

E-ISSN: 2618-0618 P-ISSN: 2618-060X © Agronomy

NAAS Rating (2025): 5.20 www.agronomyjournals.com

2025; 8(10): 921-927 Received: 09-07-2025 Accepted: 11-08-2025

Saibal Sen

Lovely Professional University, Phagwara, Punjab, India

Dr. Harmit Singh ThindLovely Professional University,
Phagwara, Punjab, India

Effect of different levels of sulphur and soil fertility on growth and yield of summer black gram (*Vigna mungo* L.)

Saibal Sen and Harmit Singh Thind

DOI: https://www.doi.org/10.33545/2618060X.2025.v8.i10m.4084

Abstract

Summer black gram (Vigna mungo L.) is an important legume crop with significant potential to improve soil health and nutritional outcomes. Black gram production is lower due to factors such as shattering losses, pest and disease damage, irregular supply of nutrient fertilizers and limited resource availability. Sulphur is a critical nutrient for protein synthesis and nitrogen fixation which is often overlooked despite its importance. Although several studies have examined the effects of individual sulphur and soil fertility treatments on summer black gram, there is a notable gap in understanding the effect of different levels of sulphur with soil fertility treatments, addressing this gap is crucial for developing efficient nutrient management strategies and sustainable production tailored to summer black gram cultivation. The present investigation on the effect of different levels of sulphur and soil fertility treatments is essential for optimizing nutrient management and enhancing crop productivity the field experiment was carried out in split plot design with three sulphur levels (0, 30 and 60 kg ha⁻¹) in main plot and five soil fertility treatments in sub plot (control, rhizobium (R), farmyard manure (FYM), recommended dose of fertilizer (RDF) and combined application of R + FYM + RDF) with three replications at Lovely Professional University, Phagwara, Punjab. The results revealed that there was a significant in growth, yield attributes and yield at 60 kg S ha⁻¹ followed by 30 kg S ha⁻¹ and the application of FR+FYM+RDF produced highest growth, yield attributes and yield followed by FRDF, FFYM and FR whereas the interaction effect was significant in plant height (cm), leaf area index, chlorophyll content, pod length, pods plant⁻¹, test weight, seed yield, stover yield and harvest index.

Keywords: Summer black gram (Vigna mungo L.), sulphur levels, soil fertility treatments, growth and yield, nutrient management

1. Introduction

One of the significant pulse crops is black gram (Vigna mungo L.). It belongs to the family Leguminosae and the subfamily papilionaceae. India is its main origin and is largely grown in Asian nations such as Pakistan, Myanmar and parts of Southern Asia. India is the largest producer and consumer of black gram in the world. India yield is approximately 23.4 lakh tonnes of black gram from an area of 46.7 lakh hectares with a productivity of 501 kg per hectare on average in 2020-21. Black gram area accounts for about 15.7 per cent of India's total pulse acreage and contributes 9.09 per cent of total pulse production. (ANGRAU Black gram Outlook Report- January to December 2021) [1]. Black gram is a very significant pulse crop with a high price that is grown in practically every part of India. Black gram seed contains a perfect balance of all nutrients, including carbs (60%), proteins (26%), fat (1.5%), calcium (154 mg), minerals (3.2%), phosphorous (385 mg), fibre (0.9%), iron (9.1 mg), and vitamin B-complex (9.1 mg) (Jadhav et al., 2019) [12]. Black gram production faces several challenges that highlight the need for comprehensive strategies and interventions. The crops are susceptible to various pests and diseases, which can significantly reduce yield. Fertilizer management is crucial, with black gram requiring specific doses of nitrogen, phosphorous, potash, and sulphur. 'Sulphur is increasingly honoured as the fourth major factory nutrient after nitrogen, phosphorous and potassium' (Malik et al., 2006) [22]. Sulphur helps in chlorophyll formation, stimulating growth, seed formation and N fixation by enhancing nodule formation. Sulphur boosts productivity and

