

E-ISSN: 2618-0618 P-ISSN: 2618-060X © Agronomy

NAAS Rating (2025): 5.20

www.agronomyjournals.com

2025; 8(10): 852-856 Received: 26-07-2025 Accepted: 29-08-2025

Mala Singh

Section of Agronomy, BTC College of Agriculture and Research Station, Bilaspur, Chhattisgarh, India

Dinesh Pandey

Section of Agronomy, BTC College of Agriculture and Research Station, Bilaspur, Chhattisgarh, India

Geet Sharma

Section of Agronomy, BTC College of Agriculture and Research Station, Bilaspur, Chhattisgarh, India

Yushma Sao

Section of Agronomy, BTC College of Agriculture and Research Station, Bilaspur, Chhattisgarh, India

NK Chaure

Section of Agronomy, BTC College of Agriculture and Research Station, Bilaspur, Chhattisgarh, India

Shriya Jagat

Section of Agronomy, BTC College of Agriculture and Research Station, Bilaspur, Chhattisgarh, India

Kiran Sahu

Section of Agronomy, BTC College of Agriculture and Research Station, Bilaspur, Chhattisgarh, India

Corresponding Author: Mala Singh

Section of Agronomy, BTC College of Agriculture and Research Station, Bilaspur, Chhattisgarh, India

Effect of different irrigation levels on newly released wheat varieties

Mala Singh, Dinesh Pandey, Geet Sharma, Yushma Sao, NK Chaure, Shriya Jagat and Kiran Sahu

DOI: https://www.doi.org/10.33545/2618060X.2025.v8.i101.4077

Abstract

A field experiment entitled "Effect of different irrigation levels on newly released wheat varieties" was conducted during *Rabi 2024-25* at the Instructional-cum-Research Farm, Barrister Thakur Chhedilal College of Agriculture and Research Station, Bilaspur (C.G.). The experiment was laid out in a split-plot design with three replications, comprising three irrigation levels-I1: no irrigation, I2: one irrigation at CRI stage, and I3: two irrigations at CRI and boot leaf stages-in main plots, and nine wheat genotypes-V1: UAS(d), V2: HI8827(d)(C), V3: MACS(d), V4: DBW432, V5: CG1040(c), V6: HI8851(d), V7: HI8823(d)(c), V8: MPO(d), and V9: DBW110(c)-in subplots. Results revealed that growth parameters such as plant height, number of tillers m⁻², dry matter accumulation, crop growth rate, and relative growth rate, as well as yield-attributing traits including ear length, grains ear⁻¹, test weight, biological yield, grain yield, straw yield, and harvest index were significantly influenced by irrigation levels. The I3 treatment (two irrigations at CRI and boot leaf stages) recorded the highest values for most traits, statistically at par with I2, while the lowest values were observed under I1. Among genotypes, CG1040(c) exhibited superior performance for most growth and yield parameters, followed by MPO(d) and DBW432, whereas HI8827(d)(C) recorded the lowest. Plant population remained non-significant across treatments. The lowest harvest index was observed in DBW110(c).

Keywords: Restricted irrigation, wheat, genotypes, yield, yield attributes

Introduction

In India, wheat (*Triticum aestivum* L.) is the second most important food crop after rice and the most widely consumed cereal. It is a self-pollinated member of the Poaceae family, cultivated globally on about 224.49 million hectares with a production of 792.40 million tonnes and productivity of 3.52 t ha⁻¹. Wheat's high nutritive value-containing 65-75% carbohydrates, 8-13% protein, and essential minerals-makes it vital for human consumption.

In India, wheat occupies 31.82 million ha, producing 113.29 million tonnes with an average productivity of 33.11 q ha⁻¹ (2023-24). In Chhattisgarh, it is grown on about 2.67 lakh ha with a productivity of 1.6 t ha⁻¹ (Anonymous, 2023-24) ^[5]. Water plays a crucial role throughout crop growth, and irrigation frequency has a positive correlation with yield. Moisture stress during critical stages reduces test weight and yield, while efficient water management enhances productivity and lowers pest and disease vulnerability.

Restricted irrigation optimizes water use by supplying the right amount at critical stages. Over-irrigation causes excessive vegetative growth, poor grain quality, and lodging, whereas restricted irrigation improves resource partitioning and grain filling. When limited to one or two irrigations, the Crown Root Initiation (CRI) stage (18-25 DAS) is most critical for root and tiller development, followed by booting or flowering stages for better spike and grain formation.

