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Abstract 
The rice-wheat cropping system is central to India’s food security but faces stagnating yields and soil 

degradation under conventional farming. This study evaluated the effect of organic agriculture practices 

farmyard manure (FYM), green manures (Sesbania and Leucaena), blue-green algae (BGA), and 

Azotobacter applied individually or in combinations, on rice and wheat productivity in an Inceptisol at 

ICAR-IARI, New Delhi, during 2020-21 and 2021-22. Eight treatments were tested in a randomized block 

design. Results showed that integrated organic inputs significantly enhanced yields compared to 

conventional farming. In rice, the highest yields (5.20-5.48 t ha⁻¹) were obtained under combined 

application of SGM + FYM + BGA, while wheat yields peaked (4.60-4.88 t ha⁻¹) under SGM + FYM + 

BGA in rice and LGLM + FYM + Azotobacter in wheat. Sole applications of FYM or conventional 

practices produced the lowest yields. Findings highlight that integrating organic manures and biofertilizers 

improves productivity, sustains soil health, and offers a viable alternative to input-intensive farming. 
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1. Introduction  

Rice (Oryza sativa L.) remains the cornerstone of food and nutritional security for more than 

two-thirds of India’s population, serving as both a staple diet and a primary livelihood source for 

millions of rural households (Roy et al., 2023) [33]. The popular expression “Rice is Life” aptly 

reflects its socio-economic significance in the Indian subcontinent. Nevertheless, mounting 

pressures from climate change, declining water availability, and the conversion of agricultural 

land for non-agricultural uses are anticipated to shrink the national rice area by nearly 6-7 

million hectares (Mha) by 2050. Despite this projected decline, demand for rice will continue to 

rise, requiring an estimated 1.1% annual increase in production over the coming four decades to 

achieve self-sufficiency (CRRI, 2013) [6]. Thus, sustaining and improving rice productivity has 

become a critical challenge. 

Wheat (Triticum aestivum L.) is the second most important cereal crop in India after rice and is 

cultivated widely across temperate and subtropical regions. It occupies a central place in the 

diets of populations in northwestern and central India, where it is consumed daily as the primary 

food staple (Reddy Tummala et al., 2018) [32]. India is a global leader in wheat acreage, although 

yield levels vary considerably across regions. In the highly irrigated states of Punjab, Haryana, 

and western Uttar Pradesh, yields average 4.5-5.0 t ha⁻¹, whereas in western and central states 

such as Rajasthan, Madhya Pradesh, and Bihar, productivity lags behind at 1.5-3.0 t ha⁻¹ (Grain 

and Feed Annual, 2019) [14]. During 2017-18, Uttar Pradesh emerged as the top wheat-producing 

state with 9.75 Mha under cultivation and a production of nearly 31.9 million tonnes (Borse et 

al., 2019) [3]. Globally, wheat accounts for over 267 Mha of land and contributes approximately 

902 million tonnes (MT) of grain annually, underscoring its worldwide significance as a food 

security crop. However, in India, decades of intensive wheat cultivation supported by high-

yielding varieties have led to disproportionate nutrient extraction, increasing fertilizer 

dependency, and a steady deterioration of soil health, which in turn constrains productivity gains 

(Reddy Tummala et al., 2018) [32].  
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The challenge of raising rice and wheat yields is further 

complicated by persistent yield gaps the difference between 

potential and actual yields. In the northwestern Indo-Gangetic 

Plains (IGP), yield gaps for rice are relatively modest (~20% of 

potential yield), largely due to intensive management and high 

input use (Nayak et al., 2024) [25]. Data from over 4,000 farmer 

fields revealed that nitrogen application rates could be reduced 

substantially without yield penalties in such systems (CIMMYT, 

2022; Nayak et al., 2022) [10, 26]. However, in many other 

regions, particularly in rainfed environments, yield gaps remain 

wide. For instance, irrigated and rainfed rice systems across 

Southeast Asia exhibit gaps of 37-66%, averaging nearly 48% of 

potential yield (Van Ittersum et al., 2013) [50]. For wheat, the 

global yield gap is estimated at around 51% (Senapati et al., 

2022) [38], whereas in India the gap is between 20-40% for rice 

and about 20-21% for wheat (Jha et al., 2022) [16]. Limited 

adoption of improved agronomic practices, combined with 

suboptimal soil and nutrient management, are primary 

constraints in narrowing these gaps (Singh et al., 2020) [47]. 

