

E-ISSN: 2618-0618 P-ISSN: 2618-060X © Agronomy

NAAS Rating (2025): 5.20 www.agronomyjournals.com

2025; 8(10): 870-874 Received: 13-08-2025 Accepted: 16-09-2025

Priyanka Meena

Division of Environmental Sciences, ICAR-Indian Agricultural Research Institute, New Delhi, India

Manoj Shrivastava

Division of Environmental Sciences, ICAR-Indian Agricultural Research Institute, New Delhi, India

Yashbir Singh Shivay

Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi, India

Renu Singh

Division of Environmental Sciences, ICAR-Indian Agricultural Research Institute, New Delhi, India

KK Bandyopadhya

Indian Institute of Water Management, Bhubaneswar, Odisha, India

Soora Naresh Kumar

Division of Environmental Sciences, ICAR-Indian Agricultural Research Institute, New Delhi, India

Dinesh Kumar Sharma

Division of Environmental Sciences, ICAR-Indian Agricultural Research Institute, New Delhi, India

Cini Varghese

ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India

Corresponding Author: Manoj Shrivastava

Division of Environmental Sciences, ICAR-Indian Agricultural Research Institute, New Delhi, India

Effect of organic agriculture on yield of rice and wheat under rice-wheat cropping system

Priyanka Meena, Manoj Shrivastava, Yashbir Singh Shivay, Renu Singh, KK Bandyopadhya, Soora Naresh Kumar, Dinesh Kumar Sharma and Cini Varghese

DOI: https://www.doi.org/10.33545/2618060X.2025.v8.i101.4080

Abstract

The rice-wheat cropping system is central to India's food security but faces stagnating yields and soil degradation under conventional farming. This study evaluated the effect of organic agriculture practices farmyard manure (FYM), green manures (Sesbania and Leucaena), blue-green algae (BGA), and Azotobacter applied individually or in combinations, on rice and wheat productivity in an Inceptisol at ICAR-IARI, New Delhi, during 2020-21 and 2021-22. Eight treatments were tested in a randomized block design. Results showed that integrated organic inputs significantly enhanced yields compared to conventional farming. In rice, the highest yields (5.20-5.48 t ha⁻¹) were obtained under combined application of SGM + FYM + BGA, while wheat yields peaked (4.60-4.88 t ha⁻¹) under SGM + FYM + BGA in rice and LGLM + FYM + Azotobacter in wheat. Sole applications of FYM or conventional practices produced the lowest yields. Findings highlight that integrating organic manures and biofertilizers improves productivity, sustains soil health, and offers a viable alternative to input-intensive farming.

Keywords: Azotobacter, blue green algae, FYM, green manuring, rice, wheat

1. Introduction

Rice (*Oryza sativa* L.) remains the cornerstone of food and nutritional security for more than two-thirds of India's population, serving as both a staple diet and a primary livelihood source for millions of rural households (Roy *et al.*, 2023) [33]. The popular expression "Rice is Life" aptly reflects its socio-economic significance in the Indian subcontinent. Nevertheless, mounting pressures from climate change, declining water availability, and the conversion of agricultural land for non-agricultural uses are anticipated to shrink the national rice area by nearly 6-7 million hectares (Mha) by 2050. Despite this projected decline, demand for rice will continue to rise, requiring an estimated 1.1% annual increase in production over the coming four decades to achieve self-sufficiency (CRRI, 2013) [6]. Thus, sustaining and improving rice productivity has become a critical challenge.

