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Abstract

The increasing global population intensifies demand for food production, placing significant strain on
agricultural systems. This challenge is compounded by threats from climate change, water scarcity, and the
decline of arable land. Weeds exacerbate these pressures by competing with crops for natural resources,
leading to reduced yield and quality. To address this issue sustainably, a balanced integration of cultural,
mechanical, and chemical weed control methods is essential, as overreliance on intensive mechanization
and herbicides risks ecosystem harm and has led to the widespread issue of herbicide-resistant weeds.
Recent technological advancements offer a pathway toward more sustainable systems by enabling
precision weed management (PWM). This approach synergizes integrated weed management practices
with site-specific, economically viable sensing systems to enhance farm productivity, reduce input
requirements, and minimize environmental impact. Consequently, future research should focus on
developing and integrating these innovative strategies to advance sustainable agriculture.

Keywords: Precision Weed Management (PWM), herbicide resistance, site-specific sensing

Introduction

Weeds have coexisted with cultivated crops since the dawn of agriculture and remain one of the
most persistent and universal threats to food production systems. Their resilience and
adaptability make them an ever-present challenge that continues to undermine global
agricultural productivity (Buhler et al. 2000) Y1, As the global population is projected to reach
nearly nine billion by 2050, up from around seven billion at present (Young, 2014) [81 the
demand for food, fibre, and fuel will increase dramatically. Meeting this escalating demand amid
shrinking arable land, water scarcity, and the intensifying impacts of climate change is one of
humanity’s most pressing challenges. Within this context, the management of weeds—often
termed “the silent yield robbers” has become a defining factor in ensuring sustainable
agricultural production systems worldwide (Ribas, 2009) 53],

Weeds interfere with crop growth by aggressively competing for essential resources such as
water, nutrients, and sunlight, thereby causing significant yield losses. The Food and Agriculture
Organization (FAQO) estimates that global crop losses due to weeds range from 30-40%,
depending on the crop and region. Traditionally, weed management has relied heavily on two
primary approaches: mechanical (or cultural) control and chemical (herbicidal) control. While
mechanical methods such as tillage, uprooting, or hoeing can suppress weed growth, they are
labour intensive and may cause detrimental effects like soil erosion, loss of soil structure, and
reduced microbial activity. On the other hand, chemical herbicides though initially considered
revolutionary have brought severe ecological and health-related consequences, including
contamination of soil, water, and food, and the emergence of herbicide-resistant weed biotypes
(Gnanavel, 2015) 1, Excessive dependence on herbicides has disrupted ecological equilibrium
by altering weed population dynamics and promoting the selection of resistant species.
Moreover, continuous herbicide application leads to biodiversity loss and degradation of soil and
aquatic ecosystems (Mia et al. 2020) 9. For instance, Oenothera laciniata (cutleaf evening
primrose) has developed resistance to both paraquat and glyphosate (Lancaster, 2021) [51,
Although the advent of herbicide-resistant (HR) transgenic crops has provided short-term relief,
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their widespread adoption covering nearly 80% of the 190
million hectares under biotech crops by 2019 has sparked
significant debate regarding biosafety and long-term
sustainability (ISAAA, 2019; Beckie et al. 2019) B! 51 The
repercussions of conventional weed management methods,
including soil biodiversity loss, nutrient imbalance, and
pollution, have therefore intensified calls for more sustainable,
site-specific, and intelligent weed management approaches.
Precision agriculture has emerged as a transformative concept in
modern farming, utilizing information technology and geospatial
tools to manage spatial and temporal variability within fields. It
enables the application of precise inputs such as water,
fertilizers, and herbicides at the right place, time, and quantity,
optimizing both productivity and environmental sustainability
(Bongiovanni et al. 2004) 8. Often referred to as satellite or site-
specific crop management (SSCM), precision agriculture
integrates Global Navigation Satellite Systems (GNSS), sensors,
robotics, high-resolution remote sensing, and data analytics to
monitor crop and soil conditions in real time. These technologies
enable the collection and analysis of field-level data on soil
fertility, moisture, weed distribution, and microclimate
variations (Christensen et al. 2009; Brown & Noble, 2005) (3191,
In recent decades, precision farming has evolved from a
theoretical framework to a data-driven reality, thanks to
advances in automation, artificial intelligence (Al), and machine
learning (Monteiro and Santos, 2022; Balafoutis et al. 2020)
4, The broader paradigm, often referred to as Agriculture 4.0,
represents the integration of Information and Communication
Technologies (ICT), the Internet of Things (loT), and robotics
into traditional agricultural systems (Nukala et al. 2016) [,
These innovations enable farmers to monitor soil health, plant
growth, pest and weed infestations, and irrigation status with
unprecedented accuracy, thereby reducing input costs,
enhancing yields, and minimizing environmental impact (Perez-
Ruiz et al. 2014; Lowenberg-DeBoer et al. 2020) 18 371, Smart
farming technologies have also become instrumental in
promoting sustainable weed management practices by
employing data analytics and Al to selectively target weeds,
minimizing herbicide usage and preventing off-target effects
(Anonymous, 2017; Blucher, 2014) (2.8,

Agrobiodiversity also plays a crucial role in this context, as it
supports ecosystem services such as pollination, soil fertility
enhancement, and biological pest control (Anonymous, 2017;
MacLaren et al. 2020) [ 381, However, conventional weed
eradication programs and agrochemical overuse have threatened
this diversity, destabilizing agroecosystems. Sustainable weed
management, therefore, emphasizes integrated approaches that
combine ecological, cultural, mechanical, and technological
methods—collectively referred to as Integrated Weed
Management (Hartzler & Buhler, 2007) 7, The aim of IWM is
to balance effective weed suppression with minimal
environmental harm while maintaining profitability and long-
term soil health.

Despite the advantages of traditional methods, their limitations
are increasingly apparent. Continuous tillage practices degrade
soil structure, deplete organic matter, and enhance erosion,
compromising long-term soil productivity (Peera et al. 2020) 471,
Conversely, reduced tillage systems, though conserving soil
moisture and reducing erosion, may increase weed pressure and
soil compaction, thereby necessitating greater herbicide use
Hollick, 2014) B9, Similarly, non-chemical strategies such as
mulching, cover cropping, flaming, and grazing—present
practical and economic constraints. For instance, organic
mulches can introduce weed seeds or alter soil pH, while living
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mulches may compete with crops for nutrients and water
(Dabney et al. 2001; Peera et al. 2020) [** 471, Flaming, though
effective, demands high fuel consumption, and livestock grazing
can damage soil structure or spread weed seeds through feces
(Popay & Field, 1996) ™. Such limitations underscore the
urgent need for technologically advanced, precise, and
ecologically sound weed management strategies. This is where
Precision Weed Management (PWM)—a critical subset of
precision agriculture—plays a transformative role. PWM
employs sensors, cameras, robotics, and Al-based algorithms to
detect, map, and control weeds with sub-meter accuracy
(Gerhards & Oebel, 20068’ . By enabling site-specific
application of herbicides or mechanical removal, PWM reduces
chemical usage, operational costs, and environmental
contamination, while preserving soil and water health (Gerhards
etal, 2022° Rao, 2021) 12352,

Globally, the cost of weed control measures runs into billions of
dollars annually (Chauhan, 2020) [, The traditional “one-size-
fits-all” broadcast herbicide approach fails to account for the
spatial heterogeneity of weed infestations, leading to
inefficiencies and ecological damage (Rao, 2021) 2. In
contrast, PWM represents a paradigm shift towards
sustainability and precision. Through real-time sensing, data-
driven decision-making, and targeted actuation, PWM systems
ensure that weed control measures are applied only where and
when necessary, minimizing input waste and promoting
environmental stewardship (Christensen et al. 2009) [**l, Recent
advances in robotics, computer vision, and automation have
catalysed the development of site-specific weed control systems
capable of identifying weed species, mapping infestations, and
implementing targeted mechanical or chemical control measures
(Perez & Gonzalez, 2014 1“8; Osten & Cook, 2016) 31, These
intelligent technologies not only address herbicide resistance but
also enhance biodiversity conservation and soil health, aligning
weed management with the principles of circular and
regenerative agriculture (European Commission, 2019 [
European Commission, 2020) 2%, In essence, precision weed
management marks a new era in sustainable agriculture one that
harmonizes productivity, environmental protection, and
profitability. By leveraging the power of data, automation, and
artificial intelligence, PWM embodies the vision of Agriculture
4.0: a future where every drop of herbicide, every joule of
energy, and every byte of data contributes to smarter, cleaner,
and more resilient food systems.

