

International Journal of Research in Agronomy

E-ISSN: 2618-0618
P-ISSN: 2618-060X
© Agronomy
NAAS Rating (2025): 5.20
www.agronomyjournals.com
2025; 8(12): 689-692
Received: 23-09-2025
Accepted: 27-10-2025

Nayan R Pawar
M.Sc. Research Scholar,
Department of Agronomy, Post
Graduate Institute, Mahatma
Phule Krishi Vidyapeeth, Rahuri,
Maharashtra, India

Dr. SS Ilhe
Professor, Department of
Agronomy, PGI, Mahatma Phule
Krishi Vidyapeeth, Rahuri,
Maharashtra, India

Dr. NJ Danawale
Chief Scientist (Seed) & Associate
Professor, Department of
Agronomy, PGI, Mahatma Phule
Krishi Vidyapeeth, Rahuri,
Maharashtra, India

Dr. MR Patil
Head, Department of Statistics,
PGI, Mahatma Phule Krishi
Vidyapeeth, Rahuri, Maharashtra,
India

Dr. SD Rajput
Associate Professor of Botany,
ORS, Jalgaon, Maharashtra, India

Dr. AG Durgude
Associate Professor, AICRP on
WMP, PGI, MPKV, Rahuri,
Maharashtra, India

Corresponding Author:
Nayan R Pawar
M.Sc. Research Scholar,
Department of Agronomy, Post
Graduate Institute, Mahatma
Phule Krishi Vidyapeeth, Rahuri,
Maharashtra, India

Effect of phosphate rich organic manure on growth, yield and quality of greengram (*Vigna radiata* L.)

Nayan R Pawar, SS Ilhe, NJ Danawale, MR Patil, SD Rajput and AG Durgude

DOI: <https://www.doi.org/10.33545/2618060X.2025.v8.i12j.4469>

Abstract

A field investigation entitled “Effect of phosphate rich organic manure (PROM) on growth, yield and quality of greengram” was conducted in *kharif* season of 2024- 2025 at Post Graduate Institute, Mahatma Phule Krishi Vidyapeeth, Rahuri. The experiment was conducted in randomized block design with seven treatments replicated 3 times. Results revealed that treatment T₃ (100% P₂O₅ through SSP) recorded significantly higher all the growth contributing characters *viz.*, plant height (56.99 cm), no. of functional leaves plant⁻¹ (11.46), leaf area plant⁻¹ (10.62 dm²), no. of root nodules plant⁻¹ (28.33) and dry matter plant⁻¹ (24.33 g). Similarly, all the yield contributing characters no. of pods plant⁻¹ (27.25), no. of seeds pod⁻¹ (10.61), wt. of pods plant⁻¹ (13.31 g), wt. of seeds plant⁻¹ (12.89 g) and 1000 seed weight (42.31 g) were recorded significantly maximum under T₃ treatment (100% P₂O₅ through SSP). The highest grain yield (1323 kg ha⁻¹), straw yield (1996 kg ha⁻¹), biological yield (3319 kg ha⁻¹), harvest index (39.86%) is also recorded by the T₃ treatment (100% P₂O₅ through SSP).

Keywords: Greengram, P₂O₅, growth, yield, nutrient, SSP, prom, phosphorous

1. Introduction

In India, pulses or food legumes are second only to cereals in terms of both production and consumption. They are a vital part of the human diet, supplying essential nutrients such as energy, protein, vitamins, and minerals. Apart from their nutritional benefits, pulses play a crucial role in Indian agriculture. Their root nodules can fix atmospheric nitrogen, contributing to improved soil fertility. With characteristics like deep rooting systems, efficient ground cover, drought resistance, and the ability to prevent soil erosion, pulses are rightly referred to as the “Marvel of Nature.”