Wheat (*Triticum aestivum* L.) is the second most important cereal crop in India after rice and is cultivated widely across temperate and subtropical regions. It occupies a central place in the diets of populations in northwestern and central India, where it is consumed daily as the primary food staple (Reddy Tummala *et al.*, 2018) [32]. India is a global leader in wheat acreage, although yield levels vary considerably across regions. In the highly irrigated states of Punjab, Haryana, and western Uttar Pradesh, yields average 4.5-5.0 t ha⁻¹, whereas in western and central states such as Rajasthan, Madhya Pradesh, and Bihar, productivity lags behind at 1.5-3.0 t ha⁻¹ (Grain and Feed Annual, 2019) [14]. During 2017-18, Uttar Pradesh emerged as the top wheat-producing state with 9.75 Mha under cultivation and a production of nearly 31.9 million tonnes (Borse *et al.*, 2019) [3]. Globally, wheat accounts for over 267 Mha of land and contributes approximately 902 million tonnes (MT) of grain annually, underscoring its worldwide significance as a food security crop. However, in India, decades of intensive wheat cultivation supported by high-yielding varieties have led to disproportionate nutrient extraction, increasing fertilizer dependency, and a steady deterioration of soil health, which in turn constrains productivity gains (Reddy Tummala *et al.*, 2018) [32].

The challenge of raising rice and wheat yields is further complicated by persistent yield gaps the difference between potential and actual yields. In the northwestern Indo-Gangetic Plains (IGP), yield gaps for rice are relatively modest (~20% of potential yield), largely due to intensive management and high input use (Nayak et al., 2024) [25]. Data from over 4,000 farmer fields revealed that nitrogen application rates could be reduced substantially without yield penalties in such systems (CIMMYT, 2022; Nayak et al., 2022) [10, 26]. However, in many other regions, particularly in rainfed environments, yield gaps remain wide. For instance, irrigated and rainfed rice systems across Southeast Asia exhibit gaps of 37-66%, averaging nearly 48% of potential yield (Van Ittersum et al., 2013) [50]. For wheat, the global yield gap is estimated at around 51% (Senapati et al., 2022) [38], whereas in India the gap is between 20-40% for rice and about 20-21% for wheat (Jha et al., 2022) [16]. Limited adoption of improved agronomic practices, combined with suboptimal soil and nutrient management, are primary constraints in narrowing these gaps (Singh et al., 2020) [47].

The Green Revolution succeeded in raising cereal production by introducing high-vielding varieties coupled with irrigation and synthetic fertilizer use. Indian rice yields rose from approximately 2 t ha-1 in the 1960s to nearly 6 t ha-1 by the 1990s, while wheat yields also advanced substantially (Evenson & Gollin, 2003) [13]. Yet, this input-intensive model is increasingly showing diminishing returns. Excessive nitrogen application remains a particular concern; crops absorb only 20-50% of applied nitrogen, with the remainder lost to leaching, runoff, and gaseous emissions (Ju et al., 2009) [17]. Such inefficiencies not only increase production costs but also aggravate soil degradation, groundwater pollution, and greenhouse gas emissions (Tilman et al., 2002) [48]. Long-term experiments indicate that rice yields stagnate under fixed nitrogen application rates, highlighting the unsustainability of dependence (Cassman, 1999) fertilizer Consequently, more ecologically sound and cost-effective nutrient management strategies are urgently needed.

Organic nutrient sources including farmyard manure (FYM), green manures (GM), and biofertilizers offer a promising alternative. Unlike synthetic fertilizers, organic inputs improve soil health holistically by enriching organic matter content, enhancing microbial activity, and fostering stable aggregate formation. FYM supplies essential nutrients while improving soil structure and water-holding capacity (Moharana *et al.*, 2012; Gupta *et al.*, 2006) [15, 24]. Green manures, particularly leguminous species, contribute substantial nitrogen to cropping systems and often outperform FYM alone in raising yield performance (Sharma & Mitra, 1991) [39]. Biofertilizers, based on microbial inoculants such as blue-green algae (BGA), Azotobacter, and Azospirillum, fix atmospheric nitrogen and enhance nutrient bioavailability in an eco-friendly manner (Singh et al., 2011) [44]. Reports suggest that biofertilizers can increase yields by 10-40% while simultaneously reducing the need for synthetic fertilizers by nearly 30% (Vessey, 2003) [51]. For rice, Azotobacter species play a critical role in nitrogen fixation in the rhizosphere and have demonstrated potential to mitigate salinity stress while promoting growth (Razie et al., 2008; Sahoo et al., 2014, 2021) [31, 34].