In Chhattisgarh, irrigation sources include canals, dams, tube wells, ponds, and wells, covering 21.52 lakh ha-about 38.84% of the total cropped area. Canals contribute 52% of irrigation, followed by tube wells (29%). The total available surface and groundwater are approximately 48,296 MCM and 11,630 MCM, respectively-indicating limited water availability and frequent scarcity during the rabi season.

Therefore, adopting restricted irrigation practices in wheat is essential for water conservation, improved efficiency, and sustainable production. Selecting suitable, thermo-tolerant genotypes further enhances yield stability under water-limited conditions (Zhuanyun Si & Anzhen Qin, 2023). Restricted irrigation not only conserves resources but also reduces costs, supporting long-term agricultural sustainability in Chhattisgarh.

Materials and Methods

A field experiment entitled "Effect of different irrigation levels on newly released wheat varieties" was conducted during *rabi* 2024-25 at the Instructional-cum-Research Farm, Barrister Thakur Chhedilal College of Agriculture and Research Station, Bilaspur (C.G.). The experimental soil was sandy clay loam with a pH of 7.2 and EC of 0.22 dS m⁻¹ (0-30 cm depth), low in available nitrogen, medium in phosphorus, organic carbon, and potassium.

The recommended fertilizer dose was 90:60:40 kg N:P₂O₅:K₂O ha⁻¹. Treatments consisted of three irrigation levels-I₁: no irrigation, I2: one irrigation at CRI stage, and I3: two irrigations at CRI and boot leaf stages-assigned to main plots, and nine genotypes- (V_1) UAS(d), (V_2) HI8827(d)(C), (V_3) MACS(d), (V₄) DBW432, (V₅) CG1040(c), (V₆) HI8851(d), (V₇) HI8823(d)(c), (V₈) MPO(d), and (V₉) DBW110(c)-in subplots, arranged in a split-plot design with three replications. Sowing was done on 5th November 2024, and harvesting on 1st March 2025. Full doses of P2O5 and K2O, along with 50% N, were applied at sowing; the remaining N was top-dressed at the first irrigation (18-20 DAS) in I₂ and I₃. In I₁ (no irrigation), the entire NPK dose was applied at sowing. Observations on growth, morphology, and yield were recorded at 30, 60, and 90 DAS, and at harvest. Crops were harvested at full maturity, dried, threshed manually, and grain and straw yields were recorded separately.

Results and Discussion

The results obtained from the present investigation as well as relevant discussion have been summarized under following heads:

Plant Height (cm)

The maximum plant height was observed under I3 (two irrigations at CRI and boot leaf stages), which was statistically at par with I2 (one irrigation at CRI stage), while the minimum height was recorded under the I₁ (no irrigation) treatment at 30 DAS. Similar trends were observed at 60, 90 DAS, and at harvest (Table 1). Among the genotypes, V₅ (CG1040(c)) recorded the highest plant height, which was at par with V₈ (MPO(d)) and V₄ (DBW432) at 30 DAS, whereas the lowest height was recorded in V2 (HI8827(d)(C)). At 60 DAS, V5 (CG1040(c)) again exhibited the maximum plant height, while V₂ (HI8827(d)(C)) remained the shortest. Similar trends continued at 90 DAS and harvest stages. The interaction effect between irrigation levels and genotypes on plant height was found to be non-significant. Overall, all genotypes showed increased plant height with irrigation at critical growth stages, which may be attributed to genotypic differences and improved growth conditions resulting from better nutrient availability and reduced moisture stress. These findings are consistent with the results reported by Wang et al. (2009), who observed that irrigation significantly influenced plant height.

Number of tillers (m⁻²)

The highest number of tillers was observed under I₃ (two

irrigations at CRI and boot leaf stages), which was at par with I₂ (one irrigation at CRI), while the lowest tiller count occurred under I₁ (no irrigation). Similar trends were recorded at 60, 90 DAS, and at harvest (Table 2). Among genotypes, V₅ (CG1040(c)) produced the maximum number of tillers, statistically at par with V₈ (MPO(d)) and V₄ (DBW432), whereas the minimum was observed in V₂ (HI8827(d)(C)) across all stages of crop growth. The interaction between irrigation levels and genotypes was found to be non-significant. The higher number of tillers under I₃ may be attributed to timely irrigation at critical stages (CRI and boot leaf), ensuring optimum soil moisture for better vegetative growth and tiller development. These results agree with Ali *et al.* (2010) ^[4], who reported that adequate irrigation significantly enhances tiller production in wheat.