Greengram (mungbean) is unique among pulse crops in its ability to be grown year around, making it adaptable to all three principal cropping seasons. Commonly referred to as *Vaishakhi Mug*. Greengram offers numerous advantages. As reported by (Dainavizadeh and Mehranzadeh, 2013) ^[3], mungbean seeds comprise 20-24% protein, 9.4% moisture, 2.1% oil, 2.05% lipids, 6.4% fibre, and provide 343.5 kcal of energy 100 grams⁻¹. The total area under pulse cultivation stands at 27,528 thousand hectares, with an output of 252.38 Lakh metric tonnes (LMT), reflecting an increase of 9.92 LMT over the previous year's 242.46 LMT. Specifically, during 2023-2024, the area under greengram cultivation was 31.49 lakh hectares, yielding 3.10 million tonnes.

Phosphorus is primarily concentrated in the reproductive parts of plants, where it plays a crucial role in seed formation. A lack of phosphorus can result in restricted plant growth, as seeds need sufficient amounts of this nutrient for proper development (Muindi, 2019) ^[7]. Thus, phosphorus is vital not only for seed filling but also for the overall growth of the plant, greatly contributing to improved crop development (Sahrawat and Ismail, 1990) ^[9]. Additionally, phosphorus helps regulate the movement of photosynthates from source tissues to reproductive organs (Cheema *et al.*, 2001) ^[2].

Phosphate Rich Organic Manure (PROM) is a type of fertiliser that acts as a substitute for traditional fertilisers such as diammonium phosphate (DAP) and single super phosphate (SSP). It is created by co-composting finely ground high grade rock phosphate, with about 80% of its

particles smaller than 54 microns and containing approximately 32% P₂O₅ ($\pm 2\%$). The preparation of PROM necessitates the use of high-quality organic materials with a carbon to nitrogen (C:N) ratio of 20:1. Inadequately decomposed organic matter can compete with plants for nutrients and may also promote the activity of harmful termites (Aechra *et al.*, 2021) ^[1].

2. Materials and Methods

A field investigation entitled “Effect of phosphate rich organic manure (PROM) on growth, yield and quality of greengram” was conducted in *kharif* 2024 - 2025 at Post Graduate Institute, Mahatma Phule Krishi Vidyapeeth, Rahuri. The experiment consists of 7 treatments *viz.*, T₁: Absolute control; T₂: Control (No P₂O₅); T₃: 100% P₂O₅ through SSP; T₄: 100% P₂O₅ through Phosphate Rich Organic Manure (PROM); T₅: 75% P₂O₅ through Phosphate Rich Organic Manure (PROM) + 25% P₂O₅ through SSP; T₆: 50% P₂O₅ through Phosphate Rich Organic Manure (PROM) +50% P₂O₅ through SSP; T₇: 25% P₂O₅ through Phosphate Rich Organic Manure (PROM) + 75% P₂O₅ through SSP; Nitrogen applied through Urea; Phosphorus was applied through single super phosphate and PROM; PSB seed

treatment was done to treatment T₂ to T₇.

The experiment was laid out in randomized block design (RBD) with three replications. Line sowing of greengram seeds was done at spacing of 30 cm between rows and 10 cm between plants. The soil was clay in texture, low in available nitrogen (202.57 kg ha⁻¹), medium in available phosphorus (19.10 kg ha⁻¹) and high in potassium (349.65 kg ha⁻¹). The mean available nitrogen, phosphorus and potassium content in soil after harvest of greengram crop were 216.94, 17.88 and 318.98 kg ha⁻¹ respectively. The soil was slightly alkaline in reaction (pH 8.14) with medium in organic carbon content (0.51%). The recommended dose of fertilizer of greengram is 20: 40:00 N: P₂O₅: K₂O kg ha⁻¹.

3. Results and Discussion

3.1 Growth Parameters

The information related to plant height (cm), no. of functional leaves, dry matter plant⁻¹, no. of root nodules and leaf area (dm²) of greengram as influenced by various treatments presented in Table 1.