Several studies have demonstrated the synergistic benefits of combining organic manures with biofertilizers. For instance, Singh and Singh (2005) [45] reported marked yield improvements

with FYM and vermicompost applications compared to unfertilized controls. Similarly, incorporation of green gram as a green manure crop enhanced yields of both rice and wheat in sequential systems (Saxena & Yadav, 1998) [36]. Integrated nutrient management trials across diverse agro-ecologies consistently show that blending biofertilizers, green manures, and FYM not only sustains yields but also improves soil biological quality indices (Chanu *et al.*, 2025; Bhatt *et al.*, 2021; Singh *et al.*, 2023) [2, 7, 42]. These findings collectively reinforce the hypothesis that judicious use of organic nutrient sources, either individually or in combination, can significantly improve productivity and soil health in rice-wheat systems.

The present study is designed to evaluate the contribution of biofertilizers, green manures, and farmyard manure applied individually and in various combinations on rice and wheat yields under an Inceptisol soil environment. By testing these practices against conventional methods, the research aims to identify sustainable pathways for bridging yield gaps, improving soil quality, and ensuring long-term resilience of the rice-wheat system.

2. Material and methods

2.1 Experimental Site and Soil Characteristics

The field experiment was conducted at the research farm of the ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India (28°38′14.8″N, 77°08′45.6″E; 228.61 m above mean sea level). The experimental soil is classified as a Typic Ustochrept (Inceptisol) and is sandy clay loam in texture. The site has been under a long-term rice-wheat cropping system since 2003, involving both organic and conventional nutrient management practices. The trials were undertaken across two consecutive cropping years, during the *kharif* (rice) and *rabi* (wheat) seasons of 2020-21 and 2021-22. Pusa Basmati-1 and HD 3086 were grown as test cultivars for rice and wheat, respectively.

2.2 Experimental Design and Layout

The study was arranged in a Randomized Complete Block Design (RCBD) with eight treatments and three replications. Each plot measured 23.04 m 2 (4.8 m \times 4.8 m). Randomization of treatments was done following the procedure of Fisher and Yates (1963). Rice transplanting was carried out in mid-July of both years, while wheat was sown in November after rice harvest. The experimental treatments included a conventional farming practice as control and seven different organic nutrient management combinations.

2.3 Organic Inputs and Treatment Details

Eight treatments were evaluated (Table 1). Farmyard manure (FYM) was applied at 10 Mg ha⁻¹ either singly to rice, to wheat, or to both crops depending on treatment. For green manuring, Sesbania was sown at a seed rate of 50 kg ha⁻¹; the biomass (2.5-3.0 Mg ha⁻¹ dry matter) was incorporated into the soil at 45 days after sowing. In wheat, *Leucaena leucocephala* leaves and twigs were applied at 1.6 Mg ha⁻¹ (dry weight). Blue-green algae (BGA) inoculum was applied at 1.5 kg ha⁻¹ three to four days after rice transplanting. For wheat, *Azotobacter* was introduced through seed treatment at a rate of 500 g ha⁻¹. The quality of organic amendments was characterized by their C:N ratios: Sesbania green manure (21.8:1; Cd 0.056 mg kg⁻¹), *Leucaena leucocephala* green leaves (25.0:1), BGA (20:1), and FYM (47.3:1).