1. Constraints of Traditional Approaches to Weed Control
Weeds represent one of the most persistent and formidable
constraints to sustainable global food production. Growing in
close association with cultivated crops, they compete vigorously
for essential growth resources such as light, water, nutrients, and
space, ultimately reducing both yield quantity and the quality of
harvested produce. In agricultural systems, weeds are estimated
to account for more than 45% of total yield losses in field crops
surpassing losses caused by plant diseases (25%) and insect
pests (20%). The extent of these losses is determined by multiple
interrelated factors, including the timing of weed emergence,
species composition, density, and the competitiveness of the
crop. In severe infestations, unchecked weed proliferation can
result in yield losses approaching 100%. Beyond direct yield
impacts, weeds serve as alternate hosts for a range of insect
pests and pathogenic organisms (fungi, bacteria, and viruses),
further exacerbating crop health issues (Oerke, 2006) [*4],

The deleterious effects of weeds are not confined to productivity
alone. They also degrade land value particularly in cases
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involving perennial or parasitic species such as Striga and
Cuscuta and disrupt efficient water management systems by
increasing evapotranspiration losses and obstructing irrigation
channels. Weed problems become particularly severe when three
conditions coincide: the presence of susceptible crops, a large
soil seed bank containing viable seeds or vegetative propagules,
and environmental conditions favourable for weed germination
and growth. While weed management efforts aim to mitigate
these negative effects, total eradication remains an unrealistic
goal due to the regenerative capacity of weed seeds and
vegetative propagules. Nevertheless, it is worth noting that
under low densities, certain weed populations may offer limited
ecological or agronomic benefits such as enhancing biodiversity,
supporting beneficial insects, and contributing to soil cover and
erosion control (Swanton & Weise, 1991) 611,

Traditional weed management practices, long relied upon in
conventional agriculture, can broadly be categorized into
chemical, mechanical, physical, cultural, and biological
approaches. Among these, chemical control through synthetic
herbicides has become the dominant strategy owing to its rapid
action, ease of application, and cost-effectiveness in large-scale
farming systems. However, the widespread and often
indiscriminate use of herbicides has raised significant
ecological, agronomic, and socio-economic concerns (Chauhan,
2020) [*21, Persistent herbicide residues in the soil may impair the
growth of subsequent crops and negatively affect soil microbial
diversity and function. Herbicide drift during spraying can
damage neighbouring crops and contaminate non-target
ecosystems, while excessive chemical inputs contribute to
surface and groundwater pollution. Furthermore, the
overreliance on specific herbicides has accelerated the evolution
of herbicide-resistant weed biotypes, posing a major threat to the
long-term sustainability of chemical weed management. In
addition, herbicide application requires technical expertise for
correct dosage calibration and timing, and the cost of newer,
proprietary formulations can be prohibitively high for
smallholder farmers. Mechanical and physical weed control
methods such as ploughing, hoeing, mowing, flaming, or
thermal weeding are traditional and environmentally safer
alternatives. These practices rely on physically removing or
destroying weeds before they compete with the main crop.
While effective in reducing weed biomass, they are labour-
intensive,  time-consuming, and  often  economically
unsustainable in large-scale operations. Repeated tillage may
also degrade soil structure, accelerate erosion, and disrupt
beneficial soil biota. Non-chemical physical methods, including
flame or steam weeding, provide chemical-free alternatives but
suffer from limitations in precision, energy efficiency, and
scalability. Biological control, which employs natural enemies
such as insects, pathogens, or grazing animals to suppress weed
populations, represents another ecologically sound strategy.
Although successful examples existsuch as the use of
Cactoblastis cactorum for prickly pear control or Zygogramma
bicolorata for Parthenium hysterophorus biocontrol remains
highly species-specific, slow-acting, and often influenced by
environmental variability. Cultural methods, including crop
rotation, intercropping, and the use of competitive cultivars,
contribute to integrated weed suppression but may require long-
term planning and site-specific adaptation (Heap, 2023) %],
Given the numerous limitations associated with conventional
weed management approaches, there is an urgent need for
innovative and ecologically grounded strategies that integrate
multiple control tactics in a holistic framework. Modern weed
science increasingly advocates for a systems-based paradigm,
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wherein weed control decisions are guided by ecological
principles, site-specific data, and sustainable resource use. The
shift toward precision weed management and smart agricultural
technologies thus represents not merely a technological
advancement but a necessary evolution in achieving long-term
weed suppression, environmental safety, and agricultural
resilience.

2. Emergence of Precision Weed Management

Weeds have persistently posed a problem in agriculture since its
inception. They impede crop growth by competing for water,
nutrients, and sunlight, leading to substantial losses in crop
production. Common weed control methods involve mechanical
practices or the use of herbicides. However, extensive
mechanization contributes to soil erosion, diminishing fertility,
while herbicide use results in soil, water, food, and air
contamination, causing health issues in humans and animals
(Swanton & Weise, 1991) B4, This has led to herbicide
resistance and disrupted ecosystems. Biodiversity, particularly
agrobiodiversity, plays a crucial role in providing ecosystem
services in agricultural systems. Over the past century, there has
been a rise in the diversity of weed species, despite the use of
highly effective herbicides. This phenomenon is attributed to
current crop/pest management systems that favour the presence
of weed species well-adapted to specific cultural, chemical, and
environmental conditions. For instance, heavy reliance on
chemical methods for weed control can result in shifts in weed
species composition and density over time. Additionally, the
escalating costs of herbicides in the last decade have added to
variable expenses in an agricultural landscape where profit
margins are already narrow. Consequently, there is a renewed
interest in adopting integrated weed management strategies
(IWM) to both prevent the establishment of weed species highly
adapted to specific management approaches and reduce control
costs.

Sustainable weed management includes integrated weed
management (IWM), which employs a variety of strategies to
optimize crop production and increase profitability. This
involves  preventive  measures, scientific  knowledge,
management skills, monitoring procedures, and efficient control
practices. The field of sustainable weed management has
witnessed the development and implementation of various
technologies, contributing to economic and environmental
sustainability. The challenge for WM lies in utilizing
conceptual and technological tools to devise and execute
integrated strategies that avoid the evolution of weed species
specifically adapted to particular control methods (Young et. al.
2014) 81, Precision farming stands out as a significant platform
for designing and implementing IWM strategies that enhance
overall system efficiency. The extensive elimination of weeds
and wild plants, coupled with the toxicity of agrochemical
inputs, poses a threat to agrobiodiversity and associated services
like pollination, soil structure improvement, and natural pest
control. Weeds contribute significantly to soil quality and
biodiversity support, sustaining agroecosystem productivity in
the long term. In light of these challenges, a transition to
sustainable weed control is imperative for environmental, social,
and economic reasons associated with sustainable agriculture.
Precision weed management (PWM) stands out by reducing
inputs without compromising weed control effectiveness.
Utilizing grid technology aids in planning the usage of pesticides
and insecticides, preventing excessive application that could
compromise the quality and nutrient levels of the produce
(Balafoutis, 2020) 41,
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3. Sensing and Detection Technologies

Weeds cause significant economic and vyield losses by
competing with crops for vital resources including nutrients,
water, and light (Thorp & Tian, 2004) [®%l. The global yield loss
attributed to weed competition is estimated to exceed 30% in
several major crops, with developing countries often facing even
greater challenges due to limited access to advanced
management tools. Conventional weed control strategies
uniform herbicide applications and manual or mechanical
weeding often result in high input costs, soil degradation, and
environmental contamination (Gerhards et al. 2022) [,
Excessive herbicide use not only escalates production costs but
also contributes to the emergence of herbicide-resistant weed
biotypes, soil microbial imbalance, and non-target toxicity to
beneficial organisms.

Consequently, there is a growing demand for sustainable,
targeted, and eco-efficient approaches to weed control. Precision
Weed Management (PWM), also known as Site-Specific Weed
Management (SSWM), integrates sensor-based detection,
geospatial mapping, and variable-rate application to optimize
weed control while minimizing chemical and energy inputs (Liu
et al. 2021) 81, Through spatial and temporal precision, PWM
allows real-time discrimination between crops and weeds,
facilitating site-specific herbicide spraying or mechanical
interventions. This system thus contributes to sustainable
intensification by applying interventions only where needed,
reducing costs, improving resource use efficiency, and
minimizing environmental footprints. Advances in sensors, data
fusion techniques, and intelligent image-processing algorithms
have revolutionized PWM by enabling accurate and real-time
weed detection even under complex field conditions.

