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Abstract 
The increasing global population intensifies demand for food production, placing significant strain on 

agricultural systems. This challenge is compounded by threats from climate change, water scarcity, and the 

decline of arable land. Weeds exacerbate these pressures by competing with crops for natural resources, 

leading to reduced yield and quality. To address this issue sustainably, a balanced integration of cultural, 

mechanical, and chemical weed control methods is essential, as overreliance on intensive mechanization 

and herbicides risks ecosystem harm and has led to the widespread issue of herbicide-resistant weeds. 

Recent technological advancements offer a pathway toward more sustainable systems by enabling 

precision weed management (PWM). This approach synergizes integrated weed management practices 

with site-specific, economically viable sensing systems to enhance farm productivity, reduce input 

requirements, and minimize environmental impact. Consequently, future research should focus on 

developing and integrating these innovative strategies to advance sustainable agriculture. 

 

Keywords: Precision Weed Management (PWM), herbicide resistance, site-specific sensing 

 

Introduction  

Weeds have coexisted with cultivated crops since the dawn of agriculture and remain one of the 

most persistent and universal threats to food production systems. Their resilience and 

adaptability make them an ever-present challenge that continues to undermine global 

agricultural productivity (Buhler et al. 2000) [11]. As the global population is projected to reach 

nearly nine billion by 2050, up from around seven billion at present (Young, 2014) [68], the 

demand for food, fibre, and fuel will increase dramatically. Meeting this escalating demand amid 

shrinking arable land, water scarcity, and the intensifying impacts of climate change is one of 

humanity’s most pressing challenges. Within this context, the management of weeds—often 

termed “the silent yield robbers” has become a defining factor in ensuring sustainable 

agricultural production systems worldwide (Ribas, 2009) [53]. 

Weeds interfere with crop growth by aggressively competing for essential resources such as 

water, nutrients, and sunlight, thereby causing significant yield losses. The Food and Agriculture 

Organization (FAO) estimates that global crop losses due to weeds range from 30-40%, 

depending on the crop and region. Traditionally, weed management has relied heavily on two 

primary approaches: mechanical (or cultural) control and chemical (herbicidal) control. While 

mechanical methods such as tillage, uprooting, or hoeing can suppress weed growth, they are 

labour intensive and may cause detrimental effects like soil erosion, loss of soil structure, and 

reduced microbial activity. On the other hand, chemical herbicides though initially considered 

revolutionary have brought severe ecological and health-related consequences, including 

contamination of soil, water, and food, and the emergence of herbicide-resistant weed biotypes 

(Gnanavel, 2015) [24]. Excessive dependence on herbicides has disrupted ecological equilibrium 

by altering weed population dynamics and promoting the selection of resistant species. 

Moreover, continuous herbicide application leads to biodiversity loss and degradation of soil and 

aquatic ecosystems (Mia et al. 2020) [39]. For instance, Oenothera laciniata (cutleaf evening 

primrose) has developed resistance to both paraquat and glyphosate (Lancaster, 2021) [35]. 

Although the advent of herbicide-resistant (HR) transgenic crops has provided short-term relief,  
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their widespread adoption covering nearly 80% of the 190 

million hectares under biotech crops by 2019 has sparked 

significant debate regarding biosafety and long-term 

sustainability (ISAAA, 2019; Beckie et al. 2019) [31 5]. The 

repercussions of conventional weed management methods, 

including soil biodiversity loss, nutrient imbalance, and 

pollution, have therefore intensified calls for more sustainable, 

site-specific, and intelligent weed management approaches. 

Precision agriculture has emerged as a transformative concept in 

modern farming, utilizing information technology and geospatial 

tools to manage spatial and temporal variability within fields. It 

enables the application of precise inputs such as water, 

fertilizers, and herbicides at the right place, time, and quantity, 

optimizing both productivity and environmental sustainability 

(Bongiovanni et al. 2004) [8]. Often referred to as satellite or site-

specific crop management (SSCM), precision agriculture 

integrates Global Navigation Satellite Systems (GNSS), sensors, 

robotics, high-resolution remote sensing, and data analytics to 

monitor crop and soil conditions in real time. These technologies 

enable the collection and analysis of field-level data on soil 

fertility, moisture, weed distribution, and microclimate 

variations (Christensen et al. 2009; Brown & Noble, 2005) [13, 10]. 

In recent decades, precision farming has evolved from a 

theoretical framework to a data-driven reality, thanks to 

advances in automation, artificial intelligence (AI), and machine 

learning (Monteiro and Santos, 2022; Balafoutis et al. 2020) [41, 

4]. The broader paradigm, often referred to as Agriculture 4.0, 

represents the integration of Information and Communication 

Technologies (ICT), the Internet of Things (IoT), and robotics 

into traditional agricultural systems (Nukala et al. 2016) [43]. 

These innovations enable farmers to monitor soil health, plant 

growth, pest and weed infestations, and irrigation status with 

unprecedented accuracy, thereby reducing input costs, 

enhancing yields, and minimizing environmental impact (Perez-

Ruíz et al. 2014; Lowenberg-DeBoer et al. 2020) [48, 37]. Smart 

farming technologies have also become instrumental in 

promoting sustainable weed management practices by 

employing data analytics and AI to selectively target weeds, 

minimizing herbicide usage and preventing off-target effects 

(Anonymous, 2017; Blucher, 2014) [2, 6]. 

Agrobiodiversity also plays a crucial role in this context, as it 

supports ecosystem services such as pollination, soil fertility 

enhancement, and biological pest control (Anonymous, 2017; 

MacLaren et al. 2020) [2, 38]. However, conventional weed 

eradication programs and agrochemical overuse have threatened 

this diversity, destabilizing agroecosystems. Sustainable weed 

management, therefore, emphasizes integrated approaches that 

combine ecological, cultural, mechanical, and technological 

methods—collectively referred to as Integrated Weed 

Management (Hartzler & Buhler, 2007) [27]. The aim of IWM is 

to balance effective weed suppression with minimal 

environmental harm while maintaining profitability and long-

term soil health. 

Despite the advantages of traditional methods, their limitations 

are increasingly apparent. Continuous tillage practices degrade 

soil structure, deplete organic matter, and enhance erosion, 

compromising long-term soil productivity (Peera et al. 2020) [47]. 

Conversely, reduced tillage systems, though conserving soil 

moisture and reducing erosion, may increase weed pressure and 

soil compaction, thereby necessitating greater herbicide use 

Hollick, 2014) [30]. Similarly, non-chemical strategies such as 

mulching, cover cropping, flaming, and grazing—present 

practical and economic constraints. For instance, organic 

mulches can introduce weed seeds or alter soil pH, while living 

mulches may compete with crops for nutrients and water 

(Dabney et al. 2001; Peera et al. 2020) [14, 47]. Flaming, though 

effective, demands high fuel consumption, and livestock grazing 

can damage soil structure or spread weed seeds through feces 

(Popay & Field, 1996) [49]. Such limitations underscore the 

urgent need for technologically advanced, precise, and 

ecologically sound weed management strategies. This is where 

Precision Weed Management (PWM)—a critical subset of 

precision agriculture—plays a transformative role. PWM 

employs sensors, cameras, robotics, and AI-based algorithms to 

detect, map, and control weeds with sub-meter accuracy 

(Gerhards & Oebel, 2006) [22]. By enabling site-specific 

application of herbicides or mechanical removal, PWM reduces 

chemical usage, operational costs, and environmental 

contamination, while preserving soil and water health (Gerhards 

et al, 2022; Rao, 2021) [23, 52]. 

Globally, the cost of weed control measures runs into billions of 

dollars annually (Chauhan, 2020) [12]. The traditional “one-size-

fits-all” broadcast herbicide approach fails to account for the 

spatial heterogeneity of weed infestations, leading to 

inefficiencies and ecological damage (Rao, 2021) [52]. In 

contrast, PWM represents a paradigm shift towards 

sustainability and precision. Through real-time sensing, data-

driven decision-making, and targeted actuation, PWM systems 

ensure that weed control measures are applied only where and 

when necessary, minimizing input waste and promoting 

environmental stewardship (Christensen et al. 2009) [13]. Recent 

advances in robotics, computer vision, and automation have 

catalysed the development of site-specific weed control systems 

capable of identifying weed species, mapping infestations, and 

implementing targeted mechanical or chemical control measures 

(Perez & Gonzalez, 2014 [48]; Osten & Cook, 2016) [45]. These 

intelligent technologies not only address herbicide resistance but 

also enhance biodiversity conservation and soil health, aligning 

weed management with the principles of circular and 

regenerative agriculture (European Commission, 2019 [19]; 

European Commission, 2020) [20]. In essence, precision weed 

management marks a new era in sustainable agriculture one that 

harmonizes productivity, environmental protection, and 

profitability. By leveraging the power of data, automation, and 

artificial intelligence, PWM embodies the vision of Agriculture 

4.0: a future where every drop of herbicide, every joule of 

energy, and every byte of data contributes to smarter, cleaner, 

and more resilient food systems. 