Table 1: Experimental treatments applied in rice-wheat system

Treatment No.	Treatment label	Description
T_1	Conventional farming	Standard inorganic fertilization
T_2	FYM-Rice	FYM @ 10 t ha ⁻¹ applied only to rice
T ₃	FYM-Wheat	FYM @ 10 t ha ⁻¹ applied only to wheat
T ₄	FYM-Both crops	FYM @ 10 t ha ⁻¹ applied to rice and wheat
T ₅	SGM + LGLM	Sesbania green manure to rice; Leucaena leaves to wheat
T_6	SGM + BGA + LGLM + Azotobacter	Sesbania + BGA to rice; <i>Leucaena + Azotobacter</i> to wheat
T ₇	SGM + FYM	Sesbania + FYM to rice; Leucaena + FYM to wheat
T ₈	Integrated treatment	Sesbania + FYM + BGA to rice; <i>Leucaena</i> + FYM + <i>Azotobacter</i> to wheat

2.4 Statistical analysis

Data from both years were analyzed using analysis of variance (ANOVA) appropriate for RCBD. Treatment means were compared using the least significant difference (LSD) test at the 5% probability level to determine significant differences among treatments (Gomez & Gomez, 1984) [53].

3. Results and discussion

3.1 Effect of Organic Agriculture on Rice Yield

Rice grain yields recorded during 2020-21 and 2021-22 under different nutrient management practices are summarized in Table 2. Yields varied significantly across treatments, reflecting the influence of organic and integrated nutrient strategies. In 2020-21, the lowest yield (4.0 t ha⁻¹) was observed in plots receiving FYM only to wheat (T₃), closely followed by conventional farming (T₁: 4.2 t ha⁻¹). Application of FYM to both rice and wheat (T₄: 4.9 t ha⁻¹) and Sesbania green manure (SGM) integrated with BGA (T₆: 4.65 t ha⁻¹) substantially enhanced yield relative to conventional practice. The highest yields were achieved under SGM + FYM + BGA (T₈: 5.2 t ha⁻¹), followed by SGM + FYM (T₇: 5.1 t ha⁻¹). A similar trend was observed during 2021-22, with T_1 (4.6 t ha^{-1}) and T_3 (4.4 t ha^{-1}) consistently producing the lowest yields. In contrast, T4 improved yield to 5.3 t ha⁻¹, while T₆ resulted in 4.97 t ha⁻¹. Once again, T_8 recorded the maximum yield (5.48 t ha⁻¹),

followed closely by T_7 (5.42 t ha⁻¹). The consistency of T_7 and T_8 across both years highlights the superior performance of integrated nutrient management involving FYM, green manures, and biofertilizers.

These findings corroborate earlier reports suggesting that integrated nutrient supply systems provide the most effective strategy for maintaining long-term productivity (Ramesh et al., 2009) [29]. Green manures not only improve soil fertility but also contribute to carbon sequestration and biological activity, while FYM provides a slow and sustained nutrient release (Sharma, 2002) [41]. Similar outcomes were reported by Maskina et al. (1988), who observed a 32% increase in rice yield under FYM application alone, and by Chinnusamy et al. (2006) [9], who found that combining biofertilizers such as BGA, PSB, and Azospirillum enhanced rice growth and yield traits. More recent studies confirm that integrated use of organics with biofertilizers and partial inorganic inputs significantly improves rice productivity and soil quality indices (Meena et al., 2020; Singh et al., 2023; Baghel & Singh, 2025) [1, 22]. Overall, the results clearly establish that the conjunctive use of FYM, SGM, and biofertilizers (T₇ and T₈) not only improved rice yield but also ensured yield stability across seasons. This highlights the crucial role of integrated organic strategies in enhancing nutrient use efficiency and sustaining productivity in rice-based systems.

Table 2: Effect of Organic Agriculture on Rice Grain Yield

Treatment	Rice Grain Yield (t ha ⁻¹)		
1 reatment	2020-21	2021-22	
T_1	4.20	4.60	
T_2	4.15	4.57	
T ₃	4.00	4.40	
T ₄	4.90	5.30	
T ₅	4.55	4.85	
T ₆	4.65	4.97	
T ₇	5.10	5.42	
T ₈	5.20	5.48	
LSD (P≤0.05)	0.12	0.10	