3.1. Optical RGB Imaging

Optical RGB cameras, which capture visible light in red, green,
and blue wavelengths, are among the most commonly used
sensors in PWM due to their affordability, portability, and ease
of integration with agricultural equipment such as tractors,
drones, and robotic systems (Wu et al. 2021) [%61. RGB imagery
offers high spatial resolution and fast data acquisition, making it
ideal for detecting weeds during early crop growth stages when
canopy closure is minimal. This imaging technique performs
effectively in “green-on-brown” scenarios where vegetation
contrasts sharply with the soil background allowing accurate
segmentation and classification of weed patches (Allmendinger
et al. 2022) M. RGB-based systems often employ colour indices
such as Excess Green (ExG), Normalized Green-Red Difference
Index (NGRDI), and Vegetation Index (VI) to enhance
vegetation detection and reduce background noise. These indices
have been widely used to distinguish living plants from soil and
residue. Additionally, texture-based parameters (e.g., Gabor
filters or Gray Level Co-occurrence Matrices) have been
incorporated to improve differentiation between crops and
weeds based on leaf shape and surface structure. Despite its
advantages, RGB imaging faces several challenges in “green-
on-green” conditions when crop and weed species share similar
spectral signatures or in fields with uneven illumination,
shadows, or occlusions caused by overlapping canopies
(Gerhards et al. 2022) 31, For example, in dense maize or sugar
beet crops, RGB cameras struggle to distinguish weed leaves
beneath the crop canopy, resulting in misclassification or
underestimation of weed density. Moreover, variations in
sunlight intensity, soil moisture, and residue reflectance can
significantly affect RGB data quality.
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Nevertheless, RGB imaging remains foundational in PWM and
continues to evolve through integration with machine learning
and deep learning frameworks that enhance its robustness and
adaptability. Advanced neural networks such as Convolutional
Neural Networks (CNNs) and Vision Transformers (ViTs) are
increasingly being trained on RGB datasets to automatically
extract discriminative spatial features, enabling accurate weed
identification even under challenging illumination and
background conditions. Thus, while RGB sensors are relatively
simple, their integration with sophisticated computational
models makes them indispensable in low-cost and scalable
PWM systems.

3.2. Multispectral, Hyperspectral, and Near-Infrared (NIR)
Sensors

Multispectral and hyperspectral sensors extend beyond the
visible spectrum by acquiring reflectance data across multiple
narrow spectral bands, including near-infrared and shortwave
infrared regions. These sensors enable precise differentiation of
vegetation types based on biochemical and physiological
properties such as chlorophyll content, water status, and cell
structure (Allmendinger et al. 2022) [, By capturing subtle
differences in reflectance, they facilitate discrimination between
crop and weed species even when visual color cues are similar.
Multispectral sensors typically measure reflectance in a limited
number of discrete bands (e.g., blue, green, red, red-edge, and
NIR), whereas hyperspectral sensors capture hundreds of
contiguous bands, allowing the generation of unique spectral
fingerprints for each species. This spectral richness enables
accurate classification using vegetation indices such as the
Normalized Difference Vegetation Index (NDVI), Normalized
Difference Red Edge Index (NDRE), and Green Chlorophyll
Index (GCI), which quantify the differences in canopy
reflectance linked to plant health and morphology (Seiche et al.
2023) 181,

One of the most important advantages of hyperspectral imaging
lies in its ability to detect physiological stress or pigment
variations—such as anthocyanin or carotenoid levels that
distinguish weeds from crops even before visible differences
appear. This early detection capability allows timely
intervention, reducing competition at the initial growth stages.
Studies have demonstrated that NIR-based sensing can
effectively detect weeds like Amaranthus retroflexus or
Chenopodium album in wheat and maize fields by leveraging
spectral contrast in the 700-900 nm range (Gerhards et al. 2022)
1231, However, despite their superior accuracy, multispectral and
hyperspectral systems have limitations. They generate large data
volumes, demanding high computational power and storage for
real-time analysis. Moreover, sensor calibration, atmospheric
correction, and cost considerations remain significant barriers to
their widespread field application. Nevertheless, the declining
cost of sensors and the advent of cloud-based data processing
platforms have made these technologies increasingly feasible for
commercial PWM. When deployed on UAVs or autonomous
robots, hyperspectral systems allow for high-throughput weed
mapping over large areas with centimeter-level accuracy
(Gomes et al. 2024) 1. Combined with artificial intelligence
algorithms, these sensors provide an indispensable component
for precise, automated, and sustainable weed detection
frameworks.

3.3. LIDAR, Thermal, and Multi-Sensor Fusion
LiDAR (Light Detection and Ranging) systems use laser pulses
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to measure distances and generate three-dimensional point
clouds of the crop canopy and ground surface. This structural
data enables the characterization of plant height, canopy
geometry, and leaf orientation—attributes useful for
distinguishing weeds growing beneath or between crop rows
(Gerhards et al. 2022) 31, For example, LiDAR can identify
low-lying weed clusters under cereal canopies that are otherwise
obscured in optical imagery. The integration of LiDAR with
RGB data also enhances the ability to detect weeds in shaded or
occluded areas by adding a depth dimension to traditional
imaging. Thermal sensors, on the other hand, detect infrared
radiation emitted by plants to measure canopy temperature
differences. Since weeds often exhibit different transpiration
rates and stomatal conductance compared to crops, thermal
imagery can highlight these variations as temperature anomalies
(Allmendinger et al. 2022) [, Such thermal contrast is especially
useful for identifying water-stressed weeds or distinguishing
them from crops with different evapotranspiration dynamics.
Recent advancements have emphasized multi-sensor fusion,
integrating RGB, multispectral, hyperspectral, LiDAR, and
thermal data to improve detection reliability and accuracy
(Seiche et al. 2023) B This approach leverages the
complementary strengths of different sensors spectral, structural,
and thermal to overcome individual limitations. For instance,
while RGB offers spatial resolution, hyperspectral sensors
provide spectral sensitivity, and LiDAR adds 3D context.
Together, these create a comprehensive dataset for robust weed
classification.

Multi-sensor fusion models often employ data-level, feature-
level, or decision-level fusion strategies. Data-level fusion
combines raw data streams before processing, while feature-
level fusion merges extracted features from multiple sensors.
Decision-level fusion combines outputs from independent
classifiers to enhance overall confidence in weed detection. This
layered approach reduces false positives and improves
classification accuracy under diverse environmental conditions.
Although multi-sensor systems involve higher costs, energy
consumption, and complex calibration, they represent the
frontier of precision weed detection. Future research focuses on
miniaturizing sensors, improving synchronization between data
streams, and developing on-board fusion algorithms capable of
real-time decision-making for autonomous field operations.

4. Algorithmic Approaches: From Rule-Based to Deep
Learning

The evolution of algorithmic approaches in Precision Weed
Management (PWM) has been transformative, progressing from
simplistic image thresholding to sophisticated deep learning
systems capable of autonomous decision-making. The central
challenge in weed detection lies not only in differentiating
weeds from crops but also in handling the enormous variability
introduced by field heterogeneity, lighting conditions, weed
species diversity, growth stages, soil textures, and canopy
structures. Each stage of algorithmic evolution rule-based,
classical machine learning, and deep learning has contributed
unigue advantages and limitations toward achieving accurate,
real-time weed identification and control (Allmendinger et al.
2022) 1,

4.1. Rule-Based Image Processing

Early PWM systems were primarily based on heuristic or rule-
based image processing, relying on manually defined thresholds
and handcrafted features to differentiate vegetation from soil or
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crop plants (Liu et al. 2021) I8, These methods typically utilized
color-space transformations such as RGB to HSV or CIELab to
improve vegetation-background contrast. Indices like the Excess
Green Index (ExG), Normalized Difference Vegetation Index
(NDVI), or Green-Red Vegetation Index (GRVI) were
employed to isolate vegetation pixels from non-vegetative
regions. Texture-based segmentation techniques, such as Gray
Level Co-occurrence Matrix (GLCM) and Local Binary Patterns
(LBP), were later integrated to capture surface characteristics,
helping to differentiate weed leaves from crop foliage based on
edge, smoothness, or repetitive pattern features. Similarly,
morphological operations (erosion, dilation, opening, and
closing) were applied to refine segmentation results and remove
noise. Although computationally lightweight and easy to
implement, these systems were highly sensitive to
environmental variability. Variations in illumination intensity,
soil colour, moisture, and shadowing often led to inconsistent
results. In “green-on-green” conditions where crops and weeds
exhibit similar colour and texture, their accuracy declined
sharply. Consequently, rule-based algorithms were primarily
confined to controlled experimental setups or early-stage weed
detection under uniform backgrounds. Despite their limitations,
these early systems laid the groundwork for subsequent
automation by defining basic image-processing pipelines still
used as pre-processing steps in modern frameworks (Thorp &
Tian, 2004) [63],