The Green Revolution succeeded in raising cereal production by 

introducing high-yielding varieties coupled with irrigation and 

synthetic fertilizer use. Indian rice yields rose from 

approximately 2 t ha⁻¹ in the 1960s to nearly 6 t ha⁻¹ by the 

1990s, while wheat yields also advanced substantially (Evenson 

& Gollin, 2003) [13]. Yet, this input-intensive model is 

increasingly showing diminishing returns. Excessive nitrogen 

application remains a particular concern; crops absorb only 20-

50% of applied nitrogen, with the remainder lost to leaching, 

runoff, and gaseous emissions (Ju et al., 2009) [17]. Such 

inefficiencies not only increase production costs but also 

aggravate soil degradation, groundwater pollution, and 

greenhouse gas emissions (Tilman et al., 2002) [48]. Long-term 

experiments indicate that rice yields stagnate under fixed 

nitrogen application rates, highlighting the unsustainability of 

chemical fertilizer dependence (Cassman, 1999) [5]. 

Consequently, more ecologically sound and cost-effective 

nutrient management strategies are urgently needed. 

Organic nutrient sources including farmyard manure (FYM), 

green manures (GM), and biofertilizers offer a promising 

alternative. Unlike synthetic fertilizers, organic inputs improve 

soil health holistically by enriching organic matter content, 

enhancing microbial activity, and fostering stable aggregate 

formation. FYM supplies essential nutrients while improving 

soil structure and water-holding capacity (Moharana et al., 2012; 

Gupta et al., 2006) [15, 24]. Green manures, particularly 

leguminous species, contribute substantial nitrogen to cropping 

systems and often outperform FYM alone in raising yield 

performance (Sharma & Mitra, 1991) [39]. Biofertilizers, based 

on microbial inoculants such as blue-green algae (BGA), 

Azotobacter, and Azospirillum, fix atmospheric nitrogen and 

enhance nutrient bioavailability in an eco-friendly manner 

(Singh et al., 2011) [44]. Reports suggest that biofertilizers can 

increase yields by 10-40% while simultaneously reducing the 

need for synthetic fertilizers by nearly 30% (Vessey, 2003) [51]. 

For rice, Azotobacter species play a critical role in nitrogen 

fixation in the rhizosphere and have demonstrated potential to 

mitigate salinity stress while promoting growth (Razie et al., 

2008; Sahoo et al., 2014, 2021) [31, 34]. 

Several studies have demonstrated the synergistic benefits of 

combining organic manures with biofertilizers. For instance, 

Singh and Singh (2005) [45] reported marked yield improvements 

with FYM and vermicompost applications compared to 

unfertilized controls. Similarly, incorporation of green gram as a 

green manure crop enhanced yields of both rice and wheat in 

sequential systems (Saxena & Yadav, 1998) [36]. Integrated 

nutrient management trials across diverse agro-ecologies 

consistently show that blending biofertilizers, green manures, 

and FYM not only sustains yields but also improves soil 

biological quality indices (Chanu et al., 2025; Bhatt et al., 2021; 

Singh et al., 2023) [2, 7, 42]. These findings collectively reinforce 

the hypothesis that judicious use of organic nutrient sources, 

either individually or in combination, can significantly improve 

productivity and soil health in rice-wheat systems. 

The present study is designed to evaluate the contribution of 

biofertilizers, green manures, and farmyard manure applied 

individually and in various combinations on rice and wheat 

yields under an Inceptisol soil environment. By testing these 

practices against conventional methods, the research aims to 

identify sustainable pathways for bridging yield gaps, improving 

soil quality, and ensuring long-term resilience of the rice-wheat 

system. 

 

2. Material and methods 

2.1 Experimental Site and Soil Characteristics 

The field experiment was conducted at the research farm of the 

ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 

India (28°38′14.8′′N, 77°08′45.6′′E; 228.61 m above mean sea 

level). The experimental soil is classified as a Typic Ustochrept 

(Inceptisol) and is sandy clay loam in texture. The site has been 

under a long-term rice-wheat cropping system since 2003, 

involving both organic and conventional nutrient management 

practices. The trials were undertaken across two consecutive 

cropping years, during the kharif (rice) and rabi (wheat) seasons 

of 2020-21 and 2021-22. Pusa Basmati-1 and HD 3086 were 

grown as test cultivars for rice and wheat, respectively. 

 

2.2 Experimental Design and Layout 

The study was arranged in a Randomized Complete Block 

Design (RCBD) with eight treatments and three replications. 

Each plot measured 23.04 m² (4.8 m × 4.8 m). Randomization of 

treatments was done following the procedure of Fisher and 

Yates (1963). Rice transplanting was carried out in mid-July of 

both years, while wheat was sown in November after rice 

harvest. The experimental treatments included a conventional 

farming practice as control and seven different organic nutrient 

management combinations. 