3.2 Effect of Organic Agriculture on Wheat Yield

Wheat yields during 2020-21 and 2021-22 are presented in Table 3. A similar pattern to rice was observed; with conventional farming (T_1) and sole FYM application to rice (T_2) producing the lowest yields (3.8 and 3.65 t ha⁻¹ in 2020-21; 4.06 and 3.91 t ha⁻¹ in 2021-22, respectively). Moderate improvements were achieved with FYM application to both crops (T_4 : 4.15 and 4.39 t ha⁻¹) and with SGM + BGA in rice combined with *Leucaena* leaves and *Azotobacter* in wheat (T_6 : 4.0 and 4.26 t ha⁻¹). The highest yields were consistently obtained under T_8 (SGM + FYM + BGA in rice and *Leucaena* + FYM + *Azotobacter* in wheat), which produced 4.6 and 4.88 t ha⁻¹ in the two years, respectively. T_7 (SGM + FYM in rice and *Leucaena* + FYM in wheat) also performed well, with yields of

4.35 and 4.63 t ha⁻¹. The yield improvements under integrated practices align with previous research. Yadav *et al.* (2018) and Suryawanshi *et al.* (2019) [46, 52] reported that combining inorganic fertilizers with FYM significantly improved wheat yields. Similarly, Chaudhry *et al.* (2017) [8] demonstrated that RDF supplemented with vermicompost and biofertilizers increased grain yield by over 20% compared with RDF alone. More recent findings by Ramanandan *et al.* (2020) [28] further support that integrated nutrient supply, including FYM, biofertilizers, and micronutrient supplementation, enhances grain, straw, and biological yields while improving harvest index.

In agreement with our findings, several long-term studies confirm that wheat productivity benefits substantially from

integrated nutrient management (Singh *et al.*, 2018; Sharma *et al.*, 2016) ^[40, 43]. Such practices not only raise yields but also improve soil physical and chemical properties, thereby ensuring sustained productivity in the rice-wheat cropping system. The results across both crops and years provide strong evidence that sole reliance on conventional practices or single organic inputs is insufficient to maintain high productivity. Instead, integrated application of FYM, SGM, BGA, and biofertilizers consistently delivered superior performance in terms of both rice and wheat yields. These outcomes reinforce the importance of adopting integrated nutrient management strategies for enhancing soil fertility, increasing nutrient use efficiency, and achieving yield stability in intensive rice-wheat systems.

Table 3: Effect of Organic Agriculture on Wheat Grain Yield

T4	Wheat Grain Yield (t ha ⁻¹)		
Treatment	Wheat (Nov 2020-21)	Wheat (Nov 2021-22)	
T_1	3.8	4.06	
T_2	3.65	3.91	
T ₃	3.95	4.23	
T ₄	4.15	4.39	
T ₅	3.95	4.17	
T_6	4	4.26	
T ₇	4.35	4.63	
T ₈	4.6	4.88	

4. Conclusion

The findings of this study clearly indicate that organic nutrient management practices substantially improved the productivity of the rice-wheat system on Inceptisol soils compared with conventional farming. The consistent yield advantages observed under treatments combining farmyard manure, green manures, and biofertilizers highlight the value of integrated organic strategies in enhancing crop performance. By supplying nutrients in a balanced and sustained manner, these practices not only closed existing yield gaps but also improved soil health and resource use efficiency.

References

- 1. Baghel S, Singh AK. Effect of different bio-fertilizer on plant and soil in different stages of rice in Vertisol of Chhattisgarh Plain, India. Int J Plant Soil Sci. 2025;37(5):10-9734.
- Bhatt R, Singh P, Hossain A, Timsina J. Rice-wheat system in the northwest Indo-Gangetic plains of South Asia: Issues and technological interventions for increasing productivity and sustainability. Paddy Water Environ. 2021;19(3):345-365.
- 3. Borse DK, Usadadia VP, Thorave DS. Nutrient management in wheat (*Triticum aestivum* L.) under partially reclaimed coastal salt affected soil of South Gujarat. Int J Curr Microbiol Appl Sci. 2019;8(5):1590-1599.
- 4. Buragohain S, Sarma B, Nath DJ, Gogoi N, Meena RS, Lal R. Effect of 10 years of biofertiliser use on soil quality and rice yield on an Inceptisol in Assam, India. Soil Res. 2017;56(1):49-58.
- 5. Cassman KG. Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proc Natl Acad Sci USA. 1999;96(11):5952-5959.
- 6. Central Rice Research Institute (CRRI). Vision 2050. 2013. Available from: https://icar-nrri.in/wp-content/uploads/2019/08/ebook_crrivision2050_final_16Jan 13.pdf