Corresponding Author: Saibal Sen Lovely Professional University, Phagwara, Punjab, India improves the quality of the crop. Sulphur plays a crucial role in the synthesis of certain amino acids, enhancing nutrient uptake. Studies have shown that sulphur application can significantly increase the yield of black gram and positively influence growth parameters like plant height, number of branches plant' and plant dry weight (Khatana et al., 2021) [20]. Integrated nutrient management includes the smart use of organic, inorganic, and biological resources so as to sustain optimum yields, improve or maintain the soil physical and chemical properties, and provide crop nutrition packages, economically attractive, practically feasible and environmentally safe (Awasya., 2018) [3]. Adding organic matter such as compost or farmvard manure improves soil structure and promotes vigorous seed production. Farm Yard manure (FYM) is although not as effective as a single source of nutrients but an effective complimentary and supplementary source with mineral fertilizers. Utilization of FYM not only nourishes crop on decomposition but also enhances the nutrient and water holding capacity of soil. Incorporation of FYM also checks the phosphate depletion from the soil and sustains phosphate balance by minimizing its fixation. There is immense scope for improving the production potential of black gram by use of organic manures, inorganic manures and biofertilizers (Verma et al., 2017) [36]. Exclusive use of organics alone does not lead to dramatic rise in crop yield, as they contain low nutrient content. Thus, the said effects have paved the way to cultivate black gram with inorganic coupled with biofertilizers. Biofertilizers are inexpensive, environment friendly and sustainable plant nutrient sources to augment fertilizer for sustainable development of agriculture. They can contribute significantly towards the immobilization atmospheric nitrogen and plant growth promoting substances as well as the provision of phosphorus to plants by initiating beneficial change in soil micro environment resulting in solubilization of insoluble organic phosphate sources. Rhizobium, in particular known for its ability to enhance biological fixation of atmospheric nitrogen into ammonia and improve phosphorus availability to crops (Kumar et al., 2014) [16]. The combined application of biofertilizers and chemical fertilizers which is often complemented by sulphur, is known to enhance crop productivity and soil fertility (Sharma et al., 2014) [17]. Thus, the present investigation aimed to study the effect of different levels of sulphur and soil fertility on growth and yield of summer black gram (Vigna mungo L).

2. Materials and Methods

The study was carried out during the summer season of 2024 at Research Farm, School of Agriculture, Lovely Professional University, Phagwara Punjab. The trial was conducted on clay loam soil with pH 8.1, available phosphorus content was 48.22 kg ha⁻¹. The experiment was conducted using split plot design with three replications and each plot measurement covered an area of 5×2.25 m². The three levels of sulphur i.e., S0- sulphur @ 0 kg ha⁻¹, S30- sulphur @ 30 kg ha⁻¹ and S60- sulphur @ 60 kg ha-1 were kept in main plot and five soil fertility treatments i.e., FC- control, FR- Rhizobium sp., FFYM- FYM, FRDFrecommended dose of fertilizer, FRDF+R+FYM- combined application of RDF, Rhizobium sp. and FYM were kept in sub plots. The sowing was done on 21 March 2024 with line sowing method. The variety used for sowing summer mash Mash 1137. The 1st irrigation was applied after 10 days after sowing (DAS) and subsequent irrigations were applied depending upon the climatic conditions. The crop was harvested on 5th June, 2024 from 22 m of net plot were taken from the middle of each plot and left under the sun to dry. After that, threshing of crop was done and seeds were cleaned. The seeds were weighed of each plot on an electronic balance. The analysis was done on OPSTAT.

The growth attributes *viz*. plant height (cm) and number of leaves plant⁻¹ at maturity whereas number of nodules Plant⁻¹ at 42 DAS, and chlorophyll index at 56 DAS. Yield parameters *viz*. number of pods plant⁻¹, number of seeds pod-1 and pod length (cm) were recorded at harvest whereas test weight (g), seed yield (kg ha⁻¹) and stover yield (kg ha⁻¹) and harvest index (%) at threshing. For chlorophyll measurement, select healthy leaves for testing, Calibrate the SPAD meter, then place a leaf on the meter to obtain a reading. Record the SPAD value, and repeat the process on multiple leaves. Calculated the average of the readings.

3. Results and Discussion Growth parameters

The data regarding plant height (cm), number of leaves plant⁻¹, number of nodules plant⁻¹, leaf area index and chlorophyll content are presented in Table 1.

Plant height

Plant height is an important parameter for growth and yield of black gram. The data regarding plant height were recorded at maturity of crop are presented in Table 1. Irrespective of soil fertility treatments, there was a significant increase in plant height at S30 as compared to S0 and there was further significant increase at S60. Irrespective of sulphur levels, FR resulted in a significant increase in plant height as compared to FC and the application of FFYM resulted in a significant increase as compared to FR. FRDF increased the plant height significantly as compared to FFYM and combined application of FR+FYM+RDF caused a further significant increase. The interaction affect between various levels of sulphur and soil fertility treatments was significant. All the soil fertility treatments produced significantly higher plant height when applied in combination with S30 as compared to S0 which was further increased significantly at S60. The application of FR increased the plant height significantly at S0 which was further increased significantly at S30 and S60 as compared to FC and the application of FFYM significantly increased the plant height at all levels of sulphur as compared to FR. The application FRDF significantly increased the plant height at S0 and S30 but failed to increase significantly at S60 as compared to FFYM and the combined application FR+FYM+RDF has significantly increase the plant height at S0 and S60 but failed to increase the plant height significantly at S30 as compared to FRDF.

The findings reported are in agreement with the results obtained by Arunraj *et al.* (2018) ^[2], Javaid *et al.* (2009) ^[14] and Phogat *et al.* (2018) ^[28].

