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Abstract 
Yield estimation is essential for effective crop management, market regulation, and agricultural planning. 

Uttar Pradesh, a leading contributor to India’s potato production, requires reliable yield estimates to ensure 

food security and stabilize market dynamics. 

This study proposes a robust, village-level yield estimation framework that leverages satellite remote 

sensing, meteorological data, ground observations, and advanced machine learning techniques. The 

approach addresses key limitations of traditional yield estimation methods, such as high data acquisition 

costs, low spatial resolution, and variability in data quality, which hinder accurate yield forecasting at fine 

spatial scales. 

To overcome these challenges, the framework employs a multi-source ensemble approach that is scalable, 

cost-effective, and reliable. It integrates: 

Sentinel-1 Synthetic Aperture Radar (SAR): Provides critical information on surface roughness and soil 

moisture, especially valuable during the planting and tuber development stages. 

Sentinel-2 Multispectral Imagery: Offers high-resolution optical data for calculating vegetation indices 

such as NDVI, LSWI, and LAI, which are indicative of crop health and biomass accumulation. 

Sentinel-3 FAPAR Products: Serve as proxies for photosynthetic activity, reflecting the physiological 

status of the crop. 

Meteorological Data from IMD (Indian Meteorological Department): Includes rainfall and temperature 

variables to account for climatic influences on crop growth. 

Ground-based Crop yield data Provide accurate, location-specific yield data that enhance model calibration 

and validation. 

Given the absence of suitable historical yield data, the model uses current-season ground yield data for 

validation. These ground yield data were strategically collected based on categorized satellite and ground 

inputs to represent diverse ground realities, thereby improving the model’s training and overall estimation 

accuracy. 

This research demonstrates the power of integrating remote sensing and machine learning to address yield 

estimation challenges. The proposed framework is not only effective for potato yield estimation in Uttar 

Pradesh but is also scalable and adaptable to other crops and regions. By enabling data-driven decision-

making, it supports more efficient and sustainable agricultural practices, enhances food security, and 

contributes to greater resilience in the agricultural sector. 

 

Keywords: Potato-yield-estimation, remote sensing, AI/ML, ground yield, village-level estimation 

 

1. Introduction  

Potato is a crucial staple crop in Uttar Pradesh, India, contributing significantly to the state's 

agricultural economy and food security. As the largest potato-producing state in India, 

accounting for over 35% of the national potato yield, accurate and timely prediction of potato 

production is essential for effective market management, crop planning, and ensuring food 

availability for the rapidly growing population. 

With its high carbohydrate content potato is considered a leading food ingredient and is one of 

the most popular and widely used vegetable in the world. It is the fourth largest food crop in the 

world following the Maize, wheat and rice respectively. Potato is consumed by more than one 

billion people all over the world and is grown in more than 100 countries in the world with a  
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production of around 364 million tons in the year 2012. China is 

now the biggest potato producer and almost one-third of all 

potatoes is harvested in China and India. At present, potato is 

high quality vegetable cum food crop in respect of world food 

scenario. 

Existing methods for potato yield estimation in Uttar Pradesh 

primarily rely on manual field surveys, which are labour-

intensive, costly, and often suffer from delays in data collection 

and processing. Consequently, there is a need for a more 

efficient and reliable approach to potato yield prediction that can 

provide granular, village-level estimates.  

Recent advancements in remote sensing technology and artificial 

intelligence offer promising solutions to address this challenge. 

Remote sensing data from satellites, such as Sentinel-1 and 

Sentinel-2, provide detailed, multi-temporal information on crop 

conditions, which, when combined with machine learning 

algorithms, can enable accurate and scalable yield forecasting. 

(Lin et al., 2023) (Mahdi et al., 2020). 

It's important to note that while ground yield are valuable, they 

are subject to certain limitations, such as sampling errors and 

potential biases if the selected plots are not truly representative. 