4.2. Emergence of Classical Machine Learning

The introduction of supervised machine learning (ML)
approaches marked the second phase of algorithmic
advancement in PWM. Instead of manually coding rules, ML
algorithms could learn relationships between input features and
class labels (crop vs. weed) from annotated datasets (Wu et al.
2021) 61 Common algorithms included Support Vector
Machines (SVM), k-Nearest Neighbours (k-NN), Decision
Trees, and Random Forests. In these systems, vegetation
features were extracted manually from colour indices, shape
descriptors, or texture matrices and used to train classifiers. For
example, Random Forests leveraged ensembles of decision trees
to improve generalization and robustness against noise, while
SVMs optimized decision boundaries for high-dimensional
feature spaces (Osten & Cook, 2016) [, These techniques
achieved higher accuracy than heuristic methods and handled
moderate variability in field conditions. Moreover, Principal
Component Analysis (PCA) and Linear Discriminant Analysis
(LDA) were often applied for dimensionality reduction,
minimizing computational load while retaining discriminatory
information. ML-based classifiers could also be trained to
identify specific weed species (e.g., Amaranthus, Chenopodium,
Convolvulus) based on geometric and spectral characteristics.
However, a major limitation of classical ML was the reliance on
manually engineered features (Thorp & Tian, 2004) 63 The
performance of these models was strongly dependent on the
quality of feature selection, which required expert domain
knowledge. In dynamic field environments, features designed
for one crop or location often failed when transferred to new
regions or lighting conditions. Hence, these methods lacked
scalability for diverse, real-world agricultural systems.

4.3. Transition to Deep Learning Frameworks

The advent of deep learning (DL) revolutionized weed detection
by enabling automatic feature extraction from raw images,
eliminating the need for handcrafted descriptors (Wu et al.
2021) 61 Deep learning models, particularly Convolutional
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Neural Networks (CNNs), learn hierarchical representations
from low-level pixel features (edges, colours) to high-level
semantic features (leaf patterns, plant morphology). This
capacity allows CNNs to distinguish between visually similar
crop and weed species with unprecedented accuracy. Modern
PWM applications commonly employ CNN architectures such
as VGGNet, ResNet, Inception, and MobileNet, tailored for field
images captured under variable conditions. In addition, object
detection frameworks like YOLO (You Only Look Once) and
Faster R-CNN (Region-Based Convolutional Neural Network)
enable real-time identification and localization of individual
weeds within complex scenes (Zhang et al. 2022) [, These
networks generate bounding boxes around detected weeds,
allowing variable-rate sprayers or robotic actuators to target
specific locations with millimeter-level precision. Furthermore,
semantic segmentation models such as U-Net, SegNet, and
DeepLab have been employed to perform pixel-level
classification of crop versus weed, providing spatially detailed
maps that guide selective spraying. Such models achieve
segmentation accuracies exceeding 90% in controlled trials,
greatly outperforming traditional machine learning systems
(Osten & Cook, 2016) 1. Deep learning has also fostered
transfer learning, where pre-trained models (on datasets like
ImageNet or PlantVillage) are fine-tuned using smaller
agricultural datasets, significantly reducing data requirements.
Additionally, data augmentation techniques such as rotation,
flipping, and lighting adjustment help simulate diverse field
conditions, improving model robustness (Gomes et al. 2024) (2],
However, several challenges remain. Deep learning models are
data-hungry, requiring large, well-annotated datasets that are
often unavailable in agriculture. Moreover, their generalization
ability is limited: models trained on one crop or geographic
region frequently perform poorly when transferred to new
settings with different weed flora, soil backgrounds, or
illumination (Slaven et al. 2023) 5%, Computational constraints
further restrict the deployment of high-complexity models on
embedded devices or edge computing platforms typically
mounted on field machinery. Despite these limitations, deep
learning represents the current frontier of PWM research,
enabling automated, real-time, and adaptive weed detection at
high precision and scalability (De Melo et. al., 2024) [8],
Integration with cloud computing, Internet of Things (1oT)
devices, and edge-based Al processors is gradually transforming
weed management into a data-driven, fully autonomous
agricultural process.

4.4. Hybrid and Next-Generation Algorithmic Trends
Building upon deep learning’s success, the latest research is
exploring hybrid architectures that combine multiple algorithms
to improve performance and adaptability. For instance,
integrating CNNs with Random Forest classifiers or deep
features with SVMs has been shown to enhance accuracy under
limited data availability. Attention mechanisms and Vision
Transformers (ViTs), inspired by natural language processing,
are emerging as powerful alternatives capable of capturing long-
range dependencies in weed crop images, thus improving
performance in complex canopy structures (Zhang et al. 2022)
[/, Additionally, unsupervised and semi-supervised learning
methods are being investigated to overcome the scarcity of
labelled datasets by learning feature representations from
unlabelled images. Few-shot learning and meta-learning further
aim to enable model training with minimal data, a crucial
development for region-specific weeds or new crop varieties
(Murad et al. 2023) 12,
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Edge-Al integration is another significant trend, allowing
lightweight CNN architectures (e.g., MobileNet, EfficientNet) to
be deployed on compact embedded devices mounted on drones,
tractors, or robotic weeders. This decentralizes computation,
enabling real-time weed recognition and control without reliance
on cloud connectivity. Ultimately, as algorithmic capabilities
mature, the integration of deep learning with decision-support
systems, sensor fusion, and real-time actuation will define the
next era of precision weed management. These algorithmic
advances will allow not only detection and classification but also
adaptive decision-making such as determining the optimal
control method or herbicide dosage based on weed species,
density, and crop growth stage (Rabade et al. 2025) 5,

5. Actuators and Control Mechanisms

Actuators represent the execution arm of Precision Weed
Management (PWM) systems, translating digital detection and
mapping information into targeted physical actions on the field.
These mechanisms apply localized weed-control interventions
chemical, mechanical, thermal, or optical based on sensor
feedback and decision algorithms. Their primary objective is to
reduce overall herbicide use, minimize off-target impacts, and
optimize operational efficiency. In modern precision agriculture,
actuators are integrated with advanced control systems that
enable real-time responsiveness, spatial accuracy, and
automation, transforming traditional weed control into an
intelligent, site-specific management process. The evolution of
actuation systems has progressed from simple nozzle control
units to sophisticated autonomous sprayers and robotic platforms
capable of selective herbicide application, mechanical uprooting,
or even laser ablation. Each actuation strategy comes with
specific advantages, constraints, and suitability for different
cropping systems and farm scales (Islam et al. 2024) [321,

5.1. Spot and Patch Sprayers

Spot and patch sprayers are the most widely adopted actuation
mechanisms in PWM due to their compatibility with existing
farm equipment and their proven ability to reduce herbicide
usage. These systems function based on selective activation of
spray nozzles, which deliver herbicide only when a weed is
detected by onboard sensors or when the sprayer passes over
pre-mapped infested zones (Patel et al. 2022) €1, Spot sprayers
operate in real time, often using optical sensors (such as RGB or
multispectral cameras) and computer vision algorithms to detect
weeds during operation. Once a weed is identified, individual
solenoid valves or pulse-width modulation (PWM) systems
trigger microbursts of herbicide directly onto the target plant. In
contrast, patch sprayers rely on weed maps generated from prior
field surveys typically via UAV or tractor-mounted sensors and
adjust the spray rate spatially according to weed density and
distribution. Field trials conducted by Allmendinger et al. (2022)
111 demonstrated herbicide savings between 23-89% in cereal and
sugar beet systems without any negative impact on crop yield.
These results highlight the potential of selective application to
maintain productivity while achieving significant cost and
chemical reductions. Similar outcomes were observed in
Montana State University Northern Agricultural Research
Center (2025) M experiments, where up to 90% reduction in
herbicide use was recorded under favourable field conditions.
Such systems also contribute to environmental sustainability, as
they minimize chemical runoff, reduce the exposure of non-
target organisms, and lower greenhouse gas emissions
associated with chemical manufacturing and application.
Furthermore, precision spraying technologies mitigate herbicide
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resistance by reducing continuous selection pressure on weed
populations, thereby preserving herbicide efficacy for longer
periods. Technologically, most modern selective sprayers
employ high-speed optical sensors and control valves capable of
responding within milliseconds. Manufacturers such as John
Deere® (“See & Spray”) and WEED-IT® have integrated real-
time detection systems that allow sprayer speeds up to 25 km/h
with sub-meter accuracy. However, these systems require
frequent calibration, consistent lighting conditions, and precise
boom height control to maintain detection accuracy.
Additionally, economic feasibility remains a challenge for
smallholder farmers due to the initial investment and
maintenance costs (Sarma et al. 2024) [ Nonetheless,
continuous improvements in sensor affordability, embedded
computing, and Al algorithms are making these systems
increasingly accessible.

