

E-ISSN: 2618-0618 P-ISSN: 2618-060X © Agronomy

NAAS Rating (2025): 5.20 www.agronomyjournals.com

2025; 8(11): 477-481 Received: 19-08-2025 Accepted: 21-09-2025

Tapasya Tiwari

Department of Soil Science and Agricultural Chemistry, College of Agriculture, Chandra Shekhar Azad University of Agriculture and Technology, Kanpur, Uttar Pradesh, India

Anil Kumar

Department of Soil Science and Agricultural Chemistry, College of Agriculture, Chandra Shekhar Azad University of Agriculture and Technology, Kanpur, Uttar Pradesh, India

Sarvesh Kumar

Department of Soil Conservation and Water Management, College of Agriculture, Chandra Shekhar Azad University of Agriculture and Technology, Kanpur, Uttar Pradesh, India

Kapil Kumar Yadav

Department of Soil Science and Agricultural Chemistry, College of Agriculture, Chandra Shekhar Azad University of Agriculture and Technology, Kanpur, Uttar Pradesh, India

Sumit Kumar

Department of Soil Science and Agricultural Chemistry, College of Agriculture, Chandra Shekhar Azad University of Agriculture and Technology, Kanpur, Uttar Pradesh. India

Corresponding Author: Tapasya Tiwari

Department of Soil Science and Agricultural Chemistry, College of Agriculture, Chandra Shekhar Azad University of Agriculture and Technology, Kanpur, Uttar Pradesh. India

Influence of different levels of phosphorus, biofertilizers and farm yard manure on growth character and yield attributes of Chickpea (*Cicer arietinum* L.)

Tapasya Tiwari, Anil Kumar, Sarvesh Kumar, Kapil Kumar Yadav and Sumit Kumar

DOI: https://www.doi.org/10.33545/2618060X.2025.v8.i11g.4213

Abstract

A field experiment was conducted during the Rabi seasons of 2023-24 and 2024-25 to study the "Influence of different levels of phosphorus, biofertilizers and farmyard manure on growth characters and yield attributes of chickpea (Cicer arietinum L.)" under Central U.P. conditions. The soil of the experimental site was sandy loam, low in available nitrogen, medium in phosphorus, and high in potassium. The experiment was laid out in a Factorial Randomized Block Design with three replications, comprising three phosphorus levels (0, 30, and 60 kg P₂O₅ ha⁻¹), four biofertilizer treatments (B₀: control, B₁: Rhizobium, B₂: PSB, B₃: Rhizobium + PSB), and two levels of FYM (Mo: no FYM, M1: FYM @ 5 t ha⁻¹). Results revealed that the application of 60 kg P₂O₅ ha⁻¹ in combination with FYM and biofertilizers significantly enhanced plant height, number of branches per plant, nodulation, and 100-grain weight compared to control and lower phosphorus levels. The treatment combination M₁P₆₀B₃ (FYM + 60 kg P₂O₅ ha⁻¹ + Rhizobium + PSB) recorded the maximum values for growth and yield attributes in both years. Although some interactions among treatments were statistically non-significant, the overall performance indicated a positive synergistic effect of integrated nutrient management on chickpea productivity. The study concludes that the integrated use of phosphorus, biofertilizers, and FYM is a sustainable nutrient management approach for improving chickpea growth, yield attributes, and soil fertility, thereby promoting eco-friendly and cost-effective pulse production under Central Uttar Pradesh conditions.

Keywords: Biofertilizers, farm yard manure and Integrated nutrient management

Introduction

Chickpea (Cicer arietinum L.) is one of the most important pulse crops cultivated in India, contributing significantly to food and nutritional security. It serves as a rich source of protein (18-22%), carbohydrates, minerals, and vitamins, playing a crucial role in human diets, especially in vegetarian populations (Ali and Kumar, 2018) [1]. Despite its importance, the productivity of chickpea remains low due to inadequate nutrient management, particularly phosphorus deficiency, which limits root development, nodulation, and energy transfer within plants (Singh et al., 2020) [4]. Phosphorus is an essential macronutrient that promotes early root growth and nodule formation, enhancing nitrogen fixation in legumes. However, a large proportion of soil phosphorus remains in insoluble forms, reducing its availability to plants (Gaur, 2004) [2]. Integrated nutrient management, involving the combined use of inorganic fertilizers, organic manures, and biofertilizers, has emerged as an efficient and eco-friendly approach for sustainable crop production (Yadav et al., 2019) [5]. Farm Yard Manure (FYM) improves soil structure, microbial activity, and nutrient availability, while biofertilizers such as *Rhizobium* and Phosphate Solubilizing Bacteria (PSB) enhance biological nitrogen fixation and phosphorus solubilization (Sharma et al., 2021) [6]. The synergistic use of phosphorus levels with FYM and biofertilizers enhances nutrient uptake, improves growth characters, and increases yield attributes of chickpea (Kumar et al., 2022)^[7].