Modern techniques like remote sensing and crop modeling are 

increasingly being integrated with ground yield to improve the 

accuracy and efficiency of yield estimation. The use of remote 

sensing and modeling for yield estimation. While these sources 

don't specifically address Ground Yield methods in Uttar 

Pradesh, they highlight the broader context of yield estimation 

and the role of technology in improving its accuracy. 

 

1.1 Objectives 

 To estimate village-level potato yields by using multi-

source remote sensing data with meteorological and ground-

truth data. 

 To evaluate the impact of agro-meteorological factors and 

biophysical parameters on potato yield variability, and to 

analyze their interactions with crop phenology. 

 

1.2 Literature Review/Related Works 

Estimating potato crop yield using satellite remote sensing has 

gained traction due to its ability to provide timely and accurate 

data for agricultural management. Various methodologies have 

emerged, integrating remote sensing with environmental 

variables and machine learning techniques to enhance prediction 

accuracy across different ecological settings. 

Satellite data, particularly from sources like Sentinel-2B, is 

widely utilized for yield estimation, employing vegetation 

indices (VIs) such as NDVI and OSAVI to monitor growth 

stages and predict yields. 

A semi-physical model using Hierarchical Linear Modeling 

(HLM) has shown strong generalization capabilities across 

different environments, achieving R² values of 0.57 to 0.60 

during critical growth stages (Fan et al., 2024). Techniques like 

random forest regression and synthetic minority oversampling 

have been employed to improve yield predictions, particularly 

when training data is limited (Ebrahimy et al., 2023). The tuber 

initiation stage is identified as optimal for remote sensing data 

acquisition, enhancing the accuracy of yield predictions. 

Environmental factors, including solar radiation and soil 

moisture, significantly influence yield outcomes, necessitating 

their integration into predictive models (Fan et al., 2024). While 

satellite remote sensing offers substantial benefits for potato 

yield estimation, challenges remain in data variability and model 

transferability across different regions and conditions. Future 

research should focus on expanding datasets and refining models 

to enhance predictive accuracy. 

Estimating potato yield using satellite remote sensing involves 

several factors that influence the accuracy of predictions. These 

factors include the type of satellite data, the vegetation indices 

used, the timing of data collection, the machine learning models 

applied, and the incorporation of additional information such as 

cultivar differences and soil conditions. 

Higher resolution satellite images, such as those from Sentinel-

2, generally provide more accurate yield predictions compared 

to lower resolution images like those from Landsat-8 or MODIS 

(Al-Gaadi et al., 2016; Gómez et al., 2019; Bala & Islam, 2009; 

Vallentin et al., 2021) [1, 2, 4, 7]. Frequent data collection can help 

mitigate issues caused by cloud cover and other temporal gaps, 

improving the robustness of yield predictions (Awad, 2019) [5]. 

The normalized difference vegetation index (NDVI) and the soil 

adjusted vegetation index (SAVI) are commonly used and have 

shown good correlation with actual yields (Al-Gaadi et al., 

2016; Bala & Islam, 2009) [1, 4]. Different vegetation indices may 

perform better depending on the specific conditions and crop 

stages. For example, NDVI, LAI, and fPAR have shown high 

correlation coefficients (R² values) in various studies (Bala & 

Islam, 2009; Huang & Han, 2014) [4, 6]. 

Data collected during specific growth stages, such as the tuber 

initiation stage, can be more predictive of final yields. Early-

season data often provide better correlations with marketable 

yields (Li et al., 2021) [3]. The timing of data collection (e.g., 

July, August, September) can significantly impact the accuracy 

of yield predictions, with some models performing better with 

data from specific months (Gómez et al., 2019) [2]. 

Different machine learning models, such as Random Forest 

Regression (RFR), Support Vector Regression (SVR), and 

Regression Quantile Lasso, have varying levels of accuracy. 

Feature selection and preprocessing steps are crucial for 

improving model performance (Gómez et al., 2019; Li et al., 

2021) [2, 3]. 

Models that incorporate feature selection to reduce 

multicollinearity among predictors tend to perform better. For 

instance, the Regression Quantile Lasso and Leap Backwards 

models showed lower RMSE and higher R² values when 

correlated predictors were removed (Gómez et al., 2019) [2]. 