Number of leaves plant⁻¹

The number of leaves plant⁻¹ is an important growth parameter and has a significant impact on plant growth, yield and overall crop quality. The data regarding number of leaves plant⁻¹ recorded at maturity of crop are presented in Table 1. Irrespective of soil fertility treatments, there was a significant increase in number of leaves plant⁻¹ at S30 as compared to S0. However, there was no significant increase when S was increased to S60. Irrespective of sulphur levels, FR resulted in a significant increase in number of leaves plant⁻¹ as compared FC and application of FFYM caused a significant increase as compared to FR. FRDF caused a significant increase as compared to FFYM and combined application of FR+FYM-

RDF resulted in a further significant increase in number of leaves plant⁻¹. However, the interaction affect between various levels of sulphur and soil fertility treatments was nonsignificant. The findings reported are in agreement with the results obtained by Dixit *et al.* (2023) ^[9], Kumari *et al.* (2023) ^[19] and Verma *et al.* (2017) ^[36].

Number of nodules plant⁻¹

Number of nodules per plant are important growth parameter and was recorded at maturity of crop are presented in Table 1. At maturity, irrespective of soil fertility treatments, there was a significant increase in chlorophyll index at S30 as compared to S0 and there was further significant increase at S60. Irrespective of sulphur levels, FR resulted a significant increase in chlorophyll index as compared to FC and the application of FFYM caused a significant increase in chlorophyll index as compared to FR. The addition of FRDF further increased the chlorophyll index significantly as compared to FFYM and the combined application of FR+FYM-RDF resulted in a significant increase as compared to FRDF. However, the interaction between the various levels of sulphur and Soil fertility levels was non-significant.

The findings reported are in agreement with the results obtained by Das *et al.* (2016) ^[6], Dixit *et al.* (2023) ^[9], Khatkar *et al.* (2007) and Kumar *et al.* (2020) ^[18].

Leaf area index

Leaf area index is an important parameter for growth and yield of black gram. The data regarding leaf area index were recorded at maturity of crop are presented in Table 1. Irrespective of soil fertility treatments, there was a significant increase in leaf area index at S30 as compared to S0 which was further increased significantly when S was increased to S60. Irrespective of sulphur levels, FR resulted in a significant increase in leaf area index as compared to FC and the application of FFYM caused a further significant increase in leaf area index. The addition of FRDF resulted further significant increase. The combined application of FR+FYM-RDF resulted in a significant increase as compared to FRDF. However, the interaction affect between various levels of sulphur and soil fertility treatments was significant. All the soil fertility treatments resulted significantly higher leaf area index when applied in combination with S30 as compared to S0 which was further increased significantly at S60. The application FR increased the leaf area index significantly as compared to FC at S0 which was also increased significantly at S30 and at S60 and the FFYM increased the leaf area index significantly at S0 which was further increased significantly at S30 and S60. The addition of FRDF increased the leaf area index significantly at S0, S30 and S60 as compared to FFYM and the combined application of FR+FYM-RDF further increased the leaf area index significantly at all levels of sulphur as compared to FRDF.

The findings reported are in agreement with the results obtained by Bairwa *et al.* $(2012)^{[4]}$, Jaga and Sharma. $(2015)^{[32]}$, Jamir *et al.* $(2022)^{[13]}$, Jha *et al.* $(2015)^{[15]}$ and Sahu *et al.* $(2023)^{[31]}$.

Chlorophyll content

Chlorophyll content plays a crucial role directly influencing plant growth and yield. The data regarding chlorophyll content were recorded at 56 DAS of crop are presented in Table 1. Irrespective of soil fertility treatments, there was a significant increase in chlorophyll index at S30 as compared to S0 which was further increased significantly when S was increased to S60. Irrespective of sulphur levels, FR resulted in a significant

increase in chlorophyll index as compared FC and the application of FFYM caused a significant increase as compared to FR. The addition of FRDF caused a significant increase as compared to FFYM and combined application of FR+FYM-RDF resulted in a further significant increase in chlorophyll index. The interaction affect between various levels of sulphur and soil fertility treatments was significant. All the soil fertility treatments produced significantly higher chlorophyll index when applied in combination with S30 as compared to S0 which was further increased significantly at S60. The application FR increased the chlorophyll index significantly as compared to FC at all levels of S (S0, S30 and S60). The FFYM increased the chlorophyll index significantly at S0 which was further increased significantly at S30 and at S60 as compared to FR. The application FRDF increased the chlorophyll index significantly at S0, S30 and S60 and the combined application of FR+FYM-RDF increased the chlorophyll index significantly at all levels of sulphur as compared to FRDF.

The findings reported are in agreement with the results obtained by Das *et al.* (2016) ^[6], Kumar *et al.* (2020) ^[18] and Kumari *et al.* (2023) ^[19].

Yield attributes

The data regarding pod length, number of pods plant⁻¹, number of seeds pod-1, test weight (g) are presented in Table 2.