Materials and Methods

The present field experiment was carried out at Student Instructional Farm, Nawabganj,

Department of Soil Science of C. S. Azad University of Agriculture & Technology, Kanpur during Kharif season 2023 and 2024. The soil in the experimental field is classified as Inceptisols. It is sandy loam in texture and neutral to alkaline in soil reaction. The experiment was laid out in a Factorial Randomized Block Design (FRBD) with three factors phosphorus levels, biofertilizers, and farmyard manure (FYM) replicated thrice. The treatments consisted of three phosphorus levels (0, 30, and 60 kg P₂O₅ ha⁻¹), four biofertilizer levels (B₀: control, B₁: Rhizobium, B₂: PSB, B₃: Rhizobium + PSB) and two FYM levels (Mo: no FYM, M1: FYM at 5 t ha-1). Phosphorus was applied through single super phosphate as per treatment, and FYM was incorporated 15 days before sowing. The crop was sown at a spacing of 30 cm × 10 cm using recommended agronomic practices. Observations on growth and yield parameters such as plant height, number of branches per plant, number of nodules, and 100-grain weight were recorded at appropriate growth stages. The collected data were statistically analyzed using standard ANOVA techniques as suggested by Gomez and Gomez (1984) [3]. The significance of treatment differences was tested at a 5% probability level.

Results and Discussion

Growth Characters and Yield attribute

The data presented in Tables 1-4 show the effect of different levels of phosphorus, biofertilizers, and farmyard manure (FYM) on the growth parameters of chickpea during 2023-24 and 2024-25.

Plant height at 60 days after sowing (DAS) and at harvest Plant height increased progressively with increasing phosphorus levels and biofertilizer application (Tables 1 and 2). The maximum plant height at 60 DAS (21.94 cm in 2023-24 and 22.00 cm in 2024-25) was recorded under P60, while the lowest (20.14 cm and 20.18 cm, respectively) was observed under P0. FYM application (M1) also resulted in slightly higher values compared to no FYM (M0). Similar trends were observed at harvest, where the highest plant height (51.68 cm and 52.34 cm) was recorded with P60, while the lowest was under P0. Biofertilizer treatment B3 consistently produced taller plants compared to control (B0), indicating the positive role of Rhizobium and PSB in improving nutrient uptake. These findings are consistent with those of Singh *et al.* (2020) [4] and Kumar *et al.* (2022) [7], who reported that combined application

of phosphorus and biofertilizers enhanced plant height due to improved root growth and nodulation.

Number of branches per plant: Number of branches increased significantly with higher phosphorus levels and biofertilizer inoculation (Table 3). The maximum number of branches (5.57 and 5.67 during 2023-24 and 2024-25, respectively) was obtained under P60 with B3 and FYM, whereas the lowest (4.61 and 4.68) was under P0 with B0. FYM improved branching by enhancing soil structure and nutrient availability. Similar observations were reported by Sharma *et al.* (2021) [6], indicating that organic and biological sources stimulate vegetative growth by maintaining better nutrient balance and microbial activity in the rhizosphere.

Number of nodules per plant: The number of nodules per plant at 60 DAS (Table 4) also increased markedly with phosphorus and biofertilizer application. The maximum nodule number (21.68 and 21.78) was recorded under P60 along with B3 and FYM (M₁), while the minimum (18.66 and 18.59) was noted under Po. Phosphorus is vital for nodule initiation and energy transfer, while Rhizobium inoculation directly contributes to nodule formation. FYM further enhanced microbial activity, providing a favourable environment for nodule development. These results agree with the findings of Ali and Kumar (2018) [1] and Gaur (2004) [2], who reported that the combined use of phosphorus, FYM, and biofertilizers significantly increased nodulation and nitrogen fixation in legumes. Overall, integrated use of phosphorus (60 kg P₂O₅ ha⁻¹), FYM, and biofertilizers proved most effective in enhancing growth attributes of chicknea.