Incorporating cultivar-specific data can significantly improve 

the accuracy of yield predictions. Different cultivars may 

respond differently to environmental conditions, and including 

this information helps tailor the models more precisely (Li et al., 

2021) [3]. 

Soil fertility and climate conditions (e.g., precipitation, 

temperature) also affect the accuracy of yield predictions. 

Studies have shown that correlations between yield and remote 

sensing data vary with soil types and climate systems (Huang & 

Han, 2014) [6]. 
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Table 1: Comparison of Different ML Models Used for Potato Yield Estimation 
 

Model Type Key Features Performance Metrics References 

Regression Quantile Lasso 
Utilizes feature selection to reduce multicollinearity; based on 

red, red-edge, and infra-red bands from Sentinel 2 data. 
RMSE: 11.67%, R²: 0.88, 

MAE: 9.18% 
(Gómez et al., 2019) [2] 

Leap Backwards Similar to Lasso with feature selection; uses Sentinel 2 data. 
RMSE: 10.94%, R²: 0.89, 

MAE: 8.95% 
(Gómez et al., 2019) [2] 

Support Vector Machine Radial 
(svmRadial) 

No feature selection; uses Sentinel 2 data. 
RMSE: 11.7%, R²: 0.93, 

MAE: 8.64% 
(Gómez et al., 2019) [2] 

Random Forest (RF) 
Uses Sentinel 2 bands and Potato Productivity Index (PPI); 

better than NDVI. 
RMSE: 15.42%, R²: 0.77 (Gómez et al., 2021) [9] 

Multiple Linear Regression 
(MLR) 

Uses agronomic, phytophenological, and meteorological data. MAPE: <15% 
(Piekutowska et al., 

2021) [11] 

Adaptive Neuro-Fuzzy Inference 
System (ANFIS) 

Uses energy inputs; better than ANN. 
RMSE: 0.029, R: 0.987, 

MAPE: 0.2 

(Khoshnevisan et al., 

2014) [12] 

Support Vector Machine 
Polynomial (svmP) 

Uses meteorological and NDVI data; best for summer cycle. RMSE: 14.9%, R²: 0.858 
(Salvador et al., 2020) 

[14] 

 
The table above compares various machine learning models 
used for potato yield estimation. Models like Regression 
Quantile Lasso and Leap Backwards show high accuracy with 
feature selection, while Support Vector Machine Radial 
performs well without it. Random Forest models using the 
Potato Productivity Index outperform those using NDVI. ANFIS 
model demonstrates strong predictive capabilities, with ANFIS 
showing superior performance due to its fuzzy logic integration. 
 

2. Materials and Methods 

2.1 Study Area 
Uttar Pradesh, India's largest potato-producing state, plays a 
crucial role in the country's agricultural economy. Among its 
prominent agricultural districts, Kannauj stands out for its 
significant contribution to potato farming. Located in the fertile 
Indo-Gangetic Plain, Kannauj spans approximately 1,993 square 
kilometres and lies between 26°54'N to 27°06'N latitude and 
79°44'E to 80°01'E longitude. The district comprises three 

tehsils and over 716 villages. It is bordered by Farrukhabad to 
the west, Kanpur Nagar to the south, and Hardoi to the east, 
forming a vital agricultural hub. The district is known for 
cultivating key crops such as potato, wheat, rice, mustard, and 
sugarcane, with potato being particularly noteworthy due to its 
contribution to Uttar Pradesh's dominance in national potato 
production. The fertile alluvial soils and reliable irrigation 
systems, including canals and tube wells, provide ideal 
conditions for intensive agriculture. 
Kannauj experiences a subtropical climate, with temperatures 
ranging from 5 °C in winter to 45 °C in summer. The potato-
growing season is primarily during the winter months from 
October to February. The district receives an average annual 
rainfall of 800-1,000 mm, mostly during the monsoon season, 
with supplemental irrigation supporting rabi crops like potato. 
Kannauj was chosen as the study area for this research because 
of its high potato productivity.  