5.2. Mechanical and Electromechanical Weeders

Mechanical weeders represent one of the oldest yet most
sustainable methods of weed management, now revitalized
through automation and robotics. These devices physically
disrupt or uproot weeds using rotary blades, tines, hoes, or finger
weeders, offering an entirely chemical-free solution that is
particularly suitable for organic and low-input farming systems
(Szulc et al. 2023) 12, Mechanical weeders can be classified into
intra-row and inter-row systems. Inter-row weeders, such as
rotary hoes or spring tines, operate between crop rows, whereas
intra-row systems such as finger weeders work closer to the
crop, requiring precise navigation to prevent crop injury. With
advancements in sensing and robotics, modern mechanical
systems now incorporate machine vision and GPS guidance,
allowing centimeter-level positioning to maintain safety margins
between crop plants and weeding tools. Recent innovations in
electromechanical weeders combine physical disturbance with
electrical or vibrational mechanisms for more effective root
destruction. Robotic weeders equipped with vision-guided
manipulators can selectively remove individual weeds by
mechanical grippers or micro-cultivators (Sarma et al. 2024) 5],
These systems are being successfully deployed in horticultural
crops, vineyards, and vegetable production, where selective
weeding is critical for maintaining soil structure and crop
spacing.

The advantages of mechanical and electromechanical weeding
systems are manifold, as they fundamentally eliminate
dependency on herbicides, making them an ideal cornerstone for
organic certification and residue-free crop production, while
simultaneously addressing the growing threat of herbicide-
resistant weeds by preventing their evolution through diverse
control mechanisms. Furthermore, the physical action of these
systems, often involving shallow cultivation, provides the
secondary benefits of enhancing soil aeration and stimulating
beneficial microbial activity, thereby contributing to improved
overall soil health and structure (Zawada et al. 2023) [,
However, these systems also have operational constraints,
including slower field throughput, higher energy consumption,
and potential crop injury if guidance precision is inadequate.
The need for flat terrain, stable soil moisture conditions, and
regular maintenance further limits their adoption in certain
cropping systems. Moreover, the initial investment in
autonomous robotic weeders remains substantial, which may
restrict their use to high-value or specialty crops. Nonetheless,
the continuous development of lightweight electric actuators,
compact drive systems, and Al-enabled navigation is steadily
overcoming these barriers, moving toward practical and scalable
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deployment.

5.3. Thermal, Electrical, and Laser Methods

In recent vyears, non-chemical physical weed control
technologies have gained significant attention as sustainable
alternatives to herbicides. These include thermal, electrical, and
laser-based methods, all designed to destroy weeds by targeting
their physiological structures without affecting surrounding
crops or soil health. Thermal weeding involves applying heat
energy through direct flame, hot water, steam, or infrared
radiation to denature proteins and disrupt cell membranes in
weed tissues. The thermal shock leads to rapid desiccation and
plant death. Flame weeding, in particular, has shown promise in
pre-emergence and inter-row applications in crops like maize
and soybean, especially for organic systems. However, thermal
methods may require multiple passes to achieve long-lasting
control, and their fuel consumption can be relatively high.
Electrical weeding employs high-voltage current delivered
through electrodes to the plant stem, causing cellular disruption
and root-system damage via resistance heating (Yaseen et al.
2024) 1671,

This technique is particularly effective for perennial weeds with
deep root systems that may survive mechanical disturbance.
Electromechanical systems also integrate safety features to
prevent accidental discharge and optimize current distribution,
thereby improving selectivity and efficiency. Among these,
laser-based precision weeding represents one of the most
cutting-edge technologies. Brash et al. (2022) ! demonstrated
that a laser-guided variable-rate system used in orchard
environments achieved a 58% reduction in pesticide volume
while maintaining full control efficacy. Lasers enable pinpoint
targeting of weeds, delivering concentrated energy pulses that
rupture plant cells without disturbing nearby soil or crops. The
system operates autonomously, using computer vision and Al
algorithms to identify weed morphology and guide beam
placement. Furthermore, Al-driven spot spraying technologies
an emerging hybrid of sensor-based detection and robotic
control have demonstrated remarkable potential for reducing
environmental footprints and chemical dependency (Sarma et al.
2024) B8, Such systems integrate deep-learning-based weed
detection with high-precision actuation, ensuring that each
droplet or energy pulse is applied exclusively to weed tissue.
Despite their promise, these technologies face challenges related
to capital investment, energy consumption, and operational
safety. For instance, laser and electrical weeders require robust
energy sources and advanced cooling systems, which may
increase operational costs. Safety mechanisms must also be
integrated to prevent accidental exposure to laser radiation or
electrical discharge. Moreover, field conditions such as rain,
dense canopy cover, or reflective surfaces can interfere with
beam accuracy or energy delivery. Nevertheless, continued
research in power efficiency, optical control, and automation is
rapidly improving the feasibility of these advanced systems. The
integration of renewable energy sources (such as solar-charged
batteries), precision targeting algorithms, and autonomous
navigation systems is expected to make thermal, electrical, and
laser methods a key component of next-generation, eco-friendly
weed management strategies (Slaven et al. 2023) [6%],

6. Robotic and Aerial Platforms

The integration of robotic and aerial platforms marks a
transformative phase in Precision Weed Management (PWM),
where detection, decision-making, and actuation are increasingly
automated. These platforms combine sensing, computation, and
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mechanical execution to perform precise, site-specific
interventions with minimal human involvement. By functioning
autonomously or semi-autonomously, they address critical
agricultural challenges such as labour shortages, time
constraints, and the need for ultra-targeted weed control.
Robotic and UAV-based systems represent the embodiment of
digital agriculture, uniting artificial intelligence, robotics, and
remote sensing into cohesive field operations that are both data-
driven and environmentally sustainable. While ground robots
provide high spatial resolution and targeted intervention at the
plant level, Unmanned Aerial Vehicles (UAVSs) offer unmatched
speed and spatial coverage for weed mapping and surveillance
over large areas (Shahi et al. 2023) 51, Both systems contribute
uniquely to precision farming ecosystems, complementing each
other within integrated weed management frameworks.

6.1. Ground Robots

Autonomous ground robots represent the cutting edge of site-
specific, plant-scale weed control. These systems combine
multiple modules sensor arrays, navigation units, perception
algorithms, and actuatorsto identify, localize, and remove weeds
autonomously in the field (Gerhards et al. 2022) %1, Equipped
with advanced vision systems (RGB, multispectral, LiDAR) and
deep-learning models, they can distinguish crop plants from
weeds in real time and initiate targeted interventions through
mechanical, chemical, or optical actuators. Ground robots
function through a closed-loop control system, wherein sensors
continuously capture environmental data, onboard processors
interpret weed presence and location, and actuators execute the
appropriate control response spraying, uprooting, or laser
ablation. Navigation is typically achieved using Real-Time
Kinematic Global Navigation Satellite Systems (RTK-GNSS)
for centimeter-level accuracy, often complemented by LiDAR
and stereo vision to ensure obstacle avoidance and safe
manoeuvring (Zhang et al. 2022) [,

Several commercial and prototype robotic systems exemplify

these technologies:

e Ecorobotix ARA (Switzerland) uses Al-based cameras to
detect individual weeds and apply micro-doses of herbicide,
achieving up to 95% reduction in chemical usage.

e FarmDroid FD20 (Denmark) employs GNSS-based
guidance for fully autonomous weeding and seeding,
eliminating the need for herbicides in row crops.

e Naio Oz and Dino (France) are electric field robots that
perform mechanical inter-row weeding using sensor-guided
tools.