Table 1: Effect of phosphate rich organic manure (PROM) on growth contributing characters of greengram as influenced by different treatment

Tr. No.	Treatment	Growth contributing Characters				
		At harvest		At flowering	60 DAS	
		Plant height (cm)	No. of functional leaves plant ⁻¹			
T ₁	Absolute control	42.98	7.96	18.76	22.12	7.36
T ₂	Control (No P ₂ O ₅)	48.89	8.35	19.50	23.62	7.75
T ₃	100% P ₂ O ₅ through SSP	56.99	11.46	24.33	28.33	10.62
T ₄	100% P ₂ O ₅ through Phosphate Rich Organic Manure (PROM)	49.29	8.94	20.32	23.91	8.26
T ₅	75% P ₂ O ₅ through Phosphate Rich Organic Manure (PROM) + 25% P ₂ O ₅ through SSP	50.67	9.23	21.29	24.29	8.53
T ₆	50% P ₂ O ₅ through Phosphate Rich Organic Manure (PROM) +50% P ₂ O ₅ through SSP	51.58	9.68	21.96	24.55	8.92
T ₇	25% P ₂ O ₅ through Phosphate Rich Organic Manure (PROM) + 75% P ₂ O ₅ through SSP	54.97	10.79	22.88	26.65	9.97
	S.E. \pm	1.56	0.48	0.76	1.20	0.43
	C.D. at 5%	4.82	1.48	2.35	3.69	1.34
	General mean	50.77	9.49	21.29	24.78	8.77

The plant height (cm), no. of functional leaves, dry matter plant⁻¹, and leaf area plant⁻¹ at 30 DAS was found non-significant. The plant height (cm), no. of functional leaves, dry matter plant⁻¹ at harvest, no. of root nodules at flowering and leaf area plant⁻¹ at 60 DAS were significantly recorded higher by T₃ treatment i.e. 100% P₂O₅ through SSP (56.99 cm, 11.46, 24.33 (g), 28.33 and 10.62 dm² respectively) and it was at par with T₇ treatment i.e. 25% P₂O₅ through Phosphate Rich Organic Manure (PROM) + 75% P₂O₅ through SSP recorded (54.97 cm, 10.79, 22.88 (g), 26.65 and 9.97 dm²) respectively. While significantly lower plant height (cm), no. of functional leaves, dry matter plant⁻¹ (g), no. of root nodules at flowering and leaf area plant⁻¹ (dm²) recorded by treatment T₁ (absolute control) were (42.98 cm, 7.96, 18.76 g, 22.12 and 7.36 dm²) respectively (Table 1). Comparable findings have been documented by Singh *et al.* (2018) ^[11], Rajput and Rajput (2017) ^[8], Meshram *et al.* (2024) ^[5] and Das (2016) ^[4].

3.2 Yield contributing characters

The information related to no. of pods plant⁻¹, no. of seeds pod⁻¹, wt. of pods plant⁻¹, wt. of seeds plant⁻¹ and 1000 seed weight (g) of greengram as influenced by various treatments presented in Table 2.

The yield contributing characters *viz.*, no. of pods plant⁻¹, no. of seeds pod⁻¹, weight of pods plant⁻¹, weight of seeds plant⁻¹ and 1000 seed weight (g) were 27.25, 10.61, 13.31 12.89 and 42.31 (g) significantly higher recorded by the T₃ treatment i.e. 100% P₂O₅ through SSP and it was at par with treatment T₇ i.e. 25% P₂O₅ through Phosphate Rich Organic Manure (PROM) + 75% P₂O₅ through SSP recorded 26.55, 10.18, 12.86, 12.67 and 42.02 (g) respectively. Similarly, significantly minimum values of no. of pods plant⁻¹, no. of seeds pod⁻¹, weight of pods plant⁻¹, weight of seeds plant⁻¹ and 1000 seed weight (g) by treatment T₁ i.e. absolute control recorded 22.11, 8.37, 11.18, 10.85 and 39.96 (g) respectively in Table 2. Immediate availability of soluble phosphorus from SSP, which plays a crucial role in pollen development, fertilization efficiency, flower initiation, effective pods set and seed setting within pods. Phosphorous is important for pollen tube growth, leading to successful fertilization and higher seed formation. In contrast, PROM releases phosphorus slowly due to microbial mineralisation, which may delay nutrient availability during critical reproductive stages compared to SSP. Similar results also showed by Singh *et al.* (2015) ^[10] and Yadav *et al.* (2021) ^[12] that increased levels of SSP significantly increased seed number pod⁻¹.