Pod length

The data regarding the pod length at harvest stage are presented in Table 2. Irrespective of soil fertility treatments, there was significant increase in pod length at S30 as compared to S0 which was further increased significantly at S60. Irrespective of sulphur levels, FR resulted in a significant increase in pod length as compared to FC and the application FFYM caused a further significant increase. The application of FRDF resulted in a significant increase of pod length as compared to FFYM whereas the combined application of FR+FYM+RDF resulted in a further significant increase. The interaction affect between various levels of sulphur and soil fertility treatments was significant. All the soil fertility treatments resulted in significantly higher pod length when applied in combination with S30 as compared to S0 except FCS30 and FRS30 and when S was increased to S60 all the soil fertility treatments resulted significant increase in pod length as compared to S30 except FCS60. The application FR increased the pod length significantly as compared to FC at S0 which was further increased at S30 and at S60. The application of FFYM also increased the pod length significantly at all the levels of sulphur. The application FRDF increased the pod length significantly at all levels of S as compared to FFYM and the combined application FR+FYM+RDF increased the significantly at all levels of sulphur as compared to FRDF.

The findings reported are in agreement with the results obtained by Javaid. (2009) [14], Kumar *et al.* (2016) [17], Kumari *et al.* (2023) [19], Mahamud *et al.* (2022) [21], Sahu *et al.* (2023) [31] and Singh *et al.* (2020) [33].

Number of pods plant⁻¹

The data regarding the number of pods plant⁻¹ at maturity stage are presented in Table 2. Irrespective of soil fertility treatments, there was significant increase in number of pods plant⁻¹ at S30 as compared to S0 which was further increased significantly at S60. Irrespective of sulphur levels, FR resulted in a significant increase in number of pods plant⁻¹ as compared to FC and the application of FFYM caused a further significant increase. The

addition of FRDF resulted in a significant increase in number of pods plant⁻¹ as compared to FFYM and combined application of FR+FYM+RDF resulted a further significant increase. The interaction affect between various levels of sulphur and soil fertility treatments was significant. All the soil fertility treatments resulted in significantly higher number of pods plant⁻¹ when applied in combination with S30 as compared to S0 and when S was increased to S60 all the soil fertility treatments resulted in a significant increase in number of pods plant⁻¹ as compared to S30. The application FR increased the number of pods plant-1 significantly as compared to FC at S0 which was further increased at S30 and but failed to increase at S60. The application of FFYM also increased the number of pods plant⁻¹ significantly at S0 but failed to increase at S30 and S60. The application FRDF failed to increase the number of pods plant⁻¹ significantly at S0, S30 and S60 as compared to FFYM and the combined application of FR+FYM+RDF increased the number of pods plant⁻¹ significantly at S0 but failed to increase at S30 and S60 as compared to FRDF.

The findings reported are in agreement with the results obtained by Danga *et al.* (2022) ^[5], Khatana *et al.* (2021) ^[20], Kumari *et al.* (2023) ^[19], Phogat *et al.* (2018) ^[28] and Rathi *et al.* (2009) ^[30].

Number of seeds pod-1

The data regarding the number of seeds pod-1 are presented in Table 2. Irrespective of soil fertility treatments, there was significant increase in number of seeds pod-1 at S30 as compared to S0 which was further increased significantly at S60. Irrespective of sulphur levels, FR resulted in a significant increase in number of seeds pod-1 as compared to FC and the application FFYM caused a further significant increase. The application of FRDF resulted in a significant increase in number of seeds pod-1 as compared to FFYM and combined application of FR+FYM+RDF resulted a further significant increase. However, the interaction affect between various levels of sulphur and soil fertility treatments was nonsignificant.

The findings reported are in agreement with the results obtained by Meena *et al.* (2015) $^{[23]}$, Pandey *et al.* (2019) $^{[25]}$, Patel *et al.* (2016) $^{[26]}$, Patil *et al.* (2021) $^{[27]}$ and Sahu *et al.* (2023) $^{[31]}$.

Test weight

The data regarding the test weight are presented in Table 2. Irrespective of soil fertility treatments, there was significant increase in test weight at S30 as compared to S0 which was further increased significantly at S60. Irrespective of sulphur levels, FR resulted in a significant increase in test weight as compared to FC and the application FFYM caused a further significant increase. The application of FRDF resulted in a significant increase in test weight as compared to FFYM and combined application of FR+FYM+RDF resulted in a further significant increase. The interaction affect between various levels of sulphur and soil fertility treatments was significant. All the soil fertility treatments resulted in significantly higher test weight when applied in combination with S30 as compared to S0 and when S was further increased to S60 all the soil fertility treatments resulted significant increase in test weight as compared to S30. The application FR increased the test weight significantly as compared to FC at S0, S30 and S60. The application of FFYM also increased the test weight significantly at all the levels of sulphur. The application FRDF increased the test weight significantly at S30 and S60 but failed to increase at SO as compared to FFYM and the combined application FR+FYM+RDF increased the test weight significantly at all levels of sulphur as compared to FRDF.