¢ Blue River “See & Spray” (now owned by John Deere)
combines deep-learning-driven  vision systems with
precision sprayers to apply herbicide exclusively on
detected weeds at full field speed.

Field trials have reported herbicide reductions exceeding 50%
without compromising weed control efficacy (Gerhards et al.
2022) %31, These robotic systems not only lower input costs but
also improve soil health and operator safety by minimizing
exposure to agrochemicals. Furthermore, their ability to operate
continuously day or night, under controlled navigation makes
them highly efficient in large-scale or time-sensitive operations.
However, several challenges hinder commercial scalability.
Operational speed is typically lower than that of conventional
tractor-based sprayers, limiting daily coverage. Field robots
often struggle under adverse conditions such as mud, dense
residue, or uneven terrain. Reliability in perception systems can
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be compromised by varying light conditions, crop density, and
weed morphology (Upadhyay et al. 2024) 53 Economic
feasibility remains a barrier, as the initial cost, maintenance, and
technical expertise required for operation can be prohibitive,
especially for smallholder farmers.

In addition, energy consumption and battery life are limiting
factors. While many robots are electric and eco-friendly, their
runtime per charge often restricts field-scale operations. Despite
these limitations, ongoing advances in Al, lightweight materials,
power management, and modular robotics continue to improve
their efficiency and cost-effectiveness. Looking forward, the
integration of swarm robotics multiple robots coordinating tasks
via wireless communication and machine-to-machine (M2M)
connectivity will enable greater scalability and adaptability.
Ground robots are poised to become integral to fully automated
farms, where detection, decision, and action occur seamlessly
without human intervention.

6.2. Unmanned Aerial Vehicles (UAVS): Unmanned Aerial
Vehicles (UAVS), or drones, have revolutionized remote sensing
and monitoring in precision agriculture, playing dual roles in

PWM: (i) mapping and surveillance of weed infestations, and

(i) targeted aerial spraying for localized weed control (De Melo

et al. 2024) (161, Their versatility, agility, and scalability make

them indispensable tools for real-time data acquisition and
spatial decision-making in large and complex agricultural
landscapes.

e Weed Mapping and Prescription Generation: The most
widespread application of UAVs in PWM is high-resolution
weed mapping. Equipped with RGB, multispectral,
hyperspectral, or thermal sensors, drones capture imagery
across large fields at centimeter-level spatial resolution.
Using machine learning or deep learning models, weeds are
automatically  classified and mapped to generate
prescription maps that guide ground-based variable-rate
sprayers or robotic weeders (Islam et al. 2024) ¥4, UAVs
enable repeated data acquisition over time, allowing for
temporal analysis of weed emergence, growth dynamics,
and spread patterns. This temporal monitoring is essential
for early intervention and adaptive weed management
strategies. Studies have demonstrated that UAV-based
mapping improves input efficiency by identifying precise
weed hotspots, thereby reducing herbicide application areas
by up to 70%, compared to uniform treatments (Shahi et al.
2023) 571,

e Targeted Aerial Spraying: Although UAVs are
increasingly capable of direct spraying, most current
systems are designed for small-scale, targeted applications
rather than large-area blanket coverage. Multi-rotor UAVs
equipped with precision nozzles and real-time feedback
systems can apply herbicide microdroplets on specific weed
patches or late-season escapes with high precision.
Advanced drones use Al-assisted flight control and GPS
waypoint navigation to ensure accurate spray positioning.
However, payload capacity and flight duration remain
significant constraints. Typical agricultural drones carry
between 10-30 litres of liquid and can cover only 5-15
hectares per flight, depending on topography and spray
density. In addition, strict aviation regulations governing
UAV operations especially concerning altitude limits,
chemical payloads, and operator licensing limit their
widespread commercial adoption in many countries
(Esposito et al. 2021) [8  Nevertheless, UAVs are
invaluable for rapid, large-scale reconnaissance and
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integration with ground-based PWM systems. Data
collected from drones can be seamlessly transferred to farm
management software for creating variable-rate application
maps, facilitating hybrid systems where UAVs handle
detection and mapping while ground robots or tractor-
mounted sprayers perform precise actuation.

e Technological Advancements and Future Prospects:
Recent innovations are addressing traditional UAV
limitations. Hybrid drones equipped with both fixed-wing
and rotary capabilities now offer longer endurance and
larger payloads. Emerging battery technologies and
lightweight carbon-fibre frames are extending flight
durations, while Al-driven flight planning algorithms are
enhancing operational efficiency. Integration with cloud-
based platforms allows real-time image analysis and
automated prescription generation. The development of
UAVrobot collaboration frameworks represents a key future
direction. In such systems, UAVs perform scouting and
generate weed distribution maps, which are transmitted to
ground robots that execute localized mechanical or chemical
interventions. This aerial-ground synergy optimizes both
scale and precision UAVs provide macro-level monitoring,
and robots handle micro-level interventions. Despite these
advances, UAV adoption remains uneven due to regulatory
restrictions, cost barriers, and technical complexity.
However, as technologies mature and costs decline, drones
are expected to become standard tools in integrated
precision weed management systems, particularly for large
farms, difficult terrains, and areas requiring minimal soil
disturbance (Upadhyay et al. 2024 [¢°; Shahi et al. 2023) 571,

7. Localization, Mapping, and Decision Support
Localization, mapping, and decision-support systems form the
core intelligence layer of Precision Weed Management (PWM),
transforming raw sensor data into actionable, spatially
referenced prescriptions for field implementation. This process
begins with high-accuracy localization, where technologies such
as Real-Time Kinematic (RTK) GNSS provide centimetre-level
precision to pinpoint individual weeds, a vast improvement over
older metre-level system (Lahre & Satpathy 2024) 34, Positional
data are further enhanced through sensor-fusion, combining
GNSS with Inertial Measurement Units (IMUs) and vision
systems for reliable operation in challenging environments,
while Simultaneous Localization and Mapping (SLAM)
algorithms enable autonomous robots to navigate and operate in
complex, unstructured fields (Shamshiri et al. 2024) 8. Once
localized, weed detections are integrated into comprehensive
maps that visualise the distribution, density and dynamics of
infestations, forming the basis for prescription files (Bohra et al.
2025) 71,

These maps, often formatted as shapefiles or 1ISO-XML, guide
Variable-Rate Technology (VRT) on sprayers and other
equipment to automatically apply herbicides or mechanical
interventions only where needed based on economic thresholds
and weed-pressure thereby minimising inputs and promoting
sustainability (Sishodia et al. 2020) %8, Standardised protocols
(e.g., ISOBUS) facilitate interoperability across machinery from
different manufacturers, and cloud-based platforms aggregate
data from multiple sources for unified analysis. Furthermore,
this information flow feeds into advanced Decision-Support
Systems (DSS) that integrate spatial, temporal, and biological
data (weed species, resistance profiles, real-time weather) to
simulate scenarios, recommend cost-effective agronomic
strategies, and even predict future weed-outbreaks using Al-
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driven analytics (Gao et al. 2025) 211, Ultimately, the future of
PWM hinges on full integration of these components into user-
friendly, affordable systems that seamlessly connect data-driven
insights with automated field actions though challenges in data
governance, standardisation and cybersecurity must be
addressed to realise its full potential.
8. Evidence of Efficacy, Herbicide
Environmental Benefits
The effectiveness of Precision Weed Management (PWM)
systems has been extensively demonstrated through numerous
empirical studies under a wide range of cropping conditions.
The primary objective of PWM—to sustain or enhance weed-
control efficiency while substantially reducing herbicide
inputs—has been validated through multiple field-based
experiments worldwide. For instance, Allmendinger et al.
(2022) ™ reported herbicide savings ranging from 23% to 89%
across cereal, maize, and sugar-beet cropping systems using
selective-spraying technologies, with no statistically significant
reduction in yield. These findings emphasize PWM’s potential
to maintain effective weed suppression even when chemical
inputs are reduced by more than half. Such savings are achieved
through the accurate detection of weed patches and site-specific
herbicide delivery, ensuring that only infested zones are treated
rather than entire fields. Further corroborating these findings,
Timmermann et al., (2022) [4 demonstrated herbicide
reductions of 20-60% in fallow systems compared to uniform
broadcast applications. Their work highlighted that precision
spot-spraying maintained comparable weed control while
significantly lowering total chemical usage. Similarly,
Darbyshire et al. (2023) ® found that camera-guided spot-
spraying systems could effectively treat up to 93% of weeds
while spraying only 30% of the field area, underscoring the
spatial precision and efficiency of modern PWM tools.
Large-scale demonstration projects, such as the GrowlWM
Initiative (2025) [?%1, have reported average herbicide savings of
76%, with reductions ranging between 43.9% and 90.6% across
over 400 acres of farmland using precision spray technologies.
These systems maintained or improved weed-control efficacy
relative to conventional broadcast spraying, validating PWM’s
potential to deliver environmental and economic benefits at a
commercial scale. Furthermore, Azghadi et al., (2024) B
demonstrated in sugarcane systems that robotic spot-spraying
achieved up to 65% reduction in herbicide use, while
maintaining nearly 97% of the weed-control efficacy of
conventional broadcast methods and simultaneously reducing
herbicide loads in runoff by 54%, thereby mitigating
downstream pollution risks. Complementing these observations,
Bohra et al. (2025) [l reviewed advances in site-specific weed
management and found consistent herbicide savings of around
50%, depending on the heterogeneity of weed infestations and
crop type. Collectively, these results confirm that PWM not only
achieves substantial input savings but also maintains yield
stability, protects the environment, and enhances farm
profitability.