Table 2: Effect of phosphate rich organic manure (PROM) on No. of pods plant⁻¹, No. of seed pod⁻¹, wt. of pods plant⁻¹, wt. of seeds plant⁻¹ and 1000 seed weight at harvest of greengram as influenced by different treatments

Tr. No.	Treatment	No. of pods plant ⁻¹	No. of seeds pod ⁻¹	Wt. of pods plant ⁻¹ (g)	Wt. of seeds plant ⁻¹ (g)	1000 seed weight (g)
T ₁	Absolute control	22.11	8.37	11.18	10.85	39.96
T ₂	Control (No P ₂ O ₅)	22.91	8.79	11.76	11.71	40.32
T ₃	100% P through Single Super Phosphate (SSP)	27.25	10.61	13.31	12.89	42.31
T ₄	100% P through Phosphate Rich Organic Manure (PROM)	24.30	9.39	12.22	11.95	40.97
T ₅	75% P through Phosphate Rich Organic Manure (PROM) and 25% P through Single Super Phosphate (SSP)	25.01	9.71	12.41	12.01	41.64
T ₆	50% P through Phosphate Rich Organic Manure (PROM) and 50% P through Single Super Phosphate (SSP)	25.31	9.94	12.62	12.15	41.75
T ₇	25% P through Phosphate Rich Organic Manure (PROM) and 75% P through Single Super Phosphate (SSP)	26.55	10.18	12.86	12.67	42.02
	SE m \pm	0.58	0.17	0.20	0.15	0.79
	CD (P=0.05)	1.79	0.52	0.62	0.50	NS
	General mean	24.77	9.57	12.33	12.03	41.28

3.3 Yield studies

The information related to seed, straw and biological yield of greengram as influenced by various treatments presented in Table 3.

Significantly higher seed yield, straw yield and biological yield kg ha⁻¹ was recorded by T₃ treatments (100% P₂O₅ through SSP) recorded 1323, 1996 and 3319 kg ha⁻¹ and it was at par with

treatment T₇ (25% P₂O₅ through PROM + 75% P₂O₅ through SSP) recorded 1270, 1918 and 3188 kg ha⁻¹ respectively the seed, straw and biological yield. Whereas significantly minimum seed, straw and biological yield was recorded by T₁ treatment (Absolute control) viz., 615, 1253 and 1868 kg ha⁻¹ respectively. These results are consisted with those reported by Yadav *et al.*, (2021) [12], More *et al.* (2024) [6] and Das (2016) [4].

Table 3: Effect of phosphate rich organic manure (PROM) on seed, straw and biological yield of greengram as influenced by different treatment

Tr. No.	Treatment	Seed yield (kg ha ⁻¹)	Straw yield (kg ha ⁻¹)	Biological yield (kg ha ⁻¹)
T ₁	Absolute control	615	1253	1868
T ₂	Control (No P ₂ O ₅)	855	1418	2273
T ₃	100% P through Single Super Phosphate (SSP)	1323	1996	3319
T ₄	100% P through Phosphate Rich Organic Manure (PROM)	1029	1582	2611
T ₅	75% P through Phosphate Rich Organic Manure (PROM) and 25% P through Single Super Phosphate (SSP)	1070	1644	2714
T ₆	50% P through Phosphate Rich Organic Manure (PROM) and 50% P through Single Super Phosphate (SSP)	1148	1735	2883
T ₇	25% P through Phosphate Rich Organic Manure (PROM) and 75% P through Single Super Phosphate (SSP)	1270	1918	3188
	SE m \pm	29.92	48.13	95.26
	CD (P=0.05)	92.20	148.31	293.55
	General mean	1044.29	1649.31	2693.54