The findings reported are in agreement with the results obtained by Das *et al.* (2016) ^[6], Divyavani *et al.* (2020) ^[8], Gupta *et al.*, (2025) ^[10] and Kumar *et al.* (2020) ^[18].

Yield

The data regarding Seed yield (kg ha⁻¹), Stover yield (kg ha⁻¹) and Harvest index (%) are presented in Table 3.

Seed yield

The data regarding the seed yield are presented in Table 3. Irrespective of soil fertility treatments, there was significant increase in seed yield at S30 as compared to S0 which was further increased significantly at S60. Irrespective of sulphur levels, FR resulted in a significant increase in seed yield as compared to FC and the application FFYM caused a further significant increase. FRDF resulted in a significant increase of seed yield as compared to FFYM and combined application of FR+FYM+RDF resulted a further significant increase. The interaction affect between various levels of sulphur and soil fertility treatments was significant. All the soil fertility treatments resulted significantly higher seed yield when applied in combination with S30 as compared to S0 and S60 as S30 except FCS60. The other treatments also significantly increased the seed yield as compared to their previous levels. The application FR increased the seed yield significantly as compared to FC at S0, S30 and S60. The application of FFYM also increased the seed yield significantly at all the levels of sulphur as compared to FR except S60FFYM. The application FRDF increased the seed yield significantly at all levels of sulphur as compared to FFYM and the combined application FR+FYM+RDF further increased the seed yield significantly at all levels of sulphur as compared to FRDF.

The findings reported are in agreement with the results obtained by Divyavani *et al.* (2020) ^[8], Kumar *et al.* (2016) ^[17], Pandey *et al.* (2019) ^[25], Sahu *et al.* (2023) ^[31], Singh *et al.* (2020) ^[33] and Tyagi and Upadhyay, (2015) ^[35].

Stover yield

The data regarding the stover yield are presented in Table 3. Irrespective of soil fertility treatments, there was significant increase in stover yield at S30 as compared to S0 which was further increased significantly at S60. Irrespective of sulphur levels, FR resulted in a significant increase in stover yield as compared to FC and the application FFYM caused a further significant increase. FRDF resulted in a significant increase of stover yield as compared to FFYM and combined application of FR+FYM+RDF resulted a further significant increase. The interaction affect between various levels of sulphur and soil fertility treatments was significant. All the soil fertility treatments resulted significantly higher stover yield when applied in combination with S30 as compared to S0 and S60 as compared to S30. The other treatments also increased significantly the stover yield as compared to their previous levels. The application FR increased the stover yield significantly as compared to FC at S0, S30 and S60. The application of FFYM also increased the stover yield significantly at all the levels of sulphur as compared to FR except. The application FRDF increased the stover yield significantly at all levels of sulphur as compared to FFYM and the combined application FR+FYM+RDF further increased the stover yield significantly at all levels of sulphur as compared to

The findings reported are in agreement with the results obtained by Dash *et al.* (2017) [7], Khatana *et al.* (2021) [20], Kumari *et al.*

(2023) $^{[19]}$, Patil *et al.* (2021) $^{[27]}$, Phogat *et al.* (2018) $^{[28]}$ and Tripathi and Tiwari, (2022) $^{[34]}$.

Harvest index

The data regarding the harvest index are presented in Table 3. Irrespective of soil fertility treatments, there was significant increase in harvest index at S30 as compared to S0 which was further increased significantly at S60. Irrespective of sulphur levels, FR resulted in a significant increase in harvest index as compared to FC and the application FFYM caused a further significant increase. FRDF resulted in a significant increase of harvest index as compared to FFYM and combined application of FR+FYM+RDF resulted a further significant increase. The interaction affect between various levels of sulphur and soil fertility treatments was significant. All the soil fertility treatments failed to result significantly higher stover yield when

applied in combination with S30 as compared to S0 and S60 as compared to S30 except FCS60 and FRDFS30. The other treatments also significantly increased the stover yield as compared to their previous levels. The application FR increased the stover yield significantly as compared to FC at S30 and S60 except S0. The application of FFYM also increased the stover yield significantly at S60 as compared to FR except S0 and S30. The application FRDF increased the stover yield significantly at all levels of sulphur as compared to FFYM except S60FRDF and the combined application FR+FYM+RDF further increased the stover yield significantly at all levels of sulphur as compared to FRDF.

The findings reported are in agreement with the results obtained by Danga *et al.* (2022) ^[5], Hepsibha *et al.* (2024) ^[11], Khatana *et al.* (2021) ^[20], Kumari *et al.* (2023) ^[19], Mishra *et al.* (2024) ^[24] and Rathi *et al.* (2009) ^[30].

Table 1: Effect of different levels of sulphur and soil fertility treatments on growth parameters of summer black gram.