Dry Matter Accumulation (g plant⁻¹)

Maximum dry matter accumulation was observed under I₃ (two irrigations at CRI and boot leaf stages), which was statistically at par with I₂ (one irrigation at CRI), while the lowest was recorded under I₁ (no irrigation) at 30 DAS. Similar trends continued at 60, 90 DAS, and at harvest (Table 4). Among genotypes, V₅ (CG1040(c)) produced the highest dry matter, comparable with V₈ (MPO(d)) and V₄ (DBW432), whereas the minimum was recorded in V₂ (HI8827(d)(C)) across all stages. The interaction effect between irrigation levels and genotypes was nonsignificant. Higher dry matter under I₃ may be attributed to enhanced photosynthesis and nutrient uptake due to adequate moisture during critical growth stages. These results corroborate the findings of Boughdiri *et al.* (2014) [11], who reported that irrigation significantly improves dry matter accumulation in wheat.

Ear length (cm)

Maximum ear length was recorded under I₃ (two irrigations at CRI and boot leaf stages), which was at par with I₂ (one irrigation at CRI), while the minimum was observed under I₁ (no irrigation). Among genotypes, V₅ (CG1040(c)) produced the longest ears, followed by V₈ (MPO(d)) and V₄ (DBW432), whereas V₂ (HI8827(d)(C)) recorded the shortest ears at harvest (Table 3). The interaction between irrigation and genotype was non-significant. The increase in ear length with higher irrigation levels may be attributed to a steady water supply, which supports metabolic processes and enhances photosynthetic activity. Similar findings were reported by Atikullah *et al.* (2014) ^[7] and Ahmad and Kumar (2015) ^[2].

Number of grains ear head-1

The highest number of grains per ear was recorded under I₃ (two irrigations at CRI and boot leaf stages), followed by I₂ (one irrigation at CRI), while the lowest was observed in I₁ (no irrigation). Significant differences were also observed among genotypes, with V₅ (CG1040(c)) producing the maximum grains per ear, at par with V₈ (MPO(d)) and V₄ (DBW432), whereas V₂ (HI8827(d)(C)) recorded the minimum (Table 3). The interaction between irrigation and genotype was non-significant. Higher moisture availability likely enhanced plant height, LAI, and dry matter accumulation, contributing to increased yield components through improved photosynthesis, translocation of photosynthates, and better potassium uptake. Consequently, I₃ produced the maximum grains per ear. Similar results were reported by Khokhar *et al.* (2010).

Test weight (g)

The highest test weight was recorded under I₃ (two irrigations at

CRI and boot leaf stages), which was at par with I₂ (one irrigation at CRI), while the lowest was observed in I₁ (no irrigation) plots. Among genotypes, V₅ (CG1040(c)) exhibited the highest test weight, at par with V₈ (MPO(d)) and V₄ (DBW432), whereas V₂ (HI8827(d)(C)) recorded the lowest (Table 3). The interaction between irrigation and genotype was non-significant. Regular irrigation throughout the growing season enhances dry matter accumulation in grains, improving their plumpness and, consequently, test weight. These findings are consistent with Karam *et al.* (2009) and Ahmad and Kumar (2015) [2].

Grain vield (a ha-1)

Both irrigation levels and genotypes significantly influenced grain yield at harvest. The highest grain yield was recorded under I₃ (two irrigations at CRI and boot leaf stages), which was at par with I₂ (one irrigation at CRI), while the lowest yield was observed in I₁ (no irrigation) plots. Among genotypes, V₅ (CG1040(c)) produced the highest grain yield, comparable with V₈ (MPO(d)) and V₄ (DBW432), whereas V₂ (HI8827(d)(C)) recorded the lowest (Table 3). The interaction between irrigation

and genotype was non-significant. Higher grain yield under adequate irrigation is attributed to improved growth parameters and yield components resulting from optimal moisture availability. Similar increases in grain yield with irrigation were reported by Kumar and Pannu (2012) [17], Aslam *et al.* (2014) [6], and Bedarkar *et al.* (2017) [10].