 

1. Constraints of Traditional Approaches to Weed Control 

Weeds represent one of the most persistent and formidable 

constraints to sustainable global food production. Growing in 

close association with cultivated crops, they compete vigorously 

for essential growth resources such as light, water, nutrients, and 

space, ultimately reducing both yield quantity and the quality of 

harvested produce. In agricultural systems, weeds are estimated 

to account for more than 45% of total yield losses in field crops 

surpassing losses caused by plant diseases (25%) and insect 

pests (20%). The extent of these losses is determined by multiple 

interrelated factors, including the timing of weed emergence, 

species composition, density, and the competitiveness of the 

crop. In severe infestations, unchecked weed proliferation can 

result in yield losses approaching 100%. Beyond direct yield 

impacts, weeds serve as alternate hosts for a range of insect 

pests and pathogenic organisms (fungi, bacteria, and viruses), 

further exacerbating crop health issues (Oerke, 2006) [44]. 

The deleterious effects of weeds are not confined to productivity 

alone. They also degrade land value particularly in cases 
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involving perennial or parasitic species such as Striga and 

Cuscuta and disrupt efficient water management systems by 

increasing evapotranspiration losses and obstructing irrigation 

channels. Weed problems become particularly severe when three 

conditions coincide: the presence of susceptible crops, a large 

soil seed bank containing viable seeds or vegetative propagules, 

and environmental conditions favourable for weed germination 

and growth. While weed management efforts aim to mitigate 

these negative effects, total eradication remains an unrealistic 

goal due to the regenerative capacity of weed seeds and 

vegetative propagules. Nevertheless, it is worth noting that 

under low densities, certain weed populations may offer limited 

ecological or agronomic benefits such as enhancing biodiversity, 

supporting beneficial insects, and contributing to soil cover and 

erosion control (Swanton & Weise, 1991) [61]. 

Traditional weed management practices, long relied upon in 

conventional agriculture, can broadly be categorized into 

chemical, mechanical, physical, cultural, and biological 

approaches. Among these, chemical control through synthetic 

herbicides has become the dominant strategy owing to its rapid 

action, ease of application, and cost-effectiveness in large-scale 

farming systems. However, the widespread and often 

indiscriminate use of herbicides has raised significant 

ecological, agronomic, and socio-economic concerns (Chauhan, 

2020) [12]. Persistent herbicide residues in the soil may impair the 

growth of subsequent crops and negatively affect soil microbial 

diversity and function. Herbicide drift during spraying can 

damage neighbouring crops and contaminate non-target 

ecosystems, while excessive chemical inputs contribute to 

surface and groundwater pollution. Furthermore, the 

overreliance on specific herbicides has accelerated the evolution 

of herbicide-resistant weed biotypes, posing a major threat to the 

long-term sustainability of chemical weed management. In 

addition, herbicide application requires technical expertise for 

correct dosage calibration and timing, and the cost of newer, 

proprietary formulations can be prohibitively high for 

smallholder farmers. Mechanical and physical weed control 

methods such as ploughing, hoeing, mowing, flaming, or 

thermal weeding are traditional and environmentally safer 

alternatives. These practices rely on physically removing or 

destroying weeds before they compete with the main crop. 

While effective in reducing weed biomass, they are labour-

intensive, time-consuming, and often economically 

unsustainable in large-scale operations. Repeated tillage may 

also degrade soil structure, accelerate erosion, and disrupt 

beneficial soil biota. Non-chemical physical methods, including 

flame or steam weeding, provide chemical-free alternatives but 

suffer from limitations in precision, energy efficiency, and 

scalability. Biological control, which employs natural enemies 

such as insects, pathogens, or grazing animals to suppress weed 

populations, represents another ecologically sound strategy. 

Although successful examples existsuch as the use of 

Cactoblastis cactorum for prickly pear control or Zygogramma 

bicolorata for Parthenium hysterophorus biocontrol remains 

highly species-specific, slow-acting, and often influenced by 

environmental variability. Cultural methods, including crop 

rotation, intercropping, and the use of competitive cultivars, 

contribute to integrated weed suppression but may require long-

term planning and site-specific adaptation (Heap, 2023) [29]. 

Given the numerous limitations associated with conventional 

weed management approaches, there is an urgent need for 

innovative and ecologically grounded strategies that integrate 

multiple control tactics in a holistic framework. Modern weed 

science increasingly advocates for a systems-based paradigm, 

wherein weed control decisions are guided by ecological 

principles, site-specific data, and sustainable resource use. The 

shift toward precision weed management and smart agricultural 

technologies thus represents not merely a technological 

advancement but a necessary evolution in achieving long-term 

weed suppression, environmental safety, and agricultural 

resilience. 

 

2. Emergence of Precision Weed Management 

Weeds have persistently posed a problem in agriculture since its 

inception. They impede crop growth by competing for water, 

nutrients, and sunlight, leading to substantial losses in crop 

production. Common weed control methods involve mechanical 

practices or the use of herbicides. However, extensive 

mechanization contributes to soil erosion, diminishing fertility, 

while herbicide use results in soil, water, food, and air 

contamination, causing health issues in humans and animals 

(Swanton & Weise, 1991) [61]. This has led to herbicide 

resistance and disrupted ecosystems. Biodiversity, particularly 

agrobiodiversity, plays a crucial role in providing ecosystem 

services in agricultural systems. Over the past century, there has 

been a rise in the diversity of weed species, despite the use of 

highly effective herbicides. This phenomenon is attributed to 

current crop/pest management systems that favour the presence 

of weed species well-adapted to specific cultural, chemical, and 

environmental conditions. For instance, heavy reliance on 

chemical methods for weed control can result in shifts in weed 

species composition and density over time. Additionally, the 

escalating costs of herbicides in the last decade have added to 

variable expenses in an agricultural landscape where profit 

margins are already narrow. Consequently, there is a renewed 

interest in adopting integrated weed management strategies 

(IWM) to both prevent the establishment of weed species highly 

adapted to specific management approaches and reduce control 

costs. 

Sustainable weed management includes integrated weed 

management (IWM), which employs a variety of strategies to 

optimize crop production and increase profitability. This 

involves preventive measures, scientific knowledge, 

management skills, monitoring procedures, and efficient control 

practices. The field of sustainable weed management has 

witnessed the development and implementation of various 

technologies, contributing to economic and environmental 

sustainability. The challenge for IWM lies in utilizing 

conceptual and technological tools to devise and execute 

integrated strategies that avoid the evolution of weed species 

specifically adapted to particular control methods (Young et. al. 

2014) [68]. Precision farming stands out as a significant platform 

for designing and implementing IWM strategies that enhance 

overall system efficiency. The extensive elimination of weeds 

and wild plants, coupled with the toxicity of agrochemical 

inputs, poses a threat to agrobiodiversity and associated services 

like pollination, soil structure improvement, and natural pest 

control. Weeds contribute significantly to soil quality and 

biodiversity support, sustaining agroecosystem productivity in 

the long term. In light of these challenges, a transition to 

sustainable weed control is imperative for environmental, social, 

and economic reasons associated with sustainable agriculture. 

Precision weed management (PWM) stands out by reducing 

inputs without compromising weed control effectiveness. 

Utilizing grid technology aids in planning the usage of pesticides 

and insecticides, preventing excessive application that could 

compromise the quality and nutrient levels of the produce 

(Balafoutis, 2020) [4]. 
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3. Sensing and Detection Technologies 

Weeds cause significant economic and yield losses by 

competing with crops for vital resources including nutrients, 

water, and light (Thorp & Tian, 2004) [63]. The global yield loss 

attributed to weed competition is estimated to exceed 30% in 

several major crops, with developing countries often facing even 

greater challenges due to limited access to advanced 

management tools. Conventional weed control strategies 

uniform herbicide applications and manual or mechanical 

weeding often result in high input costs, soil degradation, and 

environmental contamination (Gerhards et al. 2022) [23]. 

Excessive herbicide use not only escalates production costs but 

also contributes to the emergence of herbicide-resistant weed 

biotypes, soil microbial imbalance, and non-target toxicity to 

beneficial organisms.  

Consequently, there is a growing demand for sustainable, 

targeted, and eco-efficient approaches to weed control. Precision 

Weed Management (PWM), also known as Site-Specific Weed 

Management (SSWM), integrates sensor-based detection, 

geospatial mapping, and variable-rate application to optimize 

weed control while minimizing chemical and energy inputs (Liu 

et al. 2021) [36]. Through spatial and temporal precision, PWM 

allows real-time discrimination between crops and weeds, 

facilitating site-specific herbicide spraying or mechanical 

interventions. This system thus contributes to sustainable 

intensification by applying interventions only where needed, 

reducing costs, improving resource use efficiency, and 

minimizing environmental footprints. Advances in sensors, data 

fusion techniques, and intelligent image-processing algorithms 

have revolutionized PWM by enabling accurate and real-time 

weed detection even under complex field conditions. 