 

2.3 Organic Inputs and Treatment Details 

Eight treatments were evaluated (Table 1). Farmyard manure 

(FYM) was applied at 10 Mg ha⁻¹ either singly to rice, to wheat, 

or to both crops depending on treatment. For green manuring, 

Sesbania was sown at a seed rate of 50 kg ha⁻¹; the biomass (2.5-

3.0 Mg ha⁻¹ dry matter) was incorporated into the soil at 45 days 

after sowing. In wheat, Leucaena leucocephala leaves and twigs 

were applied at 1.6 Mg ha⁻¹ (dry weight). Blue-green algae 

(BGA) inoculum was applied at 1.5 kg ha⁻¹ three to four days 

after rice transplanting. For wheat, Azotobacter was introduced 

through seed treatment at a rate of 500 g ha⁻¹. The quality of 

organic amendments was characterized by their C:N ratios: 

Sesbania green manure (21.8:1; Cd 0.056 mg kg⁻¹), Leucaena 

leucocephala green leaves (25.0:1), BGA (20:1), and FYM 

(47.3:1). 
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Table 1: Experimental treatments applied in rice-wheat system 
 

Treatment No. Treatment label Description 

T1 Conventional farming Standard inorganic fertilization 

T2 FYM-Rice FYM @ 10 t ha⁻¹ applied only to rice 

T3 FYM-Wheat FYM @ 10 t ha⁻¹ applied only to wheat 

T4 FYM-Both crops FYM @ 10 t ha⁻¹ applied to rice and wheat 

T5 SGM + LGLM Sesbania green manure to rice; Leucaena leaves to wheat 

T6 SGM + BGA + LGLM + Azotobacter Sesbania + BGA to rice; Leucaena + Azotobacter to wheat 

T7 SGM + FYM Sesbania + FYM to rice; Leucaena + FYM to wheat 

T8 Integrated treatment Sesbania + FYM + BGA to rice; Leucaena + FYM + Azotobacter to wheat 

 

2.4 Statistical analysis 

Data from both years were analyzed using analysis of variance 

(ANOVA) appropriate for RCBD. Treatment means were 

compared using the least significant difference (LSD) test at the 

5% probability level to determine significant differences among 

treatments (Gomez & Gomez, 1984) [53]. 
 

3. Results and discussion 

3.1 Effect of Organic Agriculture on Rice Yield 

Rice grain yields recorded during 2020-21 and 2021-22 under 

different nutrient management practices are summarized in 

Table 2. Yields varied significantly across treatments, reflecting 

the influence of organic and integrated nutrient strategies. In 

2020-21, the lowest yield (4.0 t ha⁻¹) was observed in plots 

receiving FYM only to wheat (T3), closely followed by 

conventional farming (T1: 4.2 t ha⁻¹). Application of FYM to 

both rice and wheat (T4: 4.9 t ha⁻¹) and Sesbania green manure 

(SGM) integrated with BGA (T6: 4.65 t ha⁻¹) substantially 

enhanced yield relative to conventional practice. The highest 

yields were achieved under SGM + FYM + BGA (T8: 5.2 t ha⁻¹), 

followed by SGM + FYM (T7: 5.1 t ha⁻¹). A similar trend was 

observed during 2021-22, with T1 (4.6 t ha⁻¹) and T3 (4.4 t ha⁻¹) 

consistently producing the lowest yields. In contrast, T4 

improved yield to 5.3 t ha⁻¹, while T6 resulted in 4.97 t ha⁻¹. 

Once again, T8 recorded the maximum yield (5.48 t ha⁻¹), 

followed closely by T7 (5.42 t ha⁻¹). The consistency of T7 and 

T8 across both years highlights the superior performance of 

integrated nutrient management involving FYM, green manures, 

and biofertilizers. 

These findings corroborate earlier reports suggesting that 

integrated nutrient supply systems provide the most effective 

strategy for maintaining long-term productivity (Ramesh et al., 

2009) [29]. Green manures not only improve soil fertility but also 

contribute to carbon sequestration and biological activity, while 

FYM provides a slow and sustained nutrient release (Sharma, 

2002) [41]. Similar outcomes were reported by Maskina et al. 