The data in Table 5 show that 100-grain weight of chickpea increased with higher phosphorus, biofertilizer, and FYM levels during 2023-24 and 2024-25. The highest grain weight (15.26 g and 15.36 g) was recorded with 60 kg P_2O_5 ha⁻¹, while the lowest (13.96 g and 13.94 g) was under control. Biofertilizer treatment B_3 and FYM (M_1) further enhanced seed weight due to improved nutrient availability, nodulation, and photosythates translocation. The combined application (P_{60} + FYM + B_3) produced the best results, indicating synergistic effects of integrated nutrient management on grain filling and seed quality. These results agree with Singh *et al.* (2020) ^[4], Sharma *et al.* (2021) ^[6], and Kumar *et al.* (2022) ^[7], who reported improved yield attributes of chickpea with balanced nutrient management.

Table 1: Effect of different levels of phosphorus, biofertilizers and farm yard manure in on Plant height at 60 days after sowing of Chickpea during 2023-24 and 2024-25

				Plar	t height	at 60 da	ays	after s	owi	ng (c	m)					
			2023	3-24							2	024	-25			
	Levels	B ₀	\mathbf{B}_1	\mathbf{B}_2	B ₃	Mean	L	evels]	Bo	B	l	B ₂		B 3	Mean
	P_0	20.04	20.10	20.14	20.20	20.12		P_0	20	80.0	20.	13	20.18	3 20	0.24	20.15
\mathbf{M}_0	P ₃₀	21.12	21.18	21.25	21.32	21.21		P ₃₀	21	.16	21.2	23	21.29	2	1.36	21.26
	P ₆₀	21.84	21.90	21.94	21.99	21.91		P ₆₀	21	.88	21.9	96	22.01	1 22	2.06	21.97
	Mean	21.00	21.06	21.11	21.17	21.08	N	Лean	21	.04	21.	10	21.16	5 2	1.22	21.13
	P_0	20.08	20.16	20.19	20.24	20.16		P_0	20	0.14	20.2	20	20.25	5 20	0.29	20.22
\mathbf{M}_1	P_{30}	21.16	21.23	21.29	21.34	21.25		P ₃₀	21	.22	21.2	27	21.32	2 2	1.38	21.29
IVI 1	P ₆₀	21.90	21.96	22.01	22.06	21.98		P ₆₀	21	.95	21.9	99	22.08	3 22	2.14	22.04
	Mean	21.04	21.11	21.16	21.21	21.13	N	Лean	21	.10	21.	15	21.21	1 2	1.27	21.18
	Mean of	f the mea	ın	B_0	B_1	B_2		B ₃		В	0		B_1	В	2	B ₃
		В		21.02	21.08	3 21.1	.3	21.1	9	21.	07	2	1.12	21.	18	21.24

Mean of the mean	P_0	P ₃₀	P ₆₀	P_0	P ₃₀	P ₆₀
P	20.14	21.23	21.94	20.18	21.27	22.00

		2023-20)24	2024-2025			
Factors	SE(m) ±	SE(d)	C.D at 5%	SEm ±	SE (d)	C.D at 5%	
Farm yard manure (F.Y.M)	0.061	0.086	N.S.	0.061	0.086	N.S.	
Phosphorus	0.086	0.121	N.S.	0.086	0.121	N.S.	
Biofertilizer	0.074	0.105	N.S.	0.074	0.105	0.212	
$(F.Y.M) \times Phosphorus$	0.121	0.172	N.S.	0.121	0.172	N.S.	
$(F.Y.M) \times Biofertilizer$	0.105	0.149	N.S.	0.105	0.149	N.S.	
Phosphorus× Biofertilizer	0.149	0.210	N.S.	0.149	0.210	N.S.	
$(F.Y.M) \times Phosphorus \times Biofertilizer$	0.210	0.298	N.S.	0.210	0.297	N.S.	

Table 2: Effect of different levels of phosphorus, biofertilizers and farm yard manure in on Plant height at harvest of Chickpea during 2023-24 and 2024-25