 

3.1. Optical RGB Imaging 

Optical RGB cameras, which capture visible light in red, green, 

and blue wavelengths, are among the most commonly used 

sensors in PWM due to their affordability, portability, and ease 

of integration with agricultural equipment such as tractors, 

drones, and robotic systems (Wu et al. 2021) [66]. RGB imagery 

offers high spatial resolution and fast data acquisition, making it 

ideal for detecting weeds during early crop growth stages when 

canopy closure is minimal. This imaging technique performs 

effectively in “green-on-brown” scenarios where vegetation 

contrasts sharply with the soil background allowing accurate 

segmentation and classification of weed patches (Allmendinger 

et al. 2022) [1]. RGB-based systems often employ colour indices 

such as Excess Green (ExG), Normalized Green-Red Difference 

Index (NGRDI), and Vegetation Index (VI) to enhance 

vegetation detection and reduce background noise. These indices 

have been widely used to distinguish living plants from soil and 

residue. Additionally, texture-based parameters (e.g., Gabor 

filters or Gray Level Co-occurrence Matrices) have been 

incorporated to improve differentiation between crops and 

weeds based on leaf shape and surface structure. Despite its 

advantages, RGB imaging faces several challenges in “green-

on-green” conditions when crop and weed species share similar 

spectral signatures or in fields with uneven illumination, 

shadows, or occlusions caused by overlapping canopies 

(Gerhards et al. 2022) [23]. For example, in dense maize or sugar 

beet crops, RGB cameras struggle to distinguish weed leaves 

beneath the crop canopy, resulting in misclassification or 

underestimation of weed density. Moreover, variations in 

sunlight intensity, soil moisture, and residue reflectance can 

significantly affect RGB data quality. 

 

Nevertheless, RGB imaging remains foundational in PWM and 

continues to evolve through integration with machine learning 

and deep learning frameworks that enhance its robustness and 

adaptability. Advanced neural networks such as Convolutional 

Neural Networks (CNNs) and Vision Transformers (ViTs) are 

increasingly being trained on RGB datasets to automatically 

extract discriminative spatial features, enabling accurate weed 

identification even under challenging illumination and 

background conditions. Thus, while RGB sensors are relatively 

simple, their integration with sophisticated computational 

models makes them indispensable in low-cost and scalable 

PWM systems. 

 

3.2. Multispectral, Hyperspectral, and Near-Infrared (NIR) 

Sensors 

Multispectral and hyperspectral sensors extend beyond the 

visible spectrum by acquiring reflectance data across multiple 

narrow spectral bands, including near-infrared and shortwave 

infrared regions. These sensors enable precise differentiation of 

vegetation types based on biochemical and physiological 

properties such as chlorophyll content, water status, and cell 

structure (Allmendinger et al. 2022) [1]. By capturing subtle 

differences in reflectance, they facilitate discrimination between 

crop and weed species even when visual color cues are similar. 

Multispectral sensors typically measure reflectance in a limited 

number of discrete bands (e.g., blue, green, red, red-edge, and 

NIR), whereas hyperspectral sensors capture hundreds of 

contiguous bands, allowing the generation of unique spectral 

fingerprints for each species. This spectral richness enables 

accurate classification using vegetation indices such as the 

Normalized Difference Vegetation Index (NDVI), Normalized 

Difference Red Edge Index (NDRE), and Green Chlorophyll 

Index (GCI), which quantify the differences in canopy 

reflectance linked to plant health and morphology (Seiche et al. 

2023) [56].  

 

One of the most important advantages of hyperspectral imaging 

lies in its ability to detect physiological stress or pigment 

variations—such as anthocyanin or carotenoid levels that 

distinguish weeds from crops even before visible differences 

appear. This early detection capability allows timely 

intervention, reducing competition at the initial growth stages. 

Studies have demonstrated that NIR-based sensing can 

effectively detect weeds like Amaranthus retroflexus or 

Chenopodium album in wheat and maize fields by leveraging 

spectral contrast in the 700-900 nm range (Gerhards et al. 2022) 

[23]. However, despite their superior accuracy, multispectral and 

hyperspectral systems have limitations. They generate large data 

volumes, demanding high computational power and storage for 

real-time analysis. Moreover, sensor calibration, atmospheric 

correction, and cost considerations remain significant barriers to 

their widespread field application. Nevertheless, the declining 

cost of sensors and the advent of cloud-based data processing 

platforms have made these technologies increasingly feasible for 

commercial PWM. When deployed on UAVs or autonomous 

robots, hyperspectral systems allow for high-throughput weed 

mapping over large areas with centimeter-level accuracy 

(Gomes et al. 2024) [25]. Combined with artificial intelligence 

algorithms, these sensors provide an indispensable component 

for precise, automated, and sustainable weed detection 

frameworks. 

 

3.3. LiDAR, Thermal, and Multi-Sensor Fusion 

LiDAR (Light Detection and Ranging) systems use laser pulses 
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to measure distances and generate three-dimensional point 

clouds of the crop canopy and ground surface. This structural 

data enables the characterization of plant height, canopy 

geometry, and leaf orientation—attributes useful for 

distinguishing weeds growing beneath or between crop rows 

(Gerhards et al. 2022) [23]. For example, LiDAR can identify 

low-lying weed clusters under cereal canopies that are otherwise 

obscured in optical imagery. The integration of LiDAR with 

RGB data also enhances the ability to detect weeds in shaded or 

occluded areas by adding a depth dimension to traditional 

imaging. Thermal sensors, on the other hand, detect infrared 

radiation emitted by plants to measure canopy temperature 

differences. Since weeds often exhibit different transpiration 

rates and stomatal conductance compared to crops, thermal 

imagery can highlight these variations as temperature anomalies 

(Allmendinger et al. 2022) [1]. Such thermal contrast is especially 

useful for identifying water-stressed weeds or distinguishing 

them from crops with different evapotranspiration dynamics. 

Recent advancements have emphasized multi-sensor fusion, 

integrating RGB, multispectral, hyperspectral, LiDAR, and 

thermal data to improve detection reliability and accuracy 

(Seiche et al. 2023) [56]. This approach leverages the 

complementary strengths of different sensors spectral, structural, 

and thermal to overcome individual limitations. For instance, 

while RGB offers spatial resolution, hyperspectral sensors 

provide spectral sensitivity, and LiDAR adds 3D context. 

Together, these create a comprehensive dataset for robust weed 

classification. 

 

Multi-sensor fusion models often employ data-level, feature-

level, or decision-level fusion strategies. Data-level fusion 

combines raw data streams before processing, while feature-

level fusion merges extracted features from multiple sensors. 

Decision-level fusion combines outputs from independent 

classifiers to enhance overall confidence in weed detection. This 

layered approach reduces false positives and improves 

classification accuracy under diverse environmental conditions. 

Although multi-sensor systems involve higher costs, energy 

consumption, and complex calibration, they represent the 

frontier of precision weed detection. Future research focuses on 

miniaturizing sensors, improving synchronization between data 

streams, and developing on-board fusion algorithms capable of 

real-time decision-making for autonomous field operations. 

 

4. Algorithmic Approaches: From Rule-Based to Deep 

Learning 

The evolution of algorithmic approaches in Precision Weed 

Management (PWM) has been transformative, progressing from 

simplistic image thresholding to sophisticated deep learning 

systems capable of autonomous decision-making. The central 

challenge in weed detection lies not only in differentiating 

weeds from crops but also in handling the enormous variability 

introduced by field heterogeneity, lighting conditions, weed 

species diversity, growth stages, soil textures, and canopy 

structures. Each stage of algorithmic evolution rule-based, 

classical machine learning, and deep learning has contributed 

unique advantages and limitations toward achieving accurate, 

real-time weed identification and control (Allmendinger et al. 

2022) [1]. 

 

4.1. Rule-Based Image Processing 

Early PWM systems were primarily based on heuristic or rule-

based image processing, relying on manually defined thresholds 

and handcrafted features to differentiate vegetation from soil or 

crop plants (Liu et al. 2021) [36]. These methods typically utilized 

color-space transformations such as RGB to HSV or CIELab to 

improve vegetation-background contrast. Indices like the Excess 

Green Index (ExG), Normalized Difference Vegetation Index 

(NDVI), or Green-Red Vegetation Index (GRVI) were 

employed to isolate vegetation pixels from non-vegetative 

regions. Texture-based segmentation techniques, such as Gray 

Level Co-occurrence Matrix (GLCM) and Local Binary Patterns 

(LBP), were later integrated to capture surface characteristics, 

helping to differentiate weed leaves from crop foliage based on 

edge, smoothness, or repetitive pattern features. Similarly, 

morphological operations (erosion, dilation, opening, and 

closing) were applied to refine segmentation results and remove 

noise. Although computationally lightweight and easy to 

implement, these systems were highly sensitive to 

environmental variability. Variations in illumination intensity, 

soil colour, moisture, and shadowing often led to inconsistent 

results. In “green-on-green” conditions where crops and weeds 

exhibit similar colour and texture, their accuracy declined 

sharply. Consequently, rule-based algorithms were primarily 

confined to controlled experimental setups or early-stage weed 

detection under uniform backgrounds. Despite their limitations, 

these early systems laid the groundwork for subsequent 

automation by defining basic image-processing pipelines still 

used as pre-processing steps in modern frameworks (Thorp & 

Tian, 2004) [63]. 