 

 
 

Fig 1: Study Area Map of Kannauj District 

 

2.2 Materials 

2.2.1 Ground Truth Data 
Ground truth data for this study was systematically collected 
using the GT App developed by Star Agribazaar Technology 
Pvt. Ltd., enabling efficient and precise data acquisition. Ground 
personnel, trained and deployed across Kannauj district, 
gathered crop-specific information in the form of geospatial 
polygon data. These polygons delineated the boundaries of 

potato fields and included vital agronomic details such as crop 
type, growth stages, sowing dates, crop health, expected yield 
and management practices. 
Additionally, geotagged photographs of the fields were captured 
alongside the polygon data, ensuring spatial accuracy and visual 
validation of the recorded information. This comprehensive 
dataset provided a rich repository of ground-level observations 
that complemented remote sensing data, enhancing the model's 
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ability to identify and characterize potato fields. 

 
 

Fig 2: Application used for GT and Ground Yield Data collection 

 
 

Fig 3: Potato GT Point Distribution Map 

 

2.2.2 Ground Yield Data 

Yield data was collected at the time of crop harvesting for 

validation purposes. The traditional Crop Cutting Experiment 

(CCE) methodology was not applied in this approach. Instead, a 

Smart Sampling method was used to select fields based on 

satellite remote sensing-based proxy yield parameters and crop 

health indicators such as NDVI, LSWI, and FAPAR, supported 

by ground truth data. 

In the Kannauj district, selected fields were physically 

measured, and the entire field area was considered for yield 

assessment. During harvesting, the crop was harvested and 

threshed, and both biomass and grain weight were recorded from 

the actual measured area to calculate yield for model validation. 

 

 
 

Fig 4: Potato Ground Yield Point Distribution Map 

 

2.2.3 Crop Mask 

Accurate identification of the crop sown area is essential for 

reliable yield estimation, as it ensures that the analysis is 

confined to relevant agricultural zones. In this study, the potato 

crop mask was provided by the Department of Technology, Star 

Agribazaar Technology Pvt. Ltd. Spanning an area of 66,091 

hectares, the mask was developed using time-series Sentinel-2 

satellite imagery at a spatial resolution of 10 meters for the Rabi 

season of 2024-25. This high-resolution crop mask precisely 

delineates regions under potato cultivation and serves as a 

foundational dataset for data preprocessing and yield estimation. 

The crop mask overlaying village boundary is illustrated in 

Figure 5, showcasing the spatial distribution of potato fields 

across the study area. 
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Fig 5: Potato Crop Distribution Map of Kannauj District 

 

2.2.4 Remote Sensing Data 

This study utilized data from Sentinel-1, Sentinel-2, and 

Sentinel-3 satellites to integrate optical, radar, and biophysical 

parameters for potato yield estimation during the Rabi 2024-25 

season. The combination of these datasets provided a 

comprehensive view of crop health, structure, and 

photosynthetic activity. 

 

Sentinel-1 
It provided Synthetic Aperture Radar (SAR) data in VV and VH 

polarizations, which are sensitive to crop structure, density, and 

moisture content. The VH backscatter coefficients were 

calculated to monitor crop canopy, soil conditions and to assess 

vegetation density and differentiate between crop stages. 

 

Sentinel-2 

Sentinel-2's high-resolution (10 m) multispectral imagery was 

used to derive key vegetation indices that are critical for 

assessing crop Vigor and health. The indices included: 

 

 Normalized Difference Vegetation Index (NDVI) 

 

NDVI = (NIR - RED) / (NIR + RED) 

 

 Enhanced Vegetation Index (EVI) 

 

EVI = 2.5 × (NIR - RED) / (NIR + 6 × RED - 7.5 × BLUE + 1) 

 

 Normalized Difference Red Edge (NDRE) 

 

NDRE = (NIR - REDEDGE) / (NIR + REDEDGE) 

 

Sentinel-3 FAPAR Product 

Sentinel-3 provided Fraction of Absorbed Photosynthetically 

Active Radiation (FAPAR) at a coarser resolution, representing 

the fraction of sunlight absorbed by vegetation for 

photosynthesis. FAPAR is a biophysical parameter directly 

linked to crop productivity and was critical for assessing 

photosynthetic efficiency. Sentinel-3's near-daily temporal 

resolution ensured continuous monitoring of potato 

photosynthesis activity. 