Straw yield (q ha-1)

Both irrigation levels and genotypes significantly influenced straw yield. The highest straw yield was recorded under I₃ (two irrigations at CRI and boot leaf stages), which was at par with I₂ (one irrigation at CRI), while the lowest yield occurred in I₁ (no irrigation) plots. Among genotypes, V₅ (CG1040(c)) produced the highest straw yield, comparable with V₈ (MPO(d)) and V₄ (DBW432), whereas V₂ (HI8827(d)(C)) recorded the lowest (Table 3). The interaction between irrigation and genotype was non-significant. Lower straw yield under limited moisture is likely due to reduced growth and yield attributes during critical stages. These findings are consistent with and Idnani and Kumar (2012) [14].

Table 1: Plant height (cm) of wheat influenced by different irrigation and genotypes.

Tuestusente	Plant height (cm)					
Treatments	30 DAS	60 DAS	90 DAS	At harvest		
A. Irrigation levels (Main-plot): 03						
I ₁ - No irrigation	28.13	73.04	85.85	82.11		
I ₂ - One irrigation at CRI (18-20 DAS)	30.67	77.81	89.01	85.12		
I ₃ - Two irrigations at CRI and Boot leaf stage (65-70 DAS)	31.93	80.60	93.71	88.53		
S.Em (±)	0.05	0.10	0.13	0.11		
CD (5%)	1.26	2.75	3.33	3.02		
B. Genotypes	s (Sub-plot): 09)				
V ₁ - UAS 484 (d)	31.23	78.48	90.28	86.54		
V ₂ - HI 8827 (d) (c)	25.19	67.27	86.06	78.45		
V ₃ - MACS 4131 (d)	30.49	78.02	89.98	85.88		
V ₄ - DBW 432	32.93	81.47	91.07	86.92		
V ₅ - CG 1040 (c)	34.19	83.34	92.76	88.35		
V ₆ - HI 8851 (d)	27.85	73.42	87.96	84.48		
V ₇ - HI 8823 (d) (c)	26.34	72.42	87.05	83.48		
V ₈ - MPO 1308 (d)	33.61	82.21	91.75	87.87		
V ₉ - DBW 110 (c)	30.34	77.7	88.79	85.31		
S.Em (±)	0.91	0.74	0.75	0.53		
CD (5%)	2.59	2.13	2.14	1.51		
Interaction						
S.Em (±)	0.91	0.74	0.75	0.53		
C.D. (5%)	NS	NS	NS	NS		

Table 2: Number of tillers of wheat influenced by different irrigation and genotypes.

Treatments	Number of tillers (m ⁻²)					
Treatments	30 DAS	60 DAS	90 DAS	At harvest		
A. Irrigation levels (Main-plot): 03						
I ₁ - No irrigation	185.10	289.54	311.50	305.53		
I ₂ - One irrigation at CRI	189.90	299.31	330.70	326.55		
I ₃ - Two irrigations at CRI and Boot leaf stage	193.80	320.01	346.50	340.24		
S.Em (±)	0.27	0.51	0.65	0.49		
CD (5%)	6.85	12.96	16.4	12.32		
B. Genotypes (Sub-plot): 09						
V ₁ - UAS 484 (d)	189.62	309.63	332.42	325.15		
V ₂ - HI 8827 (d) (c)	180.91	270.70	290.31	281.94		
V ₃ - MACS 4131 (d)	188.44	301.91	322.83	316.44		
V ₄ - DBW 432	195.66	329.40	351.90	347.59		
V ₅ - CG 1040 (c)	197.32	331.42	353.82	350.23		
V ₆ - HI 8851 (d)	187.21	283.93	324.01	318.75		
V ₇ - HI 8823 (d) (c)	183.10	277.11	311.42	297.93		
V ₈ - MPO 1308 (d)	196.53	330.50	352.60	348.80		
V ₉ - DBW 110 (c)	187.84	291.72	327.01	316.09		
S.Em (±)	2.38	1.24	1.16	1.26		

CD (5%)	6.78	3.54	3.31	3.58		
Interaction						
S.Em (±)	2.38	1.24	1.16	1.26		
C.D. (5%)	NS	NS	NS	NS		

Table 3: Length of ear (cm), number of grains ear head^{-1,} test weight (g), Grain yield (q ha⁻¹) and straw yield (q ha⁻¹) of wheat influenced by different irrigation and genotypes.