 

4.2. Emergence of Classical Machine Learning 

The introduction of supervised machine learning (ML) 

approaches marked the second phase of algorithmic 

advancement in PWM. Instead of manually coding rules, ML 

algorithms could learn relationships between input features and 

class labels (crop vs. weed) from annotated datasets (Wu et al. 

2021) [66]. Common algorithms included Support Vector 

Machines (SVM), k-Nearest Neighbours (k-NN), Decision 

Trees, and Random Forests. In these systems, vegetation 

features were extracted manually from colour indices, shape 

descriptors, or texture matrices and used to train classifiers. For 

example, Random Forests leveraged ensembles of decision trees 

to improve generalization and robustness against noise, while 

SVMs optimized decision boundaries for high-dimensional 

feature spaces (Osten & Cook, 2016) [45]. These techniques 

achieved higher accuracy than heuristic methods and handled 

moderate variability in field conditions. Moreover, Principal 

Component Analysis (PCA) and Linear Discriminant Analysis 

(LDA) were often applied for dimensionality reduction, 

minimizing computational load while retaining discriminatory 

information. ML-based classifiers could also be trained to 

identify specific weed species (e.g., Amaranthus, Chenopodium, 

Convolvulus) based on geometric and spectral characteristics. 

However, a major limitation of classical ML was the reliance on 

manually engineered features (Thorp & Tian, 2004) [63]. The 

performance of these models was strongly dependent on the 

quality of feature selection, which required expert domain 

knowledge. In dynamic field environments, features designed 

for one crop or location often failed when transferred to new 

regions or lighting conditions. Hence, these methods lacked 

scalability for diverse, real-world agricultural systems. 

 

4.3. Transition to Deep Learning Frameworks 

The advent of deep learning (DL) revolutionized weed detection 

by enabling automatic feature extraction from raw images, 

eliminating the need for handcrafted descriptors (Wu et al. 

2021) [66]. Deep learning models, particularly Convolutional 
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Neural Networks (CNNs), learn hierarchical representations 

from low-level pixel features (edges, colours) to high-level 

semantic features (leaf patterns, plant morphology). This 

capacity allows CNNs to distinguish between visually similar 

crop and weed species with unprecedented accuracy. Modern 

PWM applications commonly employ CNN architectures such 

as VGGNet, ResNet, Inception, and MobileNet, tailored for field 

images captured under variable conditions. In addition, object 

detection frameworks like YOLO (You Only Look Once) and 

Faster R-CNN (Region-Based Convolutional Neural Network) 

enable real-time identification and localization of individual 

weeds within complex scenes (Zhang et al. 2022) [70]. These 

networks generate bounding boxes around detected weeds, 

allowing variable-rate sprayers or robotic actuators to target 

specific locations with millimeter-level precision. Furthermore, 

semantic segmentation models such as U-Net, SegNet, and 

DeepLab have been employed to perform pixel-level 

classification of crop versus weed, providing spatially detailed 

maps that guide selective spraying. Such models achieve 

segmentation accuracies exceeding 90% in controlled trials, 

greatly outperforming traditional machine learning systems 

(Osten & Cook, 2016) [45]. Deep learning has also fostered 

transfer learning, where pre-trained models (on datasets like 

ImageNet or PlantVillage) are fine-tuned using smaller 

agricultural datasets, significantly reducing data requirements. 

Additionally, data augmentation techniques such as rotation, 

flipping, and lighting adjustment help simulate diverse field 

conditions, improving model robustness (Gomes et al. 2024) [25]. 

However, several challenges remain. Deep learning models are 

data-hungry, requiring large, well-annotated datasets that are 

often unavailable in agriculture. Moreover, their generalization 

ability is limited: models trained on one crop or geographic 

region frequently perform poorly when transferred to new 

settings with different weed flora, soil backgrounds, or 

illumination (Slaven et al. 2023) [60]. Computational constraints 

further restrict the deployment of high-complexity models on 

embedded devices or edge computing platforms typically 

mounted on field machinery. Despite these limitations, deep 

learning represents the current frontier of PWM research, 

enabling automated, real-time, and adaptive weed detection at 

high precision and scalability (De Melo et. al., 2024) [16]. 

Integration with cloud computing, Internet of Things (IoT) 

devices, and edge-based AI processors is gradually transforming 

weed management into a data-driven, fully autonomous 

agricultural process. 

 

4.4. Hybrid and Next-Generation Algorithmic Trends 

Building upon deep learning’s success, the latest research is 

exploring hybrid architectures that combine multiple algorithms 

to improve performance and adaptability. For instance, 

integrating CNNs with Random Forest classifiers or deep 

features with SVMs has been shown to enhance accuracy under 

limited data availability. Attention mechanisms and Vision 

Transformers (ViTs), inspired by natural language processing, 

are emerging as powerful alternatives capable of capturing long-

range dependencies in weed crop images, thus improving 

performance in complex canopy structures (Zhang et al. 2022) 

[70]. Additionally, unsupervised and semi-supervised learning 

methods are being investigated to overcome the scarcity of 

labelled datasets by learning feature representations from 

unlabelled images. Few-shot learning and meta-learning further 

aim to enable model training with minimal data, a crucial 

development for region-specific weeds or new crop varieties 

(Murad et al. 2023) [42]. 

Edge-AI integration is another significant trend, allowing 

lightweight CNN architectures (e.g., MobileNet, EfficientNet) to 

be deployed on compact embedded devices mounted on drones, 

tractors, or robotic weeders. This decentralizes computation, 

enabling real-time weed recognition and control without reliance 

on cloud connectivity. Ultimately, as algorithmic capabilities 

mature, the integration of deep learning with decision-support 

systems, sensor fusion, and real-time actuation will define the 

next era of precision weed management. These algorithmic 

advances will allow not only detection and classification but also 

adaptive decision-making such as determining the optimal 

control method or herbicide dosage based on weed species, 

density, and crop growth stage (Rabade et al. 2025) [50]. 

 

5. Actuators and Control Mechanisms 

Actuators represent the execution arm of Precision Weed 

Management (PWM) systems, translating digital detection and 

mapping information into targeted physical actions on the field. 

These mechanisms apply localized weed-control interventions 

chemical, mechanical, thermal, or optical based on sensor 

feedback and decision algorithms. Their primary objective is to 

reduce overall herbicide use, minimize off-target impacts, and 

optimize operational efficiency. In modern precision agriculture, 

actuators are integrated with advanced control systems that 

enable real-time responsiveness, spatial accuracy, and 

automation, transforming traditional weed control into an 

intelligent, site-specific management process. The evolution of 

actuation systems has progressed from simple nozzle control 

units to sophisticated autonomous sprayers and robotic platforms 

capable of selective herbicide application, mechanical uprooting, 

or even laser ablation. Each actuation strategy comes with 

specific advantages, constraints, and suitability for different 

cropping systems and farm scales (Islam et al. 2024) [32]. 

 

5.1. Spot and Patch Sprayers 

Spot and patch sprayers are the most widely adopted actuation 

mechanisms in PWM due to their compatibility with existing 

farm equipment and their proven ability to reduce herbicide 

usage. These systems function based on selective activation of 

spray nozzles, which deliver herbicide only when a weed is 

detected by onboard sensors or when the sprayer passes over 

pre-mapped infested zones (Patel et al. 2022) [46]. Spot sprayers 

operate in real time, often using optical sensors (such as RGB or 

multispectral cameras) and computer vision algorithms to detect 

weeds during operation. Once a weed is identified, individual 

solenoid valves or pulse-width modulation (PWM) systems 

trigger microbursts of herbicide directly onto the target plant. In 

contrast, patch sprayers rely on weed maps generated from prior 

field surveys typically via UAV or tractor-mounted sensors and 

adjust the spray rate spatially according to weed density and 

distribution. Field trials conducted by Allmendinger et al. (2022) 

[1] demonstrated herbicide savings between 23-89% in cereal and 

sugar beet systems without any negative impact on crop yield. 

These results highlight the potential of selective application to 

maintain productivity while achieving significant cost and 

chemical reductions. Similar outcomes were observed in 

Montana State University Northern Agricultural Research 

Center (2025) [40] experiments, where up to 90% reduction in 

herbicide use was recorded under favourable field conditions. 