Savings, and

8.1. Weed-Control Efficacy and Yield Stability: One of the
chief apprehensions regarding PWM adoption is whether
reduced herbicide use compromises weed control or yield.
However, multiple studies affirm that PWM sustains or even
improves weed suppression compared to conventional broadcast
applications. High-resolution imaging and precise nozzle control
enable site-specific targeting, ensuring optimal herbicide
distribution while avoiding over-application in weed-free areas.
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Studies by Allmendinger et al., (2022) M and Darbyshire et al.,
(2023) 31 confirmed that PWM-treated crops exhibited no
measurable yield loss, and in some instances, enhanced crop
vigour due to reduced phytotoxic stress on non-target plants.
Moreover, the integration of PWM with real-time weed
detection facilitates adaptive spraying, allowing operators to
address weed emergence dynamically throughout the growing
season, thereby maintaining long-term weed suppression and
yield stability.

8.2. Herbicide Savings and Cost Efficiency: Herbicide-use
efficiency represents one of the most tangible advantages of
PWM. Savings are realized by avoiding redundant spraying in
weed-free zones, which often account for 40-70% of cultivated
area. By deploying machine-vision algorithms and variable-rate
spraying, PWM ensures precision droplet delivery, minimizing
both volume and drift. The 23-89% savings reported by
Allmendinger et al., (2022) [, 20-60% by Timmermann et al.,
(2022) 1541, and up to 76% by GrowlWM (2025) 261 demonstrate
substantial input reductions with no yield penalty. These savings
translate into direct financial gains, reducing expenditure on
herbicides, labour, and equipment wear while boosting
operational efficiency.

8.3. Environmental Benefits and Sustainability Outcomes:
PWM’s environmental contributions are profound. Traditional
broadcast spraying contributes to soil and water contamination,
biodiversity loss, and non-target toxicity. PWM mitigates these
impacts through spatially targeted applications, thereby reducing
chemical runoff and drift. Azghadi et al., (2024) &l reported that
robotic PWM systems significantly lowered herbicide residues
in water bodies, aligning with ecological sustainability
objectives. Additionally, PWM reduces selection pressure for
herbicide-resistant weed biotypes a growing concern under
intensive herbicide use (Rao, 2021) B2, By minimizing total
chemical exposure and promoting judicious herbicide
deployment, PWM extends herbicide efficacy lifespan while
simultaneously reducing greenhouse gas emissions linked to
chemical production and transport. Thus, PWM aligns
seamlessly with the principles of climate-smart agriculture and
sustainable intensification.

8.4. Broader Implications for Integrated Weed
Management: The demonstrated success of PWM extends
beyond chemical efficiency it forms the technological backbone
of Integrated Weed Management (IWM) frameworks. By
combining precision-based chemical control with cultural,
mechanical, and biological weed-suppression practices, farmers
can achieve comprehensive, long-term management of weed
populations. Data derived from PWM sensors and weed maps
can guide crop rotations, cover-cropping, and mechanical
weeding interventions (Bohra et al. 2025) ), These synergies
make weed management proactive and site-specific rather than
reactive and uniform, enhancing both sustainability and
resilience. Ultimately, the widespread adoption of PWM
technologies can revolutionize weed management, fostering an
era of resource-efficient, environmentally conscious, and
economically viable agriculture.

9. Challenges and Future Prospects in Precision Weed
Management

The advancement of Precision Weed Management (PWM)

technologies is accelerating rapidly, yet their widespread

adoption continues to face a series of technical and
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infrastructural barriers that limit scalability and operational
reliability. Despite the maturity of individual components such
as sensors, cameras, GNSS modules, machine-learning
algorithms, and actuators integrating them into a single,
cohesive, and field-hardy system remains a formidable
engineering challenge. Sensor limitations are a persistent issue,
as performance is highly sensitive to environmental factors such
as illumination variability, dust accumulation, humidity, and
canopy density. Even state-of-the-art RGB and multispectral
sensors struggle in “green-on-green” conditions, where crops
and weeds share similar spectral characteristics (Gao et al. 2025)
211 Frequent calibration and protection against field hazards like
moisture, vibration, and impact further complicate sensor
deployment in rugged agricultural environments. In addition,
high-resolution imagery and multi-sensor data streams produce
enormous volumes of data that demand powerful onboard
processors or reliable cloud connectivity for real-time analysis.
This creates a bottleneck for farms in developing regions, where
poor internet infrastructure hinders cloud-based analytics (San et
al. 2025) B4, Consequently, the development of low-latency
edge-computing solutions capable of autonomous, real-time
inference without external connectivity has become a
technological imperative.

Algorithmic generalization also presents a significant constraint:
deep learning models trained on specific regions or weed species
often fail to perform consistently across diverse environments
due to variations in soil reflectance, crop morphology, and
illumination. This limits transferability and necessitates costly,
region-specific training datasets (Rai et al. 2023) B4
Furthermore, hardware robustness and power autonomy
continue to be problematic, especially for UAVs and electric
field robots that operate under fluctuating temperatures, uneven
terrain, and long working hours. Limited battery performance
and degradation over time reduce operational efficiency,
emphasising the need for lightweight, energy-efficient designs
and the integration of renewable power sources such as solar
charging. Finally, the lack of system standardisation and
interoperability among devices, software, and data formats
remains a major technical barrier. Although frameworks like
ISOBUS have improved communication between machinery and
sensors, proprietary hardware ecosystems still dominate,
hindering seamless data exchange and system scalability (Gao et
al. 2025) 2,

The economic and adoption-related challenges are equally
critical, particularly in regions dominated by smallholder and
medium-scale farmers. High capital costs associated with
precision sprayers, robotic weeders, and multispectral sensors
often deter adoption, as the initial investment can exceed the
annual income of an average farmer. While cost recovery
through input savings is achievable over multiple growing
seasons, the long payback period and uncertain market
incentives make it economically unattractive without subsidies
or cooperative models (San et al., 2025) 1. Furthermore, the
operation of PWM technologies requires specialised technical
skills for calibration, troubleshooting, and software maintenance
— skills that are still scarce in many rural areas. This lack of
technical capacity often leads to under-utilisation, system
downtime, and maintenance challenges (Jeevan et al. 2024) (31,
Scale and field geometry also constrain adoption; most existing
PWM systems are designed for large, uniform fields
characteristic of industrial agriculture in developed nations.
However, in Asia and Africa, where small, irregular and
fragmented plots are common, autonomous navigation and
consistent weed detection become more difficult. Market
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fragmentation further complicates diffusion: the absence of
affordable, region-specific solutions tailored to local crops and
weed ecotypes restricts accessibility (Szulc et al. 2023) 62,
Achieving economic scalability will depend on the creation of
modular, cost-effective and customisable platforms adaptable to
diverse agro-climatic zones and farming systems, ensuring
equitable technological inclusion across scales.