- Chanu LJ, Purakayastha TJ, Bhaduri D, Ali MF, Shivay YS, Saren S, *et al.* Assessment of soil biological quality under long-term rice-wheat cropping system: Effect of continuous vs. residual organic nutrient inputs. Soil Tillage Res. 2025;254:106725.
- 8. Chaudhry S, Khan N, Singh UP, Pyare R, Singh YK, Srivastav AK, *et al.* Effect of integrated nutrient management on productivity and economics of wheat (*Triticum aestivum*). Indian J Agron. 2017;62(4):476-480.
- 9. Chinnusamy M, Kaushik BD, Prasanna R. Growth, nutritional, and yield parameters of wetland rice as influenced by microbial consortia under controlled conditions. J Plant Nutr. 2006;29(5):857-871.
- 10. CIMMYT. Sustainability of rice production in the Northwestern Indo-Gangetic Plains. 2022 [cited 2025 Sep 1]. Available from: https://www.global-agriculture.com/agtech-research-news/sustainability-of-rice-production-in-the-northwestern-indo-gangetic-plains/
- 11. Critykar J, Shivay YS, Kumar D, Prasanna R. Productivity and economics of Basmati rice as influenced by combined application of diversified nutrient sources in organic Basmati rice-wheat system. Indian J Agron. 2019;64(2):109-113.
- 12. Dwivedi DK, Thakur SS. Effect of organics and inorganic fertility levels on productivity of rice (*Oryza sativa*) crop. Indian J Agron. 2000;45(3):453-453.
- 13. Evenson RE, Gollin D. Assessing the impact of the Green Revolution, 1960 to 2000. Science. 2003;300(5620):758-762
- 14. Grain and Feed Annual. The report contains assessments of commodity and trade issues made by USDA staff and not necessarily statements of official U.S. government policy. Grain Feed Annu. 2019;1-42.
- 15. Gupta V, Sharma RS. Long-term effect of integrated nutrient management on yield sustainability and soil fertility of rice (*Oryza sativa*)-wheat (*Triticum aestivum*) cropping system. Indian J Agron. 2006;51(3):160-164.
- 16. Jha GK, Palanisamy V, Sen B, Kumar A. Explaining rice and wheat yield gaps in Eastern Indian States: Insights from stochastic frontier analysis. Agric Res. 2022;11(4):703-715.
- 17. Ju XT, Xing GX, Chen XP, Zhang SL, Zhang LJ, Liu XJ, *et al.* Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc Natl Acad Sci USA. 2009;106(9):3041-3046.
- Kumar A, Tripathi HP, Yadav DS. Correcting nutrient for sustainable crop production. Indian J Fertil. 2007;2(11):37-44
- 19. Kumar D, Purakayastha TJ, Shivay YS. Long-term effect of organic manures and biofertilizers on physical and chemical properties of soil and productivity of rice-wheat system. Int J Bio-resour Stress Manag. 2015;6(2):176-181.
- 20. Maskina MS, Baddesha HS, Meelu OP. Fertilizer requirement of rice-wheat and maize-wheat rotations on coarse-textured soils amended with farmyard manure. Fertil Res. 1988;17(2):153-164.
- 21. Maurya S, Kumar R, Verma R, Baboo K, Prakash R, Singh AK. Effect of different crop establishment methods and weed management practices on growth indices and yield of rice (*Oryza sativa* L.). Int J Plant Soil Sci. 2023;35(17):31-37
- 22. Meena AL, Pandey RN, Kumar D, Dotaniya ML, Sharma VK, Singh G, *et al.* Impact of 12-year long rice-based organic farming on soil quality in terms of soil physical properties, available micronutrients and rice yield in a Typic