(1988), who observed a 32% increase in rice yield under FYM 

application alone, and by Chinnusamy et al. (2006) [9], who 

found that combining biofertilizers such as BGA, PSB, and 

Azospirillum enhanced rice growth and yield traits. More recent 

studies confirm that integrated use of organics with biofertilizers 

and partial inorganic inputs significantly improves rice 

productivity and soil quality indices (Meena et al., 2020; Singh 

et al., 2023; Baghel & Singh, 2025) [1, 22]. Overall, the results 

clearly establish that the conjunctive use of FYM, SGM, and 

biofertilizers (T7 and T8) not only improved rice yield but also 

ensured yield stability across seasons. This highlights the crucial 

role of integrated organic strategies in enhancing nutrient use 

efficiency and sustaining productivity in rice-based systems. 

 
Table 2: Effect of Organic Agriculture on Rice Grain Yield 

 

Treatment 
Rice Grain Yield (t ha⁻¹) 

2020-21 2021-22 

T1 4.20 4.60 

T2 4.15 4.57 

T3 4.00 4.40 

T4 4.90 5.30 

T5 4.55 4.85 

T6 4.65 4.97 

T7 5.10 5.42 

T8 5.20 5.48 

LSD (P≤0.05) 0.12 0.10 

 

3.2 Effect of Organic Agriculture on Wheat Yield 

Wheat yields during 2020-21 and 2021-22 are presented in 

Table 3. A similar pattern to rice was observed; with 

conventional farming (T1) and sole FYM application to rice (T2) 

producing the lowest yields (3.8 and 3.65 t ha⁻¹ in 2020-21; 4.06 

and 3.91 t ha⁻¹ in 2021-22, respectively). Moderate 

improvements were achieved with FYM application to both 

crops (T4: 4.15 and 4.39 t ha⁻¹) and with SGM + BGA in rice 

combined with Leucaena leaves and Azotobacter in wheat (T6: 

4.0 and 4.26 t ha⁻¹). The highest yields were consistently 

obtained under T8 (SGM + FYM + BGA in rice and Leucaena + 

FYM + Azotobacter in wheat), which produced 4.6 and 4.88 t 

ha⁻¹ in the two years, respectively. T7 (SGM + FYM in rice and 

Leucaena + FYM in wheat) also performed well, with yields of 

4.35 and 4.63 t ha⁻¹. The yield improvements under integrated 

practices align with previous research. Yadav et al. (2018) and 

Suryawanshi et al. (2019) [46, 52] reported that combining 

inorganic fertilizers with FYM significantly improved wheat 

yields. Similarly, Chaudhry et al. (2017) [8] demonstrated that 

RDF supplemented with vermicompost and biofertilizers 

increased grain yield by over 20% compared with RDF alone. 

More recent findings by Ramanandan et al. (2020) [28] further 

support that integrated nutrient supply, including FYM, 

biofertilizers, and micronutrient supplementation, enhances 

grain, straw, and biological yields while improving harvest 

index. 

In agreement with our findings, several long-term studies 

confirm that wheat productivity benefits substantially from 
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integrated nutrient management (Singh et al., 2018; Sharma et 

al., 2016) [40, 43]. Such practices not only raise yields but also 

improve soil physical and chemical properties, thereby ensuring 

sustained productivity in the rice-wheat cropping system. The 

results across both crops and years provide strong evidence that 

sole reliance on conventional practices or single organic inputs 

is insufficient to maintain high productivity. Instead, integrated 

application of FYM, SGM, BGA, and biofertilizers consistently 

delivered superior performance in terms of both rice and wheat 

yields. These outcomes reinforce the importance of adopting 

integrated nutrient management strategies for enhancing soil 

fertility, increasing nutrient use efficiency, and achieving yield 

stability in intensive rice-wheat systems. 

 
Table 3: Effect of Organic Agriculture on Wheat Grain Yield 

 

Treatment 
Wheat Grain Yield (t ha⁻¹) 

Wheat (Nov 2020-21) Wheat (Nov 2021-22) 

T1 3.8 4.06 

T2 3.65 3.91 

T3 3.95 4.23 

T4 4.15 4.39 

T5 3.95 4.17 

T6 4 4.26 

T7 4.35 4.63 

T8 4.6 4.88 

 

4. Conclusion 

The findings of this study clearly indicate that organic nutrient 

management practices substantially improved the productivity of 

the rice-wheat system on Inceptisol soils compared with 

conventional farming. The consistent yield advantages observed 

under treatments combining farmyard manure, green manures, 

and biofertilizers highlight the value of integrated organic 

strategies in enhancing crop performance. By supplying 

nutrients in a balanced and sustained manner, these practices not 

only closed existing yield gaps but also improved soil health and 

resource use efficiency. 
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