatment was statistically comparable with full recommended

fertilizer dose (100% RDF) and 100% RDF + *Pseudomonas fluorescens*, indicating that a substantial portion of chemical phosphorus can be successfully replaced by PROM when combined with an efficient P solubilizing bacterium (*Pseudomonas fluorescens*).

References

1. Aechra S, Yadav BL, Ghosalia BD, Bamboriya JB. Effect of soil salinity, phosphorus and biofertilizers on physical properties of soil, yield attributes and yield of cowpea [*Vigna unguiculata* (L.) Wilczek]. *J Pharmacogn Phytochem*. 2017;6(4):1691-1695.
2. Arsalan M, Latif A, Khan M, Syed S, Ullah R, Ahmad I, *et al*. Integrated effect of organic amendments and chemical fertilizers on yield of groundnut and soil health under rainfed condition. *J Appl Res Plant Sci*. 2024;5(1):99-104.
3. Bachate YR, Andhale RP, Sinare BT, Danawale NJ, Narale SB, Patil VS, *et al*. Effect of phosphate rich organic manure (PROM) on growth characters, yield contributing characters and yield of wheat. *Int J Res Agron*. 2024;7(10):317-319.
4. Jangir CK, Singh D, Kumar S. Yield and economic response of biofertilizer and fertility levels on *Vigna mungo*. *Progressive Res*. 2016;11(8):5252-5254.
5. Jat RS, Ahlawat IPS. Direct and residual effect of vermicompost, biofertilizers and phosphorus on soil nutrient dynamics and productivity of chickpea-fodder maize sequence. *J Sustain Agric*. 2008;28:41-54.
6. Khangarot AK, Yadav SS, Shyanabhoga SP, Verma RS, Jakhar R, Bhawariya A. Effect of PROM and microbial inoculants on growth, yield and nutrient uptake of mungbean [*Vigna radiata* (L.) Wilczek]. *Legume Res*. 2022;45(6):756-761.
7. Moharana PC, Biswas DR, Datta SC. Mineralization of nitrogen, phosphorus and sulphur in soil as influenced by rock phosphate enriched compost and chemical fertilizers. *J Indian Soc Soil Sci*. 2015;63(3):283-293.
8. Motsara MR. Promoting balanced fertilization in India: policies and economic issues. *Fertil News*. 2002;47:15-21.
9. Ramakrishna K, Devi KB, Vani KP, Sailaja V, Umamaheshwari T. Growth, yield and economics of groundnut as influenced by organic nutrient management. *J Progressive Res*. 2015;10(3):1686-1690.
10. Sekhar DMR, Katewa MK, Shaktawat MS. PROM khad: an efficient source of phosphorus to replace costly chemical phosphatic fertilizers. *Nature Precedings*. 2012;7:1-5.
11. Singh YP, Singh S, Dubey SK, Tomar R. Organic and inorganic sources of phosphorus and methods of application on performance of groundnut (*Arachis hypogaea* L.) under rainfed condition. *Indian J Soil Conserv*. 2014;42(2):204-208.
12. Udawat P. Phosphate rich organic manure (PROM): a novel organic fertilizer. *Indian J Agric Sci*. 2023;93(2):214-216.
13. Wahane MR, Salvi VG, Dodake SB, Khobragade NH. Effect of phosphorus, vesicular arbuscular mycorrhizae and phosphate solubilizing bacteria on yield and nutrient content of groundnut and soil physical properties of Alfisols. *Agric Res J*. 2022;59(3):407-417.