4. Conclusion

The treatment receiving 100% phosphorus through Single Super Phosphate (T₃) exhibited markedly better growth and yield performance, reflected in greater plant height, higher number of functional leaves plant⁻¹, dry matter accumulation, no. of root nodules plant⁻¹, leaf area plant⁻¹, higher seed and straw yield which was found at par with treatment T₇ (25% P through Phosphate Rich Organic Manure combined with 75% P through SSP). However, the research above is based on a single season of research.

5. Acknowledgement

We are very thankful to the Post Graduate Institute, MPKV, Rahuri for providing all facilities and research grants to carry out this experimental work and authors cited in references for providing necessary literature material.

References

1. Aechra M, Singh A, Singh S, Meena R. Role of organic matter decomposition in soil health and crop productivity: A review. International Journal of Chemical Studies. 2021;9(1):975-980.
2. Cheema MA, Malik MA, Hussain A, Shah SH, Basra SMA. Effects of time and rate of nitrogen and phosphorus application on the growth and seed yield of canola (*Brassica napus* L.). Pakistan Journal of Agricultural Sciences. 2001;38(1-2):26-29.
3. Dainavizadeh M, Mehranzadeh M. Evaluation of nutrient composition in mungbean (*Vigna radiata* L.) seeds. International Journal of Agriculture and Crop Sciences. 2013;5(18):2053-2057.
4. Das SK. Effect of phosphorus and sulphur on yield attributes, yield, nodulation and nutrient uptake of greengram (*Vigna radiata* L.) in Central Plain Zone of Punjab. Legume Research: An International Journal. 2016;40(1):138-143.
5. Meshram P, Bagade P, Bachhav S, Shaniware Y, Shirsath R. Influence of different sources and levels of phosphorus on growth and nutrient uptake of soybean in low calcareous soil. International Journal of Statistics and Applied Mathematics. 2024;9(6):104-108.
6. More G, Sawant PS, Khobragade NH, Meshram NA, Rajemahadik VA, Pawar SV. Effect of different sources of phosphorus on soil properties, growth, yield, quality and nutrient content in greengram (*Vigna radiata* L.). International Journal of Research in Agronomy. 2024;7(1):320-321.
7. Muindi F. Effects of phosphorus fertilizer on growth and yield of common bean (*Phaseolus vulgaris* L.) in Kenya. African Journal of Agricultural Research. 2019;14(21):900-906.
8. Rajput AS, Rajput SS. Effect of genotypes and phosphorus levels on growth analysis parameters of greengram. Legume Research: An International Journal. 2017;40(5):963-967.
9. Sahrawat KL, Ismail S. Phosphorus and other nutrient interactions in crop production. Fertilizer Research. 1990;26(1-3):237-243.
10. Singh K, Manohar RS, Choudhary R, Yadav AK, Sangwan

A. Response of different sources and levels of phosphorus on yield, nutrient uptake and net returns on mungbean under rainfed condition. Agricultural Science Digest: A Research Journal. 2015;35(4):263-268.

11. Singh R, Singh P, Singh V, Yadav RA. Effect of phosphorus and PSB on yield attributes, quality and economics of summer greengram (*Vigna radiata* L.). Journal of Pharmacognosy and Phytochemistry. 2018;7(2):404-408.

12. Yadav KK, Kumar V, Raju A, Anuj K, Sagar VK, Kumar S. Effect of phosphorus and sulphur application on growth and yield attributes of mungbean (*Vigna radiata* L.). International Journal of Plant and Soil Science. 2021;33(15):105-111.