 

Leaf Area Index: LAI (Leaf Area Index) derived from Sentinel-

2 imagery using vegetation indices and radiative transfer models 

provides critical insights into crop canopy structure and 

photosynthetic activity. Sentinel-2's high-resolution red and 

near-infrared (NIR) bands enable accurate LAI estimation. 

Frequent revisit times ensure timely monitoring of potato 

growth, biomass production, and stress conditions, supporting 

effective crop management and productivity enhancement. 

 

LAI=a⋅VI+b 

 

Where: 

VI is the vegetation index, and a and b are coefficients 

determined through calibration with field data. 

Soil Moisture (Sentinel-1)-Soil moisture can be estimated using 

Sentinel-1 Synthetic Aperture Radar (SAR) data due to its 

sensitivity to surface moisture content. Sentinel-1's dual-

polarized (VV and VH) C-band radar provides valuable 

information on soil conditions, even under cloudy or low-light 

conditions. Regular soil moisture mapping with Sentinel-1 

supports monitoring of potato fields, aiding in irrigation 

scheduling, drought assessment, and optimizing water use 

efficiency. Its high temporal resolution ensures frequent updates, 

enabling precise management of agricultural practices to 

enhance productivity and sustainability. 

 

SM=α⋅ln(σVV0)+β 

 

Where: 

α\alphaα and β\betaβ are coefficients obtained through 

calibration with in-situ soil moisture data. 

 

2.2.5 Meteorological Data 

Daily rainfall and temperature data for the Rabi 2024-25 season 

were sourced from the Indian Meteorological Department 

(IMD). These datasets included minimum and maximum 

temperatures, which are critical for assessing thermal stress and 

its impact on crop growth and development. Rainfall data 
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provided insights into precipitation patterns, essential for 

evaluating water availability during the crop's phenological 

stages. This meteorological information was integrated with 

satellite-derived parameters to enhance the accuracy of potato 

yield estimation by accounting for environmental variability. 

 

 
 

Fig 6: Flow Chart of Input dataset and validation process 

 

2.3 Methods 

The following methodology chart (Figure 6) outlines the step-by-step approach employed in this study for estimating village level 

potato yields. 

 

 
 

Fig 7: Methodology Chart used in this study 

 

2.4 Data Preparation/processing 

Data preparation and processing are crucial steps in the analysis 

of potato yield prediction using satellite remote sensing data. 

The process begins with the acquisition of Ground data such as 

Ground Truth (GT) points and Ground Yield data. These 

datasets provide essential reference information for validation 

and yield categorization. Along with ground data, Satellite 

Remote Sensing Data from Sentinel-1, Sentinel-2, and Sentinel-
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3 are collected to capture a comprehensive view of the 

agricultural conditions over time. 

The next step is Data preprocessing, where the raw satellite data 

is cleaned and prepared for analysis. This includes steps like 

georeferencing, atmospheric correction, and noise removal to 

ensure data quality. Once the data is pre-processed, Feature 

extraction is performed to derive vegetation indices (such as 

NDVI, LAI, FAPAR), seasonal composites, and soil moisture 

content, which are critical for assessing crop health and 

productivity. 

These features serve as the input for model development, where 

a multi-source ensemble approach is used to build predictive 

models for potato yield estimation. The models are then 

validated by comparing the predicted results with actual ground 

data. Finally, the Village level yield estimation is carried out, 

using the validated models to estimate the potato yield at a fine 

spatial resolution. This comprehensive processing workflow 

allows for accurate yield predictions and effective agricultural 

management. 