Treatments	Length of ear (cm)	Number of grains ear head-1	Test weight (g)	Grain yield (q ha ⁻¹)	Straw yield (q ha ⁻¹)	
Irrigation levels (Main-plot): 03						
I ₁ - No irrigation	7.16	26.85	27.68	24.53	26.72	
I ₂ - One irrigation at CRI	8.59	29.99	31.01	30.59	35.55	
I ₃ -Two irrigations at CRI and Boot leaf	9.08	35.16	34.90	33.82	40.34	
S.Em (±)	0.11	0.06	0.20	0.20	0.13	
CD (5%)	0.31	3.19	0.60	0.59	3.51	
В	. Genotypes (Sub-p	lot): 09				
V ₁ - UAS 484 (d)	8.56	30.99	31.90	30.86	35.41	
V ₂ - HI 8827 (d) (c)	6.33	31.45	27.96	24.10	29.10	
V ₃ - MACS 4131 (d)	8.33	31.37	30.91	29.54	34.30	
V ₄ - DBW 432	9.28	30.16	32.89	32.26	36.55	
V ₅ - CG 1040 (c)	10.02	30.02	34.45	35.32	38.39	
V ₆ - HI 8851 (d)	7.34	29.76	29.77	26.76	32.21	
V ₇ - HI 8823 (d) (c)	7.02	30.70	29.24	25.85	30.67	
V ₈ - MPO 1308 (d)	9.67	30.12	33.57	33.42	37.71	
V ₉ - DBW 110 (c)	7.92	31.42	30.07	28.69	33.51	
S.Em (±)	0.26	0.80	0.49	0.43	0.77	
CD (5%)	0.76	1.89	1.16	1.03	2.19	
Interaction						
S.Em (±)	0.26	1.38	0.85	0.75	0.95	
C.D. (5%)	NS	NS	NS	NS	NS	

Table 4: Dry matter accumulation (g plant⁻¹) of wheat influenced by different irrigation and genotypes.

Tuesdanisma		Dry matter accumulation				
Treatments	30 DAS	60 DAS	90 DAS	At harvest		
A. Irrigation levels (A. Irrigation levels (Main-plot): 03					
I ₁ - No irrigation	0.51	3.89	8.13	13.1		
I ₂ - One irrigation at CRI (18-20 DAS)	0.52	4.61	10.1	16.5		
I ₃ - Two irrigations at CRI and Boot leaf stage(65-70 DAS)	0.57	5.53	11.5	18.2		
S.Em (±)	0.01	0.02	0.05	0.05		
CD (5%)	0.03	0.72	1.24	1.3		
B. Genotypes (Sub-	olot): 09					
V ₁ - UAS 484 (d)	0.56	4.86	10.20	16.70		
V ₂ - HI 8827 (d) (c)	0.44	3.83	7.77	12.60		
V ₃ - MACS 4131 (d)	0.53	4.72	9.95	16.10		
V ₄ - DBW 432	0.58	5.11	11.10	17.80		
V ₅ - CG 1040 (c)	0.63	5.60	12.00	19.20		
V ₆ - HI 8851 (d)	0.48	4.25	8.84	14.00		
V ₇ - HI 8823 (d) (c)	0.45	4.01	8.50	13.60		
V ₈ - MPO 1308 (d)	0.60	5.18	11.20	18.00		
V ₉ - DBW 110 (c)	0.51	4.51	9.55	15.40		
S.Em (±)	0.02	0.24	0.50	0.64		
CD (5%)	0.06	0.67	1.43	1.82		
Interaction						
S.Em (±)	0.01	0.18	0.49	0.60		
CD (5%)	NS	NS	NS	NS		

Table 5: Irrigation levels and genotypes on economics of wheat (*Triticum aestivum* L.) cultivation.

Tuesdand	Cost of cultivation	Gross return	Net return	D.C Datia			
Treatments	(₹ ha ⁻¹)	(₹ ha ⁻¹)	(₹ ha ⁻¹)	B:C Ratio			
A. Ir	A. Irrigation levels (Main-plot): 03						
I ₁ - No irrigation	27095.00	59325.75	32230.75	1.18			
I ₂ - One irrigation at CRI	28271.00	73003.50	44732.50	1.58			
I ₃ -Two irrigations at CRI and Boot leaf stage	29069.00	79968.00	50899.00	1.75			
B. Genotypes (Sub-plot): 09							
V ₁ - UAS 484 (d)	28271.00	72649.50	44378.50	1.57			
V ₂ - HI 8827 (d) (c)	28271.00	57326.25	29055.25	1.02			
V ₃ - MACS 4131 (d)	28271.00	70134.00	41863.00	1.48			
V ₄ - DBW 432	28271.00	76866.00	48595.00	1.71			
V ₅ - CG 1040 (c)	28271.00	82340.25	54069.25	1.91			