- Ustochrept soil of India. Commun Soil Sci Plant Anal. 2020;51(18):2331-2348.
- 23. Mishra JS, Poonia SP, Kumar R, Dubey R, Kumar V, Mondal S, *et al.* An impact of agronomic practices of sustainable rice-wheat crop intensification on food security, economic adaptability, and environmental mitigation across eastern Indo-Gangetic Plains. Field Crops Res. 2021;267:108164.
- 24. Moharana PC, Sharma BM, Biswas DR, Dwivedi BS, Singh RV. Long-term effect of nutrient management on soil fertility and soil organic carbon pools under a 6-year-old pearl millet-wheat cropping system in an Inceptisol of subtropical India. Field Crops Res. 2012;136:32-41.
- 25. Nayak HS, McDonald AJ, Kumar V, Craufurd P, Dubey SK, Nayak AK, *et al.* Context-dependent agricultural intensification pathways to increase rice production in India. Nat Commun. 2024;15(1):8403.
- 26. Nayak HS, Silva JV, Parihar CM, Kakraliya SK, Krupnik TJ, Bijarniya D, et al. Rice yield gaps and nitrogen-use efficiency in the Northwestern Indo-Gangetic Plains of India: Evidence based insights from heterogeneous farmers' practices. Field Crops Res. 2022;275:108328.
- 27. Pandey N, Verma AK, Anurag, Tripathi RS. Integrated nutrient management in transplanted hybrid rice (*Oryza sativa* L.). J Agron. 2007;52(1):40-42.
- 28. Ramanandan LG, Swaroop N, David AA, Thomas T. Influence of integrated nutrients on growth and yield attributes of wheat (*Triticum aestivum* L.) crop [cv. PBW-343] in Inseptisol. Int J Curr Microbiol Appl Sci. 2020;9(6):2781-2782.
- 29. Ramesh P, Panwar NR, Singh AB, Ramanna S. Production potential, nutrient uptake, soil fertility and economics of soybean (*Glycine max*)-based cropping systems under organic, chemical and integrated nutrient management practices. Indian J Agron. 2009;54(3):278-283.
- 30. Rani K, Tigga P, Roy A, Das A, Trivedi A. Nutrient availability and plant productivity through PGPR: Mechanisms, potential and constraints. Agric Biotechnol. 2022;75:138.
- 31. Razie F, Anas I. Effect of Azotobacter and Azospirillum on growth and yield of rice grown on tidal swamp rice field in South Kalimantan. J Ilmu Tanah Lingkungan. 2008;10(2):41-45.
- 32. Reddy Tummala K, Pawar RB, Patil DS. Effect of integrated nutrient management on growth, yield, and economics of wheat (*Triticum aestivum* L.) in Inceptisol. Int J Curr Microbiol Appl Sci. 2018;7(10):1892-902.
- 33. Roy A, Datta SP, Barman M, Golui D, Bhattacharyya S, Meena MC, *et al.* Co-application of silicate and low-arsenic-accumulating rice cultivars efficiently reduces human exposure to arsenic a case study from West Bengal, India. Toxics. 2023;11(1):64. Available from: https://doi.org/10.3390/toxics11010064
- 34. Sahoo RK, Ansari MW, Dangar TK, Mohanty S, Tuteja N. Phenotypic and molecular characterization of efficient nitrogen-fixing Azotobacter strains from rice fields for crop improvement. Protoplasma. 2014;251(3):511-523.
- 35. Sahoo RK, Rani V, Tuteja N. Azotobacter vinelandii helps to combat chromium stress in rice by maintaining antioxidant machinery. 3 Biotech. 2021;11(6):275.
- 36. Saxena A, Yadav DS. Effect of green gram on rice-wheat cropping system. Indian J Agric Sci. 1998;68(9):583-586.
- 37. Sen M, Roy A, Rani K, Nalia A, Das T, Tigga P, *et al.* Crop residue: status, distribution, management, and agricultural