Such systems also contribute to environmental sustainability, as 

they minimize chemical runoff, reduce the exposure of non-

target organisms, and lower greenhouse gas emissions 

associated with chemical manufacturing and application. 

Furthermore, precision spraying technologies mitigate herbicide 
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resistance by reducing continuous selection pressure on weed 

populations, thereby preserving herbicide efficacy for longer 

periods. Technologically, most modern selective sprayers 

employ high-speed optical sensors and control valves capable of 

responding within milliseconds. Manufacturers such as John 

Deere® (“See & Spray”) and WEED-IT® have integrated real-

time detection systems that allow sprayer speeds up to 25 km/h 

with sub-meter accuracy. However, these systems require 

frequent calibration, consistent lighting conditions, and precise 

boom height control to maintain detection accuracy. 

Additionally, economic feasibility remains a challenge for 

smallholder farmers due to the initial investment and 

maintenance costs (Sarma et al. 2024) [55]. Nonetheless, 

continuous improvements in sensor affordability, embedded 

computing, and AI algorithms are making these systems 

increasingly accessible. 

 

5.2. Mechanical and Electromechanical Weeders 

Mechanical weeders represent one of the oldest yet most 

sustainable methods of weed management, now revitalized 

through automation and robotics. These devices physically 

disrupt or uproot weeds using rotary blades, tines, hoes, or finger 

weeders, offering an entirely chemical-free solution that is 

particularly suitable for organic and low-input farming systems 

(Szulc et al. 2023) [62]. Mechanical weeders can be classified into 

intra-row and inter-row systems. Inter-row weeders, such as 

rotary hoes or spring tines, operate between crop rows, whereas 

intra-row systems such as finger weeders work closer to the 

crop, requiring precise navigation to prevent crop injury. With 

advancements in sensing and robotics, modern mechanical 

systems now incorporate machine vision and GPS guidance, 

allowing centimeter-level positioning to maintain safety margins 

between crop plants and weeding tools. Recent innovations in 

electromechanical weeders combine physical disturbance with 

electrical or vibrational mechanisms for more effective root 

destruction. Robotic weeders equipped with vision-guided 

manipulators can selectively remove individual weeds by 

mechanical grippers or micro-cultivators (Sarma et al. 2024) [55]. 

These systems are being successfully deployed in horticultural 

crops, vineyards, and vegetable production, where selective 

weeding is critical for maintaining soil structure and crop 

spacing. 

The advantages of mechanical and electromechanical weeding 

systems are manifold, as they fundamentally eliminate 

dependency on herbicides, making them an ideal cornerstone for 

organic certification and residue-free crop production, while 

simultaneously addressing the growing threat of herbicide-

resistant weeds by preventing their evolution through diverse 

control mechanisms. Furthermore, the physical action of these 

systems, often involving shallow cultivation, provides the 

secondary benefits of enhancing soil aeration and stimulating 

beneficial microbial activity, thereby contributing to improved 

overall soil health and structure (Zawada et al. 2023) [69]. 

However, these systems also have operational constraints, 

including slower field throughput, higher energy consumption, 

and potential crop injury if guidance precision is inadequate. 

The need for flat terrain, stable soil moisture conditions, and 

regular maintenance further limits their adoption in certain 

cropping systems. Moreover, the initial investment in 

autonomous robotic weeders remains substantial, which may 

restrict their use to high-value or specialty crops. Nonetheless, 

the continuous development of lightweight electric actuators, 

compact drive systems, and AI-enabled navigation is steadily 

overcoming these barriers, moving toward practical and scalable 

deployment. 

 

5.3. Thermal, Electrical, and Laser Methods 

In recent years, non-chemical physical weed control 

technologies have gained significant attention as sustainable 

alternatives to herbicides. These include thermal, electrical, and 

laser-based methods, all designed to destroy weeds by targeting 

their physiological structures without affecting surrounding 

crops or soil health. Thermal weeding involves applying heat 

energy through direct flame, hot water, steam, or infrared 

radiation to denature proteins and disrupt cell membranes in 

weed tissues. The thermal shock leads to rapid desiccation and 

plant death. Flame weeding, in particular, has shown promise in 

pre-emergence and inter-row applications in crops like maize 

and soybean, especially for organic systems. However, thermal 

methods may require multiple passes to achieve long-lasting 

control, and their fuel consumption can be relatively high. 

Electrical weeding employs high-voltage current delivered 

through electrodes to the plant stem, causing cellular disruption 

and root-system damage via resistance heating (Yaseen et al. 

2024) [67]. 

This technique is particularly effective for perennial weeds with 

deep root systems that may survive mechanical disturbance. 

Electromechanical systems also integrate safety features to 

prevent accidental discharge and optimize current distribution, 

thereby improving selectivity and efficiency. Among these, 

laser-based precision weeding represents one of the most 

cutting-edge technologies. Brash et al. (2022) [9] demonstrated 

that a laser-guided variable-rate system used in orchard 

environments achieved a 58% reduction in pesticide volume 

while maintaining full control efficacy. Lasers enable pinpoint 

targeting of weeds, delivering concentrated energy pulses that 

rupture plant cells without disturbing nearby soil or crops. The 

system operates autonomously, using computer vision and AI 

algorithms to identify weed morphology and guide beam 

placement. Furthermore, AI-driven spot spraying technologies 

an emerging hybrid of sensor-based detection and robotic 

control have demonstrated remarkable potential for reducing 

environmental footprints and chemical dependency (Sarma et al. 

2024) [55]. Such systems integrate deep-learning-based weed 

detection with high-precision actuation, ensuring that each 

droplet or energy pulse is applied exclusively to weed tissue. 

Despite their promise, these technologies face challenges related 

to capital investment, energy consumption, and operational 

safety. For instance, laser and electrical weeders require robust 

energy sources and advanced cooling systems, which may 

increase operational costs. Safety mechanisms must also be 

integrated to prevent accidental exposure to laser radiation or 

electrical discharge. Moreover, field conditions such as rain, 

dense canopy cover, or reflective surfaces can interfere with 

beam accuracy or energy delivery. Nevertheless, continued 

research in power efficiency, optical control, and automation is 

rapidly improving the feasibility of these advanced systems. The 

integration of renewable energy sources (such as solar-charged 

batteries), precision targeting algorithms, and autonomous 

navigation systems is expected to make thermal, electrical, and 

laser methods a key component of next-generation, eco-friendly 

weed management strategies (Slaven et al. 2023) [60]. 

 

6. Robotic and Aerial Platforms 

The integration of robotic and aerial platforms marks a 

transformative phase in Precision Weed Management (PWM), 

where detection, decision-making, and actuation are increasingly 

automated. These platforms combine sensing, computation, and 
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mechanical execution to perform precise, site-specific 

interventions with minimal human involvement. By functioning 

autonomously or semi-autonomously, they address critical 

agricultural challenges such as labour shortages, time 

constraints, and the need for ultra-targeted weed control. 

Robotic and UAV-based systems represent the embodiment of 

digital agriculture, uniting artificial intelligence, robotics, and 

remote sensing into cohesive field operations that are both data-

driven and environmentally sustainable. While ground robots 

provide high spatial resolution and targeted intervention at the 

plant level, Unmanned Aerial Vehicles (UAVs) offer unmatched 

speed and spatial coverage for weed mapping and surveillance 

over large areas (Shahi et al. 2023) [57]. Both systems contribute 

uniquely to precision farming ecosystems, complementing each 

other within integrated weed management frameworks. 

 

6.1. Ground Robots 

Autonomous ground robots represent the cutting edge of site-

specific, plant-scale weed control. These systems combine 

multiple modules sensor arrays, navigation units, perception 

algorithms, and actuatorsto identify, localize, and remove weeds 

autonomously in the field (Gerhards et al. 2022) [23]. Equipped 

with advanced vision systems (RGB, multispectral, LiDAR) and 

deep-learning models, they can distinguish crop plants from 

weeds in real time and initiate targeted interventions through 

mechanical, chemical, or optical actuators. Ground robots 

function through a closed-loop control system, wherein sensors 

continuously capture environmental data, onboard processors 

interpret weed presence and location, and actuators execute the 

appropriate control response spraying, uprooting, or laser 

ablation. Navigation is typically achieved using Real-Time 

Kinematic Global Navigation Satellite Systems (RTK-GNSS) 

for centimeter-level accuracy, often complemented by LiDAR 

and stereo vision to ensure obstacle avoidance and safe 

manoeuvring (Zhang et al. 2022) [70]. 

 

Several commercial and prototype robotic systems exemplify 

these technologies: 

• Ecorobotix ARA (Switzerland) uses AI-based cameras to 

detect individual weeds and apply micro-doses of herbicide, 

achieving up to 95% reduction in chemical usage. 

• FarmDroid FD20 (Denmark) employs GNSS-based 

guidance for fully autonomous weeding and seeding, 

eliminating the need for herbicides in row crops. 