C-1-11	Soil fertility treatments							
Sulphur levels	Fc	FR	FFYM	FRDF	FRDF+R+FYM	Mean		
			Plant hei	ight (cm)				
S0	51.6	52.5	53.6	54.7	55.8	53.6		
S30	53.5	54.7	55.5	56.5	57.0	55.4		
S60	55.6	56.3	57.0	57.5	58.7	57.0		
Mean	53.6	54.5	55.4	56.2	57.2			
			Number of l	eaves plant ⁻¹				
S0	19.32	19.41	19.62	19.78	20.38	19.70		
S30	21.28	21.65	22.05	22.17	22.49	21.93		
S60	21.64	21.82	22.15	22.35	22.56	22.10		
Mean	20.75	20.96	21.27	21.43	21.81			
			Number of no	odules plant ⁻¹				
S0	16.01	16.22	16.42	16.63	16.85	16.42		
S30	17.16	17.33	17.46	17.65	17.82	17.48		
S60	18.10	18.19	18.28	18.41	18.73	18.34		
Mean	17.09	17.24	17.39	17.56	17.80			
			Leaf are	ea index				
S0	1.360	1.390	1.420	1.443	1.470	1.417		
S30	1.447	1.483	1.527	1.560	1.590	1.521		
S60	1.567	1.607	1.630	1.660	1.693	1.631		
Mean	1.458	1.493	1.526	1.554	1.584			
			Chloroph	yll index				
S0	46.51	47.57	48.54	49.30	50.52	48.49		
S30	49.46	51.52	52.77	53.46	54.61	52.36		
S60	53.51	54.71	55.13	55.58	56.71	55.13		
Mean	49.83	51.27	52.15	52.78	53.95			
	S	ulphur levels		Soil fertility treatments	Interaction			
	Plant height (cm)		0.39	0.24	0.54			
	Number of leaves plant ⁻¹ Nodules plant ⁻¹		0.213	0.133	NS			
			0.065	0.083	NS			
	Leaf area index		0.001	0.005	0.008			
	Chlorophyll index		0.148	0.211	0.357			

Table 2: Effect of different levels of sulphur and soil fertility treatments on yield attributes of summer black gram.

Sulphur levels	Soil fertility treatments								
	Fc	FR	FFYM	FRDF	FRDF+R+FYM	Mean			
	Pod length (cm)								
S0	6.46	6.85	7.24	7.44	7.78	7.15			
S30	6.57	6.86	7.53	7.88	8.23	7.41			
S60	7.65	8.10	8.44	8.77	9.52	8.50			
Mean	6.89	7.27	7.74	8.03	8.51				
	Number of pods plant ⁻¹								
S0	19.68	20.58	21.33	21.61	22.45	21.13			
S30	20.61	21.48	22.57	22.78	22.93	22.07			
S60	22.47	22.75	22.99	23.30	23.63	23.03			
Mean	20.92	21.60	22.30	22.56	23.00				

			Nun	iber of seeds pod-1		
S0	6.31	6.47	6.72	6.87	7.09	6.69
S30	6.34	6.61	6.76	7.03	7.21	6.79
S60	6.50	6.68	6.95	7.15	7.29	6.91
Mean	6.38	6.58	6.81	7.01	7.20	
			,	Test weight (g)		
S0	34.85	35.24	35.66	35.82	36.84	35.68
S30	35.88	36.12	36.56	36.84	37.51	36.58
S60	36.87	37.22	37.76	38.33	38.77	37.79
Mean	35.86	36.19	36.66	37.00	37.71	
	S	Sulphur levels		Soil fertility treatments	Interaction	
	Pod len	Pod length (cm)		0.149	0.238	
LSD (0.05)	Number of pods plant ⁻¹		0.191	0.181	0.336	
, ,	Number of seeds pod-1		0.037	0.058	NS	
	Test we	Test weight (g)		0.128	0.219	

Table 3: Effect of different levels of sulphur and soil fertility treatments on yield of summer black gram.

Sulphur levels	Soil fertility treatments								
	Fc	FR	FFYM	FRDF	FRDF+R+FYM	Mean			
			Seed yield (kg ha	a ⁻¹)					
S0	529	573	618	646	677	608			
S30	576	639	646	671	705	647			
S60	588	666	682	727	768	686			
Mean	564	626	649	681	717				
			Stover yield (kg l	na ⁻¹)					
S0	624	783	907	1204	1490	1002			
S30	917	1245	1314	1400	1590	1293			
S60	1075	1310	1583	1661	1779	1482			
Mean	872	1113	1268	1422	1620				
			Harvest index (%)					
S0	30.10	30.17	30.44	33.72	35.33	31.95			
S30	30.72	32.38	32.93	33.91	38.59	33.70			
S60	31.21	35.01	40.59	42.51	46.08	39.08			
Mean	30.68	32.52	34.65	36.71	40.00				
	Sulphur levels			Soil fertility treatments	Interaction				
		d (kg ha ⁻¹)	6.91	13.5	22.0				
LSD (0.05)	Stover yield (kg ha ⁻¹)		31.1	27.7	52.5				
	Harvest i	ndex (%)	0.428	0.829	1.349				