From an agronomic and ecological perspective, integrating
PWM technologies into existing weed management frameworks
remains a complex and evolving challenge. Weed populations
are inherently dynamic, adapting to spatial and temporal
variations influenced by seed dispersal, tillage, crop rotation,
and environmental changes (Chauhan, 2020) 2, As a result,
mapping and treating weeds in one season do not guarantee
long-term control, necessitating continuous monitoring and
multi-year data accumulation to construct predictive weed
population models. Although PWM significantly reduces
herbicide usage, over-reliance on site-specific chemical control
in the same zones can create localised selection pressure,
inadvertently accelerating herbicide resistance evolution.
Therefore, sustainable PWM deployment requires its integration

with non-chemical control methods such as mechanical
weeding, cover cropping, residue retention and crop
diversification (Chauhan, 2020) [2.  Another agronomic

challenge lies in minimizing crop injury during mechanical or
robotic weeding operations. Delicate crops, narrow inter-row
spacing, and variable planting geometry increase the risk of root
or stem damage, especially when actuation is not synchronised
with crop growth stages. Soil and microclimatic variability such
as texture, moisture, or surface roughness further affect sensor
accuracy, traction and actuation performance. Developing
adaptive algorithms and resilient hardware systems capable of
functioning under such heterogeneous field conditions remains a
major scientific and engineering frontier (Hasan et al. 2021) (%81,
Furthermore, PWM must be ecologically validated to ensure that
reduced herbicide applications do not shift weed community
composition toward more competitive or tolerant species,
potentially creating new management challenges over time.

In addition to technological and agronomic hurdles, a range of
institutional, regulatory and policy challenges limits the
operational and economic scalability of PWM, particularly in
developing nations. Many agricultural policies still prioritise
fertiliser and pesticide subsidies over digital or precision
technology investments, leaving PWM initiatives underfunded
and poorly incentivised (Jeevan et al. 2024) B3 Policy
instruments that recognise precision weed control as a form of
climate-smart and  resource-efficient  agriculture  could
significantly accelerate adoption through targeted subsidies,
innovation grants, or tax incentives. Regulatory barriers also
persist — especially for UAV-based spraying systems which
face stringent airspace regulations and chemical application
restrictions in many countries (Jeevan et al. 2024) [38,
Compliance requirements related to licensing, operator training
and aerial pesticide use can delay or prevent large-scale
implementation. Data governance is another emerging concern
as precision agriculture becomes increasingly data-intensive.
Issues surrounding data ownership, privacy and equitable access
must be addressed through transparent frameworks that ensure
farmers retain control over their data while enabling fair
collaboration among technology providers, research institutions
and policymakers (Timmermann et al. 2022) 4. Moreover,
widespread adoption of PWM demands a fundamental
transformation of extension systems, which have traditionally
focused on conventional agronomic training. Extension
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programmes must now incorporate digital literacy, data
interpretation, and equipment maintenance training, empowering
farmers to manage, troubleshoot and optimise precision systems
independently (San et al. 2025) 4. Without such institutional
capacity building, even the most advanced technologies risk
remaining confined to research projects and demonstration plots,
unable to achieve real-world impact at scale.

9.1. Persistent Challenges to Widespread Adoption

a. Technical and Algorithmic Constraints: A primary
technical barrier lies in the robustness of sensing and
machine-learning systems. While sensors perform well in
controlled conditions, their accuracy can diminish in
complex field environments due to variable lighting (e.g.,
glare, overcast conditions), leaf occlusion, and the presence
of crop residues (Gao et al. 2025) 1, Furthermore, the
“data-hungry” nature of deep-learning models necessitates
vast, meticulously labelled datasets of weed and crop
images. This requirement is a major bottleneck, as curating
such datasets is labour-intensive and expensive.
Consequently, models trained on data from one geographic
location or specific crop stage often fail to generalise
effectively to different regions, soil types, or growth
conditions, a phenomenon known as poor domain
adaptation (Rai et al. 2023) 5,

b. System Integration and Compatibility Barriers: PWM is
not a single technology but a complex cyber-physical
system requiring seamless integration of detection,
decision-making and actuation components. A significant
challenge is the lack of standardised communication
protocols and interoperability between hardware and
software from different manufacturers. For instance, a
highly accurate weed-detection algorithm may not be
compatible with the control system of a specific robotic
sprayer or mechanical weeders (Gao et al. 2025) 21, This
inconsistency leads to fragmented solutions, increases
system complexity and hinders the development of reliable,
plug-and-play PWM platforms that farmers can easily adopt
and maintain.

¢. Economic Viability and Accessibility: The high capital
investment for advanced PWM equipment including high-
resolution cameras, computing hardware, and automated
actuation systems poses a major barrier. Beyond the initial
cost, ongoing expenses for maintenance, software updates
and operator training further strain budgets. This economic
model is particularly prohibitive for smallholder farmers
and in developing countries where agricultural systems are
characterised by smaller field sizes and limited capital (Wu
et al. 2021) 81, The return on investment for these farmers
is often unclear or too long-term, effectively limiting
PWM’s benefits to large-scale, capital-intensive agricultural
enterprises.

d. Regulatory, Infrastructural, and Social Hurdles: The
scalability of PWM is also constrained by external factors.
The use of UAVs for scouting or spraying is heavily
regulated, with restrictions on airspace, flight paths, and
payloads that vary by country. Data privacy and ownership
concerns arise from the high-resolution spatial data
collected by these systems. Moreover, effective real-time
operation often depends on robust internet connectivity for
data transfer and cloud computing, which is frequently
unavailable in rural and remote agricultural areas (San et al.
2025) B4, Finally, a lack of technical literacy and farmer
scepticism towards autonomous systems can act as
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significant social barriers to adoption (Rai et al. 2023) 51,

9.2. Forging a Path Forward:

Development Priorities

a. Advancing Core Technology: Future work must prioritise
the development of low-cost, robust and energy-efficient
sensors that can withstand harsh agricultural environments.
To address the data bottleneck, the creation of large, open-
access, and curated multi-species weed datasets is crucial
for benchmarking and advancing algorithm development
(Gao et al. 2025) 24,

b. Enhancing Algorithmic Intelligence: Research should
focus on leveraging transfer learning and domain adaptation
techniques. These methods allow models pre-trained on
large, generic datasets to be efficiently fine-tuned with
smaller, local datasets, drastically improving generalisation
across diverse farming conditions without the need for
massive new data-collection each time (Rai et al. 2023) 54,

c. Designing for Accessibility and Specificity: There is a
pressing need to develop small-scale, modular and
economically viable robotic systems tailored for
smallholder and diversified cropping systems, such as the
complex and intercropped landscapes prevalent in India.
These systems must be designed with affordability, ease of
use, and repair in mind (Chauhan, 2020) 2,

d. Integration into Holistic Frameworks: Ultimately, PWM
should not be seen as a standalone solution but as a
powerful tool within broader Integrated Weed Management
(IWM) frameworks. Combining PWM with cultural,
biological and mechanical control strategies can manage
weed seed banks, prevent herbicide resistance, and ensure
long-term agricultural sustainability (Chauhan, 2020) 12,
This synergistic approach will provide a more resilient and
economically stable path forward for farmers worldwide
(De Melo et al. 2024) (261,

Key Research and

Conclusion

the evolution from conventional, blanket-application weed
control to Precision Weed Management (PWM) represents a
paradigm shift essential for the future of sustainable agriculture.
The limitations of traditional methods herbicide resistance,
environmental contamination, and soil degradation are no longer
tenable in the face of a growing global population and escalating
ecological pressures. PWM, powered by a sophisticated
integration of sensing technologies, artificial intelligence,
robotic platforms, and data-driven decision-support systems,
offers a viable pathway forward. It demonstrates a proven
capacity to drastically reduce herbicide usage, in some cases by
over 90%, while maintaining crop yields and promoting soil
health through targeted mechanical and chemical interventions.
However, the widespread adoption of this promising paradigm is
not without significant challenges. Technical hurdles related to
sensor robustness and algorithmic generalization, economic
barriers of high initial costs, and systemic issues of data
interoperability and digital infrastructure must be overcome. The
future of PWM hinges on a concerted, collaborative effort to
develop more affordable, user-friendly, and adaptable systems,
particularly for smallholder farmers. By advancing core
technologies, fostering open-data ecosystems, and integrating
PWM within holistic Integrated Weed Management frameworks,
we can transition these innovations from research prototypes to
mainstream practice. Ultimately, the successful implementation
of PWM is not merely a technological upgrade but a critical step
towards realizing a resilient, productive, and ecologically
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balanced agricultural system for generations to come.
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