					Pla	nt heigh	t at harve	est						
			2023	3-24			2024-25							
	Levels	$\mathbf{B_0}$	B ₁	\mathbf{B}_2	B ₃	Mean	Levels	$\mathbf{B_0}$	B ₁	\mathbf{B}_2	B ₃	Mean		
	P_0	45.00	45.60	45.80	46.00	45.60	P_0	44.25	44.70	44.85	45.15	44.73		
M_0	P ₃₀	49.00	49.70	49.95	50.15	49.70	P ₃₀	50.30	50.75	51.00	51.20	50.81		
	P ₆₀	50.50	51.10	51.40	51.65	51.16	P ₆₀	51.10	51.80	52.10	52.40	51.85		
	Mean	48.16	48.80	49.05	49.26	48.82	Mean	48.55	49.08	49.31	49.58	49.13		
	P_0	46.50	47.10	47.50	47.80	47.22	P_0	47.20	47.80	48.10	48.40	47.87		
М.	P ₃₀	50.00	50.70	51.10	51.35	50.78	P ₃₀	51.10	51.80	52.10	52.40	51.85		
\mathbf{M}_1	P ₆₀	51.40	52.10	52.50	52.80	52.20	P ₆₀	52.05	52.75	53.10	53.45	52.83		
	Mean	49.30	49.96	50.36	50.65	50.07	Mean	50.11	50.78	51.10	51.41	50.85		

Mean of the mean	\mathbf{B}_0	B_1	\mathbf{B}_2	B ₃	\mathbf{B}_0	B_1	\mathbf{B}_2	\mathbf{B}_3
В	48.73	49.38	49.70	49.95	49.33	49.93	50.20	50.49

Mean of the mean	P_0	P ₃₀	P ₆₀	P_0	P ₃₀	P ₆₀
P	46.41	50.24	51.68	46.30	51.33	52.34

		2023-20)24		2024-2025		
Factors	SE(m) ±	SE(d)	C.D at 5%	SEm ±	SE (d)	C.D at 5%	
Farm yard manure (F.Y.M)	0.061	0.086	0.174	0.061	0.086	0.173	
Phosphorus	0.086	0.122	0.246	0.086	0.122	0.245	
Biofertilizer	0.075	0.106	0.213	0.075	0.105	0.212	
$(F.Y.M) \times Phosphorus$	0.122	0.173	N.S.	0.122	0.172	N.S.	
$(F.Y.M) \times Biofertilizer$	0.106	0.150	N.S.	0.105	0.149	N.S.	
Phosphorus× Biofertilizer	0.150	0.212	N.S.	0.149	0.211	N.S.	
$(F.Y.M) \times Phosphorus \times Biofertilizer$	0.212	0.299	N.S.	0.211	0.298	N.S.	

Table 3: Effect of different levels of phosphorus, biofertilizers and farm yard manure in on Number of branches Plant⁻¹ of Chickpea during 2023-24 and 2024-25

					Nun	nber of br	anches Pla	nt ⁻¹				
			2023	3-24			2024-25 Levels B ₀ B ₁ B ₂ B ₃ Mea P ₀ 4.00 4.55 4.70 4.85 4.5 P ₃₀ 4.90 5.30 5.45 5.60 5.3 P ₆₀ 5.20 5.50 5.60 5.78 5.5 Mean 4.70 5.11 5.25 5.41 5.1 P ₀ 4.50 4.80 4.95 5.15 4.8					
	Levels	B ₀	B ₁	B ₂	B ₃	Mean	Levels	B ₀	B ₁	B ₂	B ₃	Mean
	P_0	4.20	4.45	4.55	4.65	4.46	P_0	4.00	4.55	4.70	4.85	4.52
M_0	P ₃₀	4.80	5.20	5.35	5.45	5.20	P ₃₀	4.90	5.30	5.45	5.60	5.31
	P ₆₀	5.10	5.40	5.55	5.70	5.43	P ₆₀	5.20	5.50	5.60	5.78	5.52
	Mean	4.70	5.01	5.15	5.26	5.03	Mean	4.70	5.11	5.25	5.41	5.11
	P_0	4.40	4.75	4.90	5.05	4.77	P_0	4.50	4.80	4.95	5.15	4.85
M ₁	P ₃₀	5.15	5.60	5.75	5.90	5.60	P ₃₀	5.25	5.75	5.85	6.00	5.71
IVI]	P ₆₀	5.30	5.75	5.85	6.00	5.72	P ₆₀	5.40	5.85	5.95	6.10	5.82
	Mean	4.95	5.36	5.50	5.65	5.36	Mean	5.05	5.46	5.58	5.75	5.46

Mean of the mean	B_0	B_1	B_2	B ₃	B_0	B_1	B_2	B ₃
В	4.82	5.18	5.32	5.45	4.87	5.28	5.41	5.58