4. Conclusion

The results of the present investigation revealed that the application of sulphur 60 kg ha⁻¹ in combination with R, FYM and RDF significantly enhanced the growth and yield attributes of summer black gram (Vigna mungo L.). The higher growth parameters like, plant height number of leaves plant-1, number of nodules plant-1, leaf area index and chlorophyll content was obtained in treatments with sulphur 60 kg ha⁻¹ + combined application of R, FYM and RDF. The yield attributes and yield like, pod length (cm), number of pods plant⁻¹, number of seeds pod-1 and test weight (g), seed yield (kg ha-1), stover yield (kg ha-1) and harvest index (%) was also obtained in treatment with sulphur 60 kg ha⁻¹ + combined application of R, FYM and RDF followed by sulphur 60 kg ha⁻¹ + RDF. Hence, it is concluded that sulphur 60 kg ha⁻¹ + combined application of R, FYM and RDF, as well as sulphur 60 kg ha⁻¹ + RDF are the most effective nutrient management practices for achieving higher growth and productivity of summer black gram.

References

- ANGRAU. Black gram Outlook Report- January to December 2021.
- 2. Arunraj M, Vasanthi D, Mansingh MDI. Effect of sulphur on growth and yield of green gram [*Vigna radiata*]. Int J Sci Environ Technol. 2018;7:1861-7.
- 3. Awasya P. Effect of integrated nutrient management on

- growth, yield and economics of summer black gram. 2018.
- 4. Bairwa RK, Nepalia V, Balai CM, Upadhyay B. Effect of phosphorus and sulphur on yield and economics of summer green gram (*Vigna radiata*). Madras Agric J. 2012;99:523-5.
- 5. Danga N, Yadav RK, Danga S, Sharma MK, Yadav SL, Ram B. Effect of integrated nutrient management on quality, yield, nutrient content and uptake of black gram (*Vigna mungo* L.) in the South-eastern Plain of Rajasthan. Legume Res. 2022;47:2103-9.
- 6. Das SK, Biswas B, Jana K. Effect of farmyard manure, phosphorus and sulphur on yield parameters, yield, nodulation, nutrient uptake and quality of chickpea (*Cicer arietinum* L.). J Appl Nat Sci. 2016;8:545.
- 7. Dash SR, Rautaray BK. Growth parameters and yield of green gram varieties (*Vigna radiata* L.) in East and South East coastal plain of Odisha, India. Int J Curr Microbiol Appl Sci. 2017;6:1517-23.
- 8. Divyavani BR, Ganesh V, Dhanuka D. Effect of integrated nutrient management on growth and yield in black gram (*Vigna mungo* L. Hepper) under Doon Valley condition. J Pharmacogn Phytochem. 2020;9:2928-32.
- 9. Dixit V, Singh SP, Dhyani BP, Yadav PK, Pal S. Effect of sulphur and FYM application on performance of urd bean [*Vigna mungo* (L.) Hepper] and soil properties. Int J Plant Soil Sci. 2023;35:537-43.