• Naïo Oz and Dino (France) are electric field robots that 

perform mechanical inter-row weeding using sensor-guided 

tools. 

• Blue River “See & Spray” (now owned by John Deere) 

combines deep-learning-driven vision systems with 

precision sprayers to apply herbicide exclusively on 

detected weeds at full field speed. 

 

Field trials have reported herbicide reductions exceeding 50% 

without compromising weed control efficacy (Gerhards et al. 

2022) [23]. These robotic systems not only lower input costs but 

also improve soil health and operator safety by minimizing 

exposure to agrochemicals. Furthermore, their ability to operate 

continuously day or night, under controlled navigation makes 

them highly efficient in large-scale or time-sensitive operations. 

However, several challenges hinder commercial scalability. 

Operational speed is typically lower than that of conventional 

tractor-based sprayers, limiting daily coverage. Field robots 

often struggle under adverse conditions such as mud, dense 

residue, or uneven terrain. Reliability in perception systems can 

be compromised by varying light conditions, crop density, and 

weed morphology (Upadhyay et al. 2024) [65]. Economic 

feasibility remains a barrier, as the initial cost, maintenance, and 

technical expertise required for operation can be prohibitive, 

especially for smallholder farmers. 

In addition, energy consumption and battery life are limiting 

factors. While many robots are electric and eco-friendly, their 

runtime per charge often restricts field-scale operations. Despite 

these limitations, ongoing advances in AI, lightweight materials, 

power management, and modular robotics continue to improve 

their efficiency and cost-effectiveness. Looking forward, the 

integration of swarm robotics multiple robots coordinating tasks 

via wireless communication and machine-to-machine (M2M) 

connectivity will enable greater scalability and adaptability. 

Ground robots are poised to become integral to fully automated 

farms, where detection, decision, and action occur seamlessly 

without human intervention. 

 

6.2. Unmanned Aerial Vehicles (UAVs): Unmanned Aerial 

Vehicles (UAVs), or drones, have revolutionized remote sensing 

and monitoring in precision agriculture, playing dual roles in 

PWM: (i) mapping and surveillance of weed infestations, and 

(ii) targeted aerial spraying for localized weed control (De Melo 

et al. 2024) [16]. Their versatility, agility, and scalability make 

them indispensable tools for real-time data acquisition and 

spatial decision-making in large and complex agricultural 

landscapes. 

• Weed Mapping and Prescription Generation: The most 

widespread application of UAVs in PWM is high-resolution 

weed mapping. Equipped with RGB, multispectral, 

hyperspectral, or thermal sensors, drones capture imagery 

across large fields at centimeter-level spatial resolution. 

Using machine learning or deep learning models, weeds are 

automatically classified and mapped to generate 

prescription maps that guide ground-based variable-rate 

sprayers or robotic weeders (Islam et al. 2024) [32]. UAVs 

enable repeated data acquisition over time, allowing for 

temporal analysis of weed emergence, growth dynamics, 

and spread patterns. This temporal monitoring is essential 

for early intervention and adaptive weed management 

strategies. Studies have demonstrated that UAV-based 

mapping improves input efficiency by identifying precise 

weed hotspots, thereby reducing herbicide application areas 

by up to 70%, compared to uniform treatments (Shahi et al. 

2023) [57]. 

• Targeted Aerial Spraying: Although UAVs are 

increasingly capable of direct spraying, most current 

systems are designed for small-scale, targeted applications 

rather than large-area blanket coverage. Multi-rotor UAVs 

equipped with precision nozzles and real-time feedback 

systems can apply herbicide microdroplets on specific weed 

patches or late-season escapes with high precision. 

Advanced drones use AI-assisted flight control and GPS 

waypoint navigation to ensure accurate spray positioning. 

However, payload capacity and flight duration remain 

significant constraints. Typical agricultural drones carry 

between 10-30 litres of liquid and can cover only 5-15 

hectares per flight, depending on topography and spray 

density. In addition, strict aviation regulations governing 

UAV operations especially concerning altitude limits, 

chemical payloads, and operator licensing limit their 

widespread commercial adoption in many countries 

(Esposito et al. 2021) [18]. Nevertheless, UAVs are 

invaluable for rapid, large-scale reconnaissance and 
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integration with ground-based PWM systems. Data 

collected from drones can be seamlessly transferred to farm 

management software for creating variable-rate application 

maps, facilitating hybrid systems where UAVs handle 

detection and mapping while ground robots or tractor-

mounted sprayers perform precise actuation. 

• Technological Advancements and Future Prospects: 

Recent innovations are addressing traditional UAV 

limitations. Hybrid drones equipped with both fixed-wing 

and rotary capabilities now offer longer endurance and 

larger payloads. Emerging battery technologies and 

lightweight carbon-fibre frames are extending flight 

durations, while AI-driven flight planning algorithms are 

enhancing operational efficiency. Integration with cloud-

based platforms allows real-time image analysis and 

automated prescription generation. The development of 

UAVrobot collaboration frameworks represents a key future 

direction. In such systems, UAVs perform scouting and 

generate weed distribution maps, which are transmitted to 

ground robots that execute localized mechanical or chemical 

interventions. This aerial-ground synergy optimizes both 

scale and precision UAVs provide macro-level monitoring, 

and robots handle micro-level interventions. Despite these 

advances, UAV adoption remains uneven due to regulatory 

restrictions, cost barriers, and technical complexity. 

However, as technologies mature and costs decline, drones 

are expected to become standard tools in integrated 

precision weed management systems, particularly for large 

farms, difficult terrains, and areas requiring minimal soil 

disturbance (Upadhyay et al. 2024 [65]; Shahi et al. 2023) [57]. 

 

7. Localization, Mapping, and Decision Support 

Localization, mapping, and decision-support systems form the 

core intelligence layer of Precision Weed Management (PWM), 

transforming raw sensor data into actionable, spatially 

referenced prescriptions for field implementation. This process 

begins with high-accuracy localization, where technologies such 

as Real-Time Kinematic (RTK) GNSS provide centimetre-level 

precision to pinpoint individual weeds, a vast improvement over 

older metre-level system (Lahre & Satpathy 2024) [34]. Positional 

data are further enhanced through sensor-fusion, combining 

GNSS with Inertial Measurement Units (IMUs) and vision 

systems for reliable operation in challenging environments, 

while Simultaneous Localization and Mapping (SLAM) 

algorithms enable autonomous robots to navigate and operate in 

complex, unstructured fields (Shamshiri et al. 2024) [58]. Once 

localized, weed detections are integrated into comprehensive 

maps that visualise the distribution, density and dynamics of 

infestations, forming the basis for prescription files (Bohra et al. 

2025) [7]. 

These maps, often formatted as shapefiles or ISO-XML, guide 

Variable-Rate Technology (VRT) on sprayers and other 

equipment to automatically apply herbicides or mechanical 

interventions only where needed based on economic thresholds 

and weed-pressure thereby minimising inputs and promoting 

sustainability (Sishodia et al. 2020) [58]. Standardised protocols 

(e.g., ISOBUS) facilitate interoperability across machinery from 

different manufacturers, and cloud-based platforms aggregate 

data from multiple sources for unified analysis. Furthermore, 

this information flow feeds into advanced Decision-Support 

Systems (DSS) that integrate spatial, temporal, and biological 

data (weed species, resistance profiles, real-time weather) to 

simulate scenarios, recommend cost-effective agronomic 

strategies, and even predict future weed-outbreaks using AI-

driven analytics (Gao et al. 2025) [21]. Ultimately, the future of 

PWM hinges on full integration of these components into user-

friendly, affordable systems that seamlessly connect data-driven 

insights with automated field actions though challenges in data 

governance, standardisation and cybersecurity must be 

addressed to realise its full potential. 

 

8. Evidence of Efficacy, Herbicide Savings, and 

Environmental Benefits 

The effectiveness of Precision Weed Management (PWM) 

systems has been extensively demonstrated through numerous 

empirical studies under a wide range of cropping conditions. 

The primary objective of PWM—to sustain or enhance weed-

control efficiency while substantially reducing herbicide 

inputs—has been validated through multiple field-based 

experiments worldwide. For instance, Allmendinger et al. 

(2022) [1] reported herbicide savings ranging from 23% to 89% 

across cereal, maize, and sugar-beet cropping systems using 

selective-spraying technologies, with no statistically significant 

reduction in yield. These findings emphasize PWM’s potential 

to maintain effective weed suppression even when chemical 

inputs are reduced by more than half. Such savings are achieved 

through the accurate detection of weed patches and site-specific 

herbicide delivery, ensuring that only infested zones are treated 

rather than entire fields. Further corroborating these findings, 

Timmermann et al., (2022) [64] demonstrated herbicide 

reductions of 20-60% in fallow systems compared to uniform 

broadcast applications. Their work highlighted that precision 

spot-spraying maintained comparable weed control while 

significantly lowering total chemical usage. Similarly, 

Darbyshire et al. (2023) [15] found that camera-guided spot-

spraying systems could effectively treat up to 93% of weeds 

while spraying only 30% of the field area, underscoring the 

spatial precision and efficiency of modern PWM tools. 