Mean of the mean P	1 30	F 60	10	1 30	F 60
P 4.6	1 + 5.40		4.68	5.51	5.67

		2023-20	024	2024-2025			
Factors	SE(m) ±	SE(d)	C.D at 5%	SEm ±	SE (d)	C.D at 5%	
Farm yard manure (F.Y.M)	0.036	0.050	N.S.	0.036	0.050	N.S.	
Phosphorus	0.050	0.071	N.S.	0.050	0.071	N.S.	
Biofertilizer	0.044	0.062	N.S.	0.044	0.062	N.S.	
$(F.Y.M) \times Phosphorus$	0.071	0.101	N.S.	0.071	0.101	N.S.	
$(F.Y.M) \times Biofertilizer$	0.062	0.087	N.S.	0.062	0.087	N.S.	
Phosphorus× Biofertilizer	0.087	0.123	N.S.	0.087	0.123	N.S.	
$(F.Y.M) \times Phosphorus \times Biofertilizer$	0.123	0.174	N.S.	0.123	0.174	N.S.	

Table 4: Effect of different levels of phosphorus, biofertilizers and farm yard manure in on Number of nodules at 60 days after sowing of Chickpea during 2023-24 and 2024-25

				Num	ber of n	odules at	t 60 days	after so	wing			
			2023	3-24					2024	l-25		
	Levels	B ₀	B ₁	B ₂	B ₃	Mean	Levels	Bo	B ₁	B ₂	B ₃	Mean
	P_0	17.30	18.00	18.20	18.32	17.95	P_0	17.25	18.15	18.4	18.56	18.09
M_0	P ₃₀	19.45	20.12	20.35	20.56	20.12	P ₃₀	19.54	20.24	20.43	20.62	20.20
	P ₆₀	20.60	21.30	21.45	21.63	21.24	P ₆₀	20.76	21.32	21.51	21.70	21.32
	Mean	19.11	19.80	20.00	20.17	19.77	Mean	19.18	19.90	20.11	20.29	19.87
	P_0	18.15	18.92	20.16	20.31	19.38	P_0	18.50	19.12	19.31	19.44	19.09
N /	P ₃₀	20.30	21.24	21.46	21.64	21.16	P ₃₀	20.70	21.40	21.64	21.78	21.38
\mathbf{M}_1	P ₆₀	21.40	22.18	22.39	22.54	22.12	P ₆₀	21.80	22.18	22.42	22.56	22.24
	Mean	19.95	20.78	21.33	21.49	20.89	Mean	20.33	20.90	21.12	21.26	20.90

Mean of the mean	B_0	B_1	B_2	B ₃	B_0	B_1	\mathbf{B}_2	B ₃
В	19.53	20.29	20.66	20.83	19.75	20.40	20.61	20.77

Mean of the mean	P_0	P ₃₀	P ₆₀	P_0	P ₃₀	P ₆₀
P	18.66	20.64	21.68	18.59	20.79	21.78

		2023-20	024	2024-2025			
Factors	SE(m) ±	SE(d)	C.D at 5%	SEm ±	SE (d)	C.D at 5%	
Farm yard manure (F.Y.M)	0.082	0.115	0.232	0.082	0.116	0.233	
Phosphorus	0.115	0.163	0.329	0.116	0.163	0.329	
Biofertilizer	0.100	0.141	0.285	0.100	0.141	0.285	
$(F.Y.M) \times Phosphorus$	0.163	0.231	N.S.	0.163	0.231	N.S.	
$(F.Y.M) \times Biofertilizer$	0.141	0.200	N.S	0.141	0.200	N.S	
Phosphorus× Biofertilizer	0.200	0.283	N.S	0.200	0.283	N.S	
$(F.Y.M) \times Phosphorus \times Biofertilizer$	0.283	0.400	N.S	0.283	0.400	N.S	

Table 5: Effect of different levels of phosphorus, biofertilizers and farm yard manure in on Number 100 grains weight in grams of Chickpea during 2023-24 and 2024-25

	100 grains weight in grams														
	2023-24							2024-25							
	Levels	B ₀	B ₁	B ₂	B ₃	Mean	Levels	B ₀	\mathbf{B}_1	\mathbf{B}_2	B ₃	Mean			
	P_0	13.50	13.80	13.85	13.95	13.78	P_0	13.20	13.50	13.65	13.75	13.53			
M_0	P ₃₀	14.40	14.75	14.90	15.10	14.79	P ₃₀	14.60	14.90	15.05	15.20	14.94			
	P ₆₀	14.60	15.10	15.30	15.50	15.13	P ₆₀	14.70	15.15	15.40	15.60	15.21			
	Mean	14.17	14.55	14.68	14.85		Mean	14.17	14.52	14.70	14.85				
	P_0	13.85	14.10	14.20	14.35	14.13	P_0	14.00	14.30	14.45	14.60	14.34			
М.	P ₃₀	14.80	15.10	15.30	15.45	15.16	P ₃₀	14.90	15.25	15.40	15.60	15.29			
\mathbf{M}_1	P ₆₀	15.00	15.35	15.50	15.65	15.38	P ₆₀	15.15	15.45	15.60	15.85	15.51			
	Mean	14.55	14.85	15.00	15.15		Mean	14.68	15.00	15.15	15.35				