 

3. Results and Discussion 

3.1 Village-Level Potato Yield Estimation 

 

 
 

Fig 8: Village Level Potato Yield Distribution Map 

 

3.2 Interactions potato yield with satellite derived 

biophysical parameters during different crop phenological 

stages 

The study evaluated the temporal dynamics of satellite-derived 

biophysical parameters such as NDVI, LSWI, FAPAR, and LAI 

for yield categories—good, moderate, and poor—across 

different phenological stages. Line charts were used to depict the 

variation of these indices over time. 

These temporal profiles provide insights into how different 

growth conditions influence yield. However, the results also 

revealed that some indices, particularly at peak growth stages, 

reached saturation or displayed non-linear correlations with 

yield, deviating from theoretical expectations. This highlights 

the need to account for index saturation and integrate additional 

parameters for more accurate yield modeling. 

Good-yield locations consistently exhibited higher NDVI, 

LSWI, FAPAR, and LAI values, indicating robust canopy 

growth, water availability, and photosynthetic activity. 

Moderate-yield locations showed lower peaks, while poor-yield 

areas demonstrated subdued profiles, reflecting stress factors 

like limited water or suboptimal growing conditions. However, 

it was observed that these indices sometimes reached saturation 

points or did not directly correlate with yield as expected, 

indicating potential limitations in their standalone predictive 

capacity.  
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Fig 4: Crop Phenology Stages for Potato Crop 

 

3.3 Relationships between Effect of Agro-Meteorological 

Factors and potato yield 

Correlation of Potato Yield with Temperature & Rainfall- 

We have analysed Rainfall and temperature data, and no 

significant relationship found between Potato Yield with 

Temperature and Rainfall. 

 

3.4 Validation 
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Fig 10: Distribution of Ground Yield and Estimated Potato Yields 

 

Figure 10 compares the distribution of Ground Yield and 

estimated potato yields in quintals per hectare (Q/ha). The 

ground yields have a mean of 297.68 Q/ha with a standard 

deviation of 11.34, indicating moderate variability around the 

mean, which reflects the natural fluctuations observed in the 

field. The estimated yields, however, have a mean of 308.58 

Q/ha, which is very close to the ground truth mean, suggesting 

that the model has accurately predicted the overall yield. The 

standard deviation of the estimated yields is 14.18 Q/ha, which 

is slightly higher than the grounds yields, indicating that the 

model has captured the core distribution of the yields with 

slightly reduced variability. This suggests that the model has 

high accuracy in predicting the yields, with a narrower spread in 

the predicted values compared to the actual data. The slight 

reduction in variability for the predicted yields reflects the 

model's consistency and its ability to predict yield trends with 

high precision, closely matching the observed field data. This 

indicates that the model is highly effective and accurate in 

estimating potato yields, with minimal error and a high degree of 

reliability in predicting yield variations. 

 

 
 

Fig 12: Correlation between Ground yield and Estimated Potato Yields 

 

The validation of predicted yield against ground-collected yield 

data demonstrated an excellent correlation, with a coefficient of 

determination (R2) of 0.85. This high R2 value indicates a strong 

agreement between the predicted and observed yields, validating 

the accuracy and reliability of the prediction model for yield 

estimation. 

 

4. Conclusion 

Estimating potato yields accurately requires a comprehensive 

approach that incorporates cultivar-specific information, as 

yields are significantly influenced by tuber size and cultivar 

type. Solely relying on satellite-derived data often falls short, 

emphasizing the need for integrating additional agronomic and 

ground-level data. Previous studies also underscore the 

importance of these supplementary inputs for improving 

prediction accuracy. 

This study highlights that potato yield estimation using remote 

sensing is influenced by various factors, including the resolution 

and type of satellite data, the selection of vegetation indices, the 

timing of data acquisition, and the machine learning models 

used. Incorporating critical factors like cultivar differences and 

soil conditions further enhances model reliability. By optimizing 

these components, yield prediction accuracy can be significantly 

improved, offering valuable insights for agricultural planning, 

market regulation, and food security. This integrative approach 

lays a foundation for scalable, data-driven solutions in 

agricultural management. 
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