Large-scale demonstration projects, such as the GrowIWM 

Initiative (2025) [26], have reported average herbicide savings of 

76%, with reductions ranging between 43.9% and 90.6% across 

over 400 acres of farmland using precision spray technologies. 

These systems maintained or improved weed-control efficacy 

relative to conventional broadcast spraying, validating PWM’s 

potential to deliver environmental and economic benefits at a 

commercial scale. Furthermore, Azghadi et al., (2024) [3] 

demonstrated in sugarcane systems that robotic spot-spraying 

achieved up to 65% reduction in herbicide use, while 

maintaining nearly 97% of the weed-control efficacy of 

conventional broadcast methods and simultaneously reducing 

herbicide loads in runoff by 54%, thereby mitigating 

downstream pollution risks. Complementing these observations, 

Bohra et al. (2025) [7] reviewed advances in site-specific weed 

management and found consistent herbicide savings of around 

50%, depending on the heterogeneity of weed infestations and 

crop type. Collectively, these results confirm that PWM not only 

achieves substantial input savings but also maintains yield 

stability, protects the environment, and enhances farm 

profitability. 

 

8.1. Weed-Control Efficacy and Yield Stability: One of the 

chief apprehensions regarding PWM adoption is whether 

reduced herbicide use compromises weed control or yield. 

However, multiple studies affirm that PWM sustains or even 

improves weed suppression compared to conventional broadcast 

applications. High-resolution imaging and precise nozzle control 

enable site-specific targeting, ensuring optimal herbicide 

distribution while avoiding over-application in weed-free areas. 
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Studies by Allmendinger et al., (2022) [1] and Darbyshire et al., 

(2023) [15] confirmed that PWM-treated crops exhibited no 

measurable yield loss, and in some instances, enhanced crop 

vigour due to reduced phytotoxic stress on non-target plants. 

Moreover, the integration of PWM with real-time weed 

detection facilitates adaptive spraying, allowing operators to 

address weed emergence dynamically throughout the growing 

season, thereby maintaining long-term weed suppression and 

yield stability. 

 

8.2. Herbicide Savings and Cost Efficiency: Herbicide-use 

efficiency represents one of the most tangible advantages of 

PWM. Savings are realized by avoiding redundant spraying in 

weed-free zones, which often account for 40-70% of cultivated 

area. By deploying machine-vision algorithms and variable-rate 

spraying, PWM ensures precision droplet delivery, minimizing 

both volume and drift. The 23-89% savings reported by 

Allmendinger et al., (2022) [1], 20-60% by Timmermann et al., 

(2022) [64], and up to 76% by GrowIWM (2025) [26] demonstrate 

substantial input reductions with no yield penalty. These savings 

translate into direct financial gains, reducing expenditure on 

herbicides, labour, and equipment wear while boosting 

operational efficiency. 

 

8.3. Environmental Benefits and Sustainability Outcomes: 

PWM’s environmental contributions are profound. Traditional 

broadcast spraying contributes to soil and water contamination, 

biodiversity loss, and non-target toxicity. PWM mitigates these 

impacts through spatially targeted applications, thereby reducing 

chemical runoff and drift. Azghadi et al., (2024) [3] reported that 

robotic PWM systems significantly lowered herbicide residues 

in water bodies, aligning with ecological sustainability 

objectives. Additionally, PWM reduces selection pressure for 

herbicide-resistant weed biotypes a growing concern under 

intensive herbicide use (Rao, 2021) [52]. By minimizing total 

chemical exposure and promoting judicious herbicide 

deployment, PWM extends herbicide efficacy lifespan while 

simultaneously reducing greenhouse gas emissions linked to 

chemical production and transport. Thus, PWM aligns 

seamlessly with the principles of climate-smart agriculture and 

sustainable intensification. 

 

8.4. Broader Implications for Integrated Weed 

Management: The demonstrated success of PWM extends 

beyond chemical efficiency it forms the technological backbone 

of Integrated Weed Management (IWM) frameworks. By 

combining precision-based chemical control with cultural, 

mechanical, and biological weed-suppression practices, farmers 

can achieve comprehensive, long-term management of weed 

populations. Data derived from PWM sensors and weed maps 

can guide crop rotations, cover-cropping, and mechanical 

weeding interventions (Bohra et al. 2025) [7]. These synergies 

make weed management proactive and site-specific rather than 

reactive and uniform, enhancing both sustainability and 

resilience. Ultimately, the widespread adoption of PWM 

technologies can revolutionize weed management, fostering an 

era of resource-efficient, environmentally conscious, and 

economically viable agriculture. 

 

9. Challenges and Future Prospects in Precision Weed 

Management 

The advancement of Precision Weed Management (PWM) 

technologies is accelerating rapidly, yet their widespread 

adoption continues to face a series of technical and 

infrastructural barriers that limit scalability and operational 

reliability. Despite the maturity of individual components such 

as sensors, cameras, GNSS modules, machine‐learning 

algorithms, and actuators integrating them into a single, 

cohesive, and field‐hardy system remains a formidable 

engineering challenge. Sensor limitations are a persistent issue, 

as performance is highly sensitive to environmental factors such 

as illumination variability, dust accumulation, humidity, and 

canopy density. Even state‐of‐the‐art RGB and multispectral 

sensors struggle in “green-on-green” conditions, where crops 

and weeds share similar spectral characteristics (Gao et al. 2025) 

[21]. Frequent calibration and protection against field hazards like 

moisture, vibration, and impact further complicate sensor 

deployment in rugged agricultural environments. In addition, 

high‐resolution imagery and multi‐sensor data streams produce 

enormous volumes of data that demand powerful onboard 

processors or reliable cloud connectivity for real‐time analysis. 

This creates a bottleneck for farms in developing regions, where 

poor internet infrastructure hinders cloud-based analytics (San et 

al. 2025) [54]. Consequently, the development of low‐latency 

edge‐computing solutions capable of autonomous, real-time 

inference without external connectivity has become a 

technological imperative. 

Algorithmic generalization also presents a significant constraint: 

deep learning models trained on specific regions or weed species 

often fail to perform consistently across diverse environments 

due to variations in soil reflectance, crop morphology, and 

illumination. This limits transferability and necessitates costly, 

region‐specific training datasets (Rai et al. 2023) [51]. 

Furthermore, hardware robustness and power autonomy 

continue to be problematic, especially for UAVs and electric 

field robots that operate under fluctuating temperatures, uneven 

terrain, and long working hours. Limited battery performance 

and degradation over time reduce operational efficiency, 

emphasising the need for lightweight, energy‐efficient designs 

and the integration of renewable power sources such as solar 

charging. Finally, the lack of system standardisation and 

interoperability among devices, software, and data formats 

remains a major technical barrier. Although frameworks like 

ISOBUS have improved communication between machinery and 

sensors, proprietary hardware ecosystems still dominate, 

hindering seamless data exchange and system scalability (Gao et 

al. 2025) [21]. 

The economic and adoption-related challenges are equally 

critical, particularly in regions dominated by smallholder and 

medium-scale farmers. High capital costs associated with 

precision sprayers, robotic weeders, and multispectral sensors 

often deter adoption, as the initial investment can exceed the 

annual income of an average farmer. While cost recovery 

through input savings is achievable over multiple growing 

seasons, the long payback period and uncertain market 

incentives make it economically unattractive without subsidies 

or cooperative models (San et al., 2025) [54]. Furthermore, the 

operation of PWM technologies requires specialised technical 

skills for calibration, troubleshooting, and software maintenance 

— skills that are still scarce in many rural areas. This lack of 

technical capacity often leads to under-utilisation, system 

downtime, and maintenance challenges (Jeevan et al. 2024) [33]. 

Scale and field geometry also constrain adoption; most existing 

PWM systems are designed for large, uniform fields 

characteristic of industrial agriculture in developed nations. 

However, in Asia and Africa, where small, irregular and 

fragmented plots are common, autonomous navigation and 

consistent weed detection become more difficult. Market 
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fragmentation further complicates diffusion: the absence of 

affordable, region-specific solutions tailored to local crops and 

weed ecotypes restricts accessibility (Szulc et al. 2023) [62]. 

Achieving economic scalability will depend on the creation of 

modular, cost-effective and customisable platforms adaptable to 

diverse agro-climatic zones and farming systems, ensuring 

equitable technological inclusion across scales. 