Mean of the mean	\mathbf{B}_0	\mathbf{B}_1	\mathbf{B}_2	\mathbf{B}_3	\mathbf{B}_0	\mathbf{B}_1	\mathbf{B}_2	\mathbf{B}_3
В	14.36	14.70	14.84	15.00	14.43	14.76	14.93	15.10

Mean of the mean	P_0	P ₃₀	P ₆₀	P_0	P ₃₀	P ₆₀
P	13.96	14.98	15.26	13.94	15.12	15.36

		2023-20)24	2024-2025			
Factors	SE(m) ±	SE(d)	C.D at 5%	SEm ±	SE (d)	C.D at 5%	
Farm yard manure (F.Y.M)	0.136	0.192	N.S.	0.136	0.192	N.S.	
Phosphorus	0.192	0.271	N.S.	0.192	0.271	N.S.	
Biofertilizer	0.271	0.384	N.S.	0.271	0.384	N.S.	
$(F.Y.M) \times Phosphorus$	0.166	0.235	N.S.	0.166	0.235	N.S.	
$(F.Y.M) \times Biofertilizer$	0.235	0.332	N.S.	0.235	0.332	N.S.	
Phosphorus× Biofertilizer	0.332	0.47	N.S.	0.332	0.47	N.S.	
$(F.Y.M) \times Phosphorus \times Biofertilizer$	0.47	0.665	N.S.	0.47	0.665	N.S.	

Conclusion

The present study revealed that the combined application of phosphorus, biofertilizers, and farmyard manure (FYM) significantly improved the growth and yield attributes of chickpea. Among the treatments, 60 kg P₂O₅ ha⁻¹ along with biofertilizer (B₃) and FYM (M₁) recorded the highest values for

plant height, branches per plant, nodules, and 100-grain weight. The integrated use of organic, inorganic, and biological sources enhanced nutrient availability, root development, and microbial activity, leading to better plant growth and productivity. Although interaction effects were mostly non-significant, the overall trend indicated synergistic benefits. Thus, integrated

nutrient management (INM) involving phosphorus, FYM, and biofertilizers is recommended for sustaining chickpea yield, improving soil fertility, and promoting eco-friendly and sustainable crop production systems.

Acknowledgement

I sincerely acknowledge the Head of Department of Soil Science and Agricultural Chemistry, College of Agriculture, Chandra Shekhar Azad University of Agriculture and Technology, Kanpur-208002, U.P., India, for providing valuable guidance, technical support, and necessary research facilities during the course of my study titled "Influence of different levels of phosphorus, biofertilizers and farm yard manure in on growth character and yield attribute of Chickpea (*Cicer arietinum* L.)."

References

- Ali M, Kumar S. Advances in Pulses Production Technology. Kanpur: Indian Institute of Pulses Research; 2018.
- Gaur AC. Phosphate Solubilizing Microorganisms and Their Role in Plant Growth. New Delhi: Omega Scientific Publishers; 2004.
- Gomez KA, Gomez AA. Statistical Procedures for Agricultural Research. 2nd ed. New York: John Wiley & Sons; 1984.
- 4. Singh R, Yadav DS, Kumar P. Effect of phosphorus and biofertilizers on growth and yield of chickpea (*Cicer arietinum* L.). Legume Research. 2020;43(2):237-242.
- 5. Yadav RL, Singh B, Dwivedi BS. Integrated nutrient management for sustainable agriculture. Indian J Agron. 2019;64(3):341-349.
- 6. Sharma V, Patel N, Meena RS. Role of organic manures and biofertilizers in enhancing soil fertility and productivity of pulses. Agric Rev. 2021;42(4):352-360.
- 7. Kumar A, Verma S, Singh RK. Influence of phosphorus and FYM on growth and yield of chickpea. J Pharmacogn Phytochem. 2022;11(2):103-107.