- sustainability. In: Waste Management for Sustainable and Restored Agricultural Soil. Academic Press; 2024. p.167-201. Available from: https://doi.org/10.1016/B978-0-443-18486-4.00017-8
- 38. Senapati N, Semenov MA, Halford NG, Hawkesford MJ, Asseng S, Cooper M, *et al.* Global wheat production could benefit from closing the genetic yield gap. Nat Food. 2022;3(7):532-541.
- 39. Sharma AR, Mittra BN. Effect of different rates of application of organic and nitrogen fertilizers in a rice-based cropping system. J Agric Sci. 1991;117:313-318. Available from: http://dx.doi.org/10.1017/S0021859600067046
- 40. Sharma SA, Kumar R, Rana SS, Guleria G, Negi SC. Effect of long-term integrated plant nutrition system (IPNS) in rice-wheat sequence on soil biological health. Int J Adv Agric Sci Technol. 2016;3:21-34.
- 41. Sharma SN. Nitrogen management in relation to wheat (*Triticum aestivum*) residue management in rice (*Oryza sativa*). Indian J Agric Sci. 2002;72:449-452.
- 42. Singh A, Singh NK, Sushma HA, Jayhoon AS, Raghavan M, Pandey A, *et al.* Effects of integrated use of organic manure and bio-fertilisers on crop productivity: a case study of rice (*Oryza sativa* L.) crop. Int J Environ Clim Change. 2023;13(8):820-825.
- 43. Singh G, Kumar S, Sindhu GS, Kaur R. Effect of nutrient management on yield of wheat (*Triticum aestivum* L.) under irrigated conditions. Int J Chem Stud. 2018;6:904-907.
- 44. Singh JS, Pandey VC, Singh DP. Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ. 2011;140(3-4):339-353.
- 45. Singh J, Singh KP. Effect of organic manures and herbicides on yield and yield attributes of wheat. Indian J Agron. 2005;50(4):289-291.
- 46. Suryawanshi PK, Pagar VD, Kumbhar NM, Sadhu AC. Yield, quality and nutrient status of soil under different integrated nitrogen management practices in wheat (*Triticum aestivum*)-forage cowpea (Vigna unguiculata) cropping sequence. Indian J Agron. 2019;64(4):445-449.
- 47. Singh PK, Verma DK, Tiwari A, Singh RK, Verma GK, Singh R. Yield gap analysis and strategy for improving wheat (*Triticum aestivum* L.) productivity under late sown through front line demonstrations in Eastern Uttar Pradesh. Int J Curr Microbiol Appl Sci. 2020;10:180-184.
- 48. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S. Agricultural sustainability and intensive production practices. Nature. 2002;418(6898):671-677.
- 49. Urmi TA, Rahman MM, Islam MM, Islam MA, Jahan NA, Mia MAB, *et al.* Integrated nutrient management for rice yield, soil fertility, and carbon sequestration. Plants. 2022;11(1):138.
- 50. Van Ittersum MK, Cassman KG, Grassini P, Wolf J, Tittonell P, Hochman Z. Yield gap analysis with local to global relevance a review. Field Crops Res. 2013;143:4-17.
- 51. Vessey JK. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil. 2003;255(2):571-586.
- 52. Yadav KK, Singh SP, Nishant KV. Effect of integrated nutrient management on soil fertility and productivity on wheat crop. J Exp Agric Int. 2018;24(2):1-9.
- Gomez KA, Gomez AA. Statistical Procedures for Agricultural Research. 2nd ed. New York: John Wiley & Sons; 1984.