From an agronomic and ecological perspective, integrating 

PWM technologies into existing weed management frameworks 

remains a complex and evolving challenge. Weed populations 

are inherently dynamic, adapting to spatial and temporal 

variations influenced by seed dispersal, tillage, crop rotation, 

and environmental changes (Chauhan, 2020) [12]. As a result, 

mapping and treating weeds in one season do not guarantee 

long-term control, necessitating continuous monitoring and 

multi-year data accumulation to construct predictive weed 

population models. Although PWM significantly reduces 

herbicide usage, over-reliance on site-specific chemical control 

in the same zones can create localised selection pressure, 

inadvertently accelerating herbicide resistance evolution. 

Therefore, sustainable PWM deployment requires its integration 

with non-chemical control methods such as mechanical 

weeding, cover cropping, residue retention and crop 

diversification (Chauhan, 2020) [12]. Another agronomic 

challenge lies in minimizing crop injury during mechanical or 

robotic weeding operations. Delicate crops, narrow inter-row 

spacing, and variable planting geometry increase the risk of root 

or stem damage, especially when actuation is not synchronised 

with crop growth stages. Soil and microclimatic variability such 

as texture, moisture, or surface roughness further affect sensor 

accuracy, traction and actuation performance. Developing 

adaptive algorithms and resilient hardware systems capable of 

functioning under such heterogeneous field conditions remains a 

major scientific and engineering frontier (Hasan et al. 2021) [28]. 

Furthermore, PWM must be ecologically validated to ensure that 

reduced herbicide applications do not shift weed community 

composition toward more competitive or tolerant species, 

potentially creating new management challenges over time. 

In addition to technological and agronomic hurdles, a range of 

institutional, regulatory and policy challenges limits the 

operational and economic scalability of PWM, particularly in 

developing nations. Many agricultural policies still prioritise 

fertiliser and pesticide subsidies over digital or precision 

technology investments, leaving PWM initiatives underfunded 

and poorly incentivised (Jeevan et al. 2024) [33]. Policy 

instruments that recognise precision weed control as a form of 

climate-smart and resource-efficient agriculture could 

significantly accelerate adoption through targeted subsidies, 

innovation grants, or tax incentives. Regulatory barriers also 

persist — especially for UAV-based spraying systems which 

face stringent airspace regulations and chemical application 

restrictions in many countries (Jeevan et al. 2024) [33]. 

Compliance requirements related to licensing, operator training 

and aerial pesticide use can delay or prevent large-scale 

implementation. Data governance is another emerging concern 

as precision agriculture becomes increasingly data-intensive. 

Issues surrounding data ownership, privacy and equitable access 

must be addressed through transparent frameworks that ensure 

farmers retain control over their data while enabling fair 

collaboration among technology providers, research institutions 

and policymakers (Timmermann et al. 2022) [64]. Moreover, 

widespread adoption of PWM demands a fundamental 

transformation of extension systems, which have traditionally 

focused on conventional agronomic training. Extension 

programmes must now incorporate digital literacy, data 

interpretation, and equipment maintenance training, empowering 

farmers to manage, troubleshoot and optimise precision systems 

independently (San et al. 2025) [54]. Without such institutional 

capacity building, even the most advanced technologies risk 

remaining confined to research projects and demonstration plots, 

unable to achieve real-world impact at scale. 

 

9.1. Persistent Challenges to Widespread Adoption 

a. Technical and Algorithmic Constraints: A primary 

technical barrier lies in the robustness of sensing and 

machine-learning systems. While sensors perform well in 

controlled conditions, their accuracy can diminish in 

complex field environments due to variable lighting (e.g., 

glare, overcast conditions), leaf occlusion, and the presence 

of crop residues (Gao et al. 2025) [21]. Furthermore, the 

“data-hungry” nature of deep-learning models necessitates 

vast, meticulously labelled datasets of weed and crop 

images. This requirement is a major bottleneck, as curating 

such datasets is labour-intensive and expensive. 

Consequently, models trained on data from one geographic 

location or specific crop stage often fail to generalise 

effectively to different regions, soil types, or growth 

conditions, a phenomenon known as poor domain 

adaptation (Rai et al. 2023) [51]. 

b. System Integration and Compatibility Barriers: PWM is 

not a single technology but a complex cyber-physical 

system requiring seamless integration of detection, 

decision-making and actuation components. A significant 

challenge is the lack of standardised communication 

protocols and interoperability between hardware and 

software from different manufacturers. For instance, a 

highly accurate weed-detection algorithm may not be 

compatible with the control system of a specific robotic 

sprayer or mechanical weeders (Gao et al. 2025) [21]. This 

inconsistency leads to fragmented solutions, increases 

system complexity and hinders the development of reliable, 

plug-and-play PWM platforms that farmers can easily adopt 

and maintain. 

c. Economic Viability and Accessibility: The high capital 

investment for advanced PWM equipment including high-

resolution cameras, computing hardware, and automated 

actuation systems poses a major barrier. Beyond the initial 

cost, ongoing expenses for maintenance, software updates 

and operator training further strain budgets. This economic 

model is particularly prohibitive for smallholder farmers 

and in developing countries where agricultural systems are 

characterised by smaller field sizes and limited capital (Wu 

et al. 2021) [66]. The return on investment for these farmers 

is often unclear or too long-term, effectively limiting 

PWM’s benefits to large-scale, capital-intensive agricultural 

enterprises. 

d. Regulatory, Infrastructural, and Social Hurdles: The 

scalability of PWM is also constrained by external factors. 

The use of UAVs for scouting or spraying is heavily 

regulated, with restrictions on airspace, flight paths, and 

payloads that vary by country. Data privacy and ownership 

concerns arise from the high-resolution spatial data 

collected by these systems. Moreover, effective real-time 

operation often depends on robust internet connectivity for 

data transfer and cloud computing, which is frequently 

unavailable in rural and remote agricultural areas (San et al. 

2025) [54]. Finally, a lack of technical literacy and farmer 

scepticism towards autonomous systems can act as 
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significant social barriers to adoption (Rai et al. 2023) [51]. 

 

9.2. Forging a Path Forward: Key Research and 

Development Priorities 

a. Advancing Core Technology: Future work must prioritise 

the development of low-cost, robust and energy-efficient 

sensors that can withstand harsh agricultural environments. 

To address the data bottleneck, the creation of large, open-

access, and curated multi-species weed datasets is crucial 

for benchmarking and advancing algorithm development 

(Gao et al. 2025) [21]. 

b. Enhancing Algorithmic Intelligence: Research should 

focus on leveraging transfer learning and domain adaptation 

techniques. These methods allow models pre-trained on 

large, generic datasets to be efficiently fine-tuned with 

smaller, local datasets, drastically improving generalisation 

across diverse farming conditions without the need for 

massive new data-collection each time (Rai et al. 2023) [51]. 

c. Designing for Accessibility and Specificity: There is a 

pressing need to develop small-scale, modular and 

economically viable robotic systems tailored for 

smallholder and diversified cropping systems, such as the 

complex and intercropped landscapes prevalent in India. 

These systems must be designed with affordability, ease of 

use, and repair in mind (Chauhan, 2020) [12]. 

d. Integration into Holistic Frameworks: Ultimately, PWM 

should not be seen as a standalone solution but as a 

powerful tool within broader Integrated Weed Management 

(IWM) frameworks. Combining PWM with cultural, 

biological and mechanical control strategies can manage 

weed seed banks, prevent herbicide resistance, and ensure 

long-term agricultural sustainability (Chauhan, 2020) [12]. 

This synergistic approach will provide a more resilient and 

economically stable path forward for farmers worldwide 

(De Melo et al. 2024) [16]. 

 

Conclusion 

the evolution from conventional, blanket-application weed 

control to Precision Weed Management (PWM) represents a 

paradigm shift essential for the future of sustainable agriculture. 

The limitations of traditional methods herbicide resistance, 

environmental contamination, and soil degradation are no longer 

tenable in the face of a growing global population and escalating 

ecological pressures. PWM, powered by a sophisticated 

integration of sensing technologies, artificial intelligence, 

robotic platforms, and data-driven decision-support systems, 

offers a viable pathway forward. It demonstrates a proven 

capacity to drastically reduce herbicide usage, in some cases by 

over 90%, while maintaining crop yields and promoting soil 

health through targeted mechanical and chemical interventions. 

However, the widespread adoption of this promising paradigm is 

not without significant challenges. Technical hurdles related to 

sensor robustness and algorithmic generalization, economic 

barriers of high initial costs, and systemic issues of data 

interoperability and digital infrastructure must be overcome. The 

future of PWM hinges on a concerted, collaborative effort to 

develop more affordable, user-friendly, and adaptable systems, 

particularly for smallholder farmers. By advancing core 

technologies, fostering open-data ecosystems, and integrating 

PWM within holistic Integrated Weed Management frameworks, 

we can transition these innovations from research prototypes to 

mainstream practice. Ultimately, the successful implementation 

of PWM is not merely a technological upgrade but a critical step 

towards realizing a resilient, productive, and ecologically 

balanced agricultural system for generations to come. 
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