- Gupta N, Sharma J, Rajput P, Bhoyar A, Malik A. Effect of integrated nutrient management on growth and yield of black gram (*Vigna mungo* L.). Ecol Environ Conserv. 2025;31:784-8.
- 11. Hepsibha M, Singh S, Vineetha SB, Christina BB. Effect of bio fertilizers and micro nutrients on growth and yield of black gram (*Vigna mungo* L.). J Exp Agric Int. 2024;46:22-8.
- 12. Jadhav S, Chand S, Patted P, Vishwanath K. Influence of plant growth regulators and micronutrients on seed quality of black gram (*Vigna mungo* L.) cv. LBG-625 (Rashmi). Int J Pure Appl Biosci. 2019;7:115-21.
- 13. Jamir A, Gohain T. Response of phosphorus and biofertilizers on growth, yield attributes and economic indices of black gram (*Vigna mungo* L. Hepper). Int J Env Clim Change. 2022;12:3793-801.
- 14. Javaid A. Growth, nodulation and yield of black gram [*Vigna mungo* (L.) Hepper] as influenced by biofertilizers and soil amendments. Afr J Biotechnol. 2009;8(21).
- 15. Jha DP, Sharma SK, Amarawat T. Effect of organic and inorganic sources of nutrients on yield and economics of black gram (*Vigna mungo* L.) grown during kharif. Agric Sci Dig. 2015;35:224-8.
- Kumar D, Arvadiya LK, Kumawat A, Desai KL, Patel TU. Yield, protein content, nutrient (N, P and K) content and their uptake in chickpea (*Cicer arietinum* L.) as influenced by graded levels of fertilizers and bio-fertilizers. Trends Biosci. 2014;7:4229-33.
- 17. Kumar M, Singh PK, Dubey SN, Singh SP. Effect of integrated nutrient management on growth and yield of black gram. J Rural Agric Res. 2016;16:8-11.
- Kumar R, Baba AY, Kumar M, Bhusan A, Singh K. Growth, nodulation and yield of black gram (*Vigna radiata* L.) as influenced by sulphur and iron under sandy loam soil. J Pharmacogn Phytochem. 2020;9:614-6.
- 19. Kumari S, Kumar R, Chouhan S, Chaudhary PL. Influence of various organic amendments on growth and yield attributes of mung bean (*Vigna radiata* L.). Int J Plant Soil Sci. 2023;35:124-30.
- Khatana RNS, Thomas T, Barthwal A, Kumar T. Effect of NPK levels and Rhizobium on soil physico-chemical properties, growth, yield and economics of summer black gram (*Vigna munga* L.) var. Shekhar-2. J Pharm Innov. 2021;10:1555-61.
- 21. Mahamud MA, Rahman MM, Hassan MA, Maniruzzaman M, Bahadur ASS, Imran S, Paul NC. Assessing the influence of integrated nutrient management on growth and yield of black gram (*Vigna mungo* L.). Arch Agric Environ Sci. 2022;7:407-14.
- 22. Malik A, Fayyaz-UI-Hassan A, Abdul WA, Qadir Q, Asghar R. Interactive effects of irrigation and phosphorous on green gram (*Vigna radiata* L.). Pak J Bot. 2006;38:1119-26.
- 23. Meena BS, Ram B. Effect of integrated nutrient management on productivity, soil fertility and economics of black gram (*Vigna mungo*) varieties under rainfed condition. Legume Res. 2015;39:268-73.
- 24. Mishra A, Pidurkar SK, Rathore T, Rai G. Response of integrated nutrient management on growth and yield of black gram (*Vigna mungo* L.(Hepper)). Egypt J Agric Res. 2024;102:345-53.
- 25. Pandey OP, Shahi SK, Dubey AN, Maurya SK. Effect of integrated nutrient management on growth and yield attributes of green gram (*Vigna radiata* L.). J Pharmacogn

- Phytochem. 2019:8:2347-52.
- 26. Patel SA, Chaudhari PP, Desai NH. Yield and economics of green gram (*Vigna radiata* (L.) Wilczek) cultivars as influenced by integrated nutrient management. Crop Res. 2016;51:1761-4.
- 27. Patil VR, Patil JB, Patil MJ, Gedam VB. Effect of nutrient management on growth attributes, yield and quality of summer green gram (*Vigna radiata* L.). Int J Agric Sci. 2021:7:150-4.
- 28. Phogat M, Rai A, Kumar S. Interaction effect of phosphorus and sulphur application on nutrient uptake, yield and yield attributing parameters of black gram (*Vigna mungo* L. Hepper). Legume Res. 2018;43:212-20.
- 29. Rahul Khatkar RK, Abraham T, Joseph SA. Effect of biofertilizers and sulphur levels on growth and yield of black gram (*Vigna mungo* L.). Legume Res. 2007;30:233-4.
- 30. Rathi BK, Jain A, Kumar S, Panwar J. Response of rhizobium inoculation with sulphur and micronutrients on yield and yield attributes of black gram [*Vigna mungo* (L.) Hepper]. Legume Res. 2009;32:62-4.
- 31. Sahu S, Singh N, Gaur AS, Chaubey AK, Kumar A, Mishra S, Yadav A. Effect of various organic and inorganic sources of nutrients on growth, yield, and economics of kharif green gram [Vigna radiata (L.) Wilczek] in the Bundelkhand region, India. Int J Plant Soil Sci. 2023;35:38-45.
- 32. Sharma RC, Banik P. Arbuscular mycorrhiza, Azospirillum and chemical fertilizers application to baby corn (*Zea mays* L.): effects on productivity, nutrients use efficiency, economic feasibility and soil fertility. J Plant Nutr. 2014;37:209-23.
- 33. Singh RE, Singh V, Tiwari D, Masih A. Effect of levels of phosphorus and sulphur on growth and yield of black gram (*Vigna mungo* L.). Int J Curr Microbiol Appl Sci. 2020;9:2784-91.
- 34. Tripathi A, Tiwari AS. Integrated nutrient management of growth, yield and quality of green gram (*Vigna radiata* L.). Pharma Innov J. 2022;11:2480-2.
- 35. Tyagi PK, Upadhyay AK. Effect of integrated nutrient management on yield, quality, nutrients uptake and economics of summer green gram. Ann Plant Soil Res. 2015;17:242-7.
- 36. Verma G, Singh M, Morya J, Kumawat N. Effect of N, P and biofertilizers on growth attributes and yields of mung bean [*Vigna radiata* (L.) Wilczek] under semi-arid tract of Central India. Int Arch Appl Sci Technol. 2017;8:31-4.