V ₆ - HI 8851 (d)	28271.00	63186.75	34915.75	1.23
V ₇ - HI 8823 (d) (c)	28271.00	60563.25	32292.25	1.14
V ₈ - MPO 1308 (d)	28271.00	77844.75	49573.75	1.75
V ₉ - DBW 110 (c)	28271.00	67623.00	39352.00	1.39

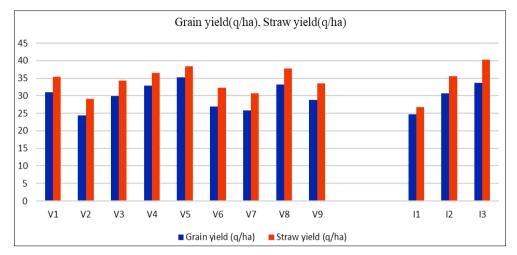


Fig 1: Effect of irrigation levels and genotypes on grain yield q ha⁻¹, straw yield q ha⁻¹ of wheat (Triticum aestivum L.).

Conclusion

The highest grain yield was recorded under I₃ (two irrigations at CRI and boot leaf), producing 33.82 q ha⁻¹, which was significantly higher than I₂ (one irrigation, 30.59 q ha⁻¹) and I₁ (no irrigation, 24.53 q ha⁻¹). Among genotypes, CG1040(c) achieved the maximum grain yield (35.32 q ha⁻¹), at par with MPO 1308(d) (33.42 q ha⁻¹) and DBW 432 (32.26 q ha⁻¹) under restricted irrigation. These results indicate that CG1040(c) is a promising genotype for wheat cultivation in Chhattisgarh under restricted irrigation, offering superior productivity and favorable growth characteristics.

References

- Abhineet, Kumar R, Singh S, Nand V, Choudhary V. Effect of restricted irrigation levels on yield attributes and yield of various varieties of wheat. J Pharma Phyto. 2019;8(2):122-5
- 2. Ahmad A, Kumar R. Effect of irrigation scheduling on the growth and yield of wheat genotypes. Agric Sci Digest. 2015;35(3):199-202.
- Alam MDP, Kumar S, Ali N, Manjhi RP, Kumar N, Lakra RK, Izhar T. Performance of wheat varieties under different sowing dates in Jharkhand. J Wheat Res. 2013;5(2):16-64.
- Ali AM, Amiru NB, Syed SB. The performance of durum and bread wheat genotypes associated with yield and yield components under different water deficit conditions. Aust J Basic Appl Sci. 2010;4(1):106-113.
- 5. Anonymous. Krishi Darshika, Annual publication of Directorate of Extension Services, Indira Gandhi Krishi Vishwavidyalaya, Raipur (C.G.); 2021. p. 4.
- 6. Aslam H, Ansari MA, Baloch SK, Baloch SU, Baloch AS. Effect of irrigation scheduling on the growth and harvest index of wheat varieties. Persian Gulf Crop Prot. 2014;2(3):15-29.
- 7. Atikullah MN, Sikder RK, Asif MI, Mehraj H, Jamaluddin AFM. Effect of irrigation levels on growth, yield attributes and yield of wheat. J Biosci Agric Res. 2014;2(2):83-9.
- 8. Bachhao KS, Kolekar PT, Nawale SS, Kadlag AD. Response of different wheat varieties to different sowing dates. J Pharmacogn Phytochem. 2018;7(1):2178-80.
- 9. Barla S, Upasani RR. Performance of wheat varieties under

- different irrigation condition. J Pharma Phyto. 2019;SP5:205-207.
- 10. Bedarkar PB, Sawadhkar SM, Bhale VM, Chore AB. Response of different genotype to restricted irrigation for increasing yield of wheat. Int J Sci Res. 2017;6(1):30-2.
- 11. Boughdiri A, Daghari H, Saidi A. The water use efficiency for different varieties of wheat and the effect of supplemental irrigation in the semi-arid regions of Tunisia. Int J Agri Innov Res. 2014;1(3):326-30.
- 12. Hazari S, Mondal R, Das S. Performance of wheat genotypes under different irrigational approaches in the Terai agro-ecological condition. Pharm Innov J. 2019;8(7):01-4.
- 13. Hetram HP, Agrawal JR, Patel AP, Agrawal D, Pandey NK, Chaure NK, *et al.* Performance of new wheat genotypes under restricted irrigated conditions. Int J Chem Stud. 2022;10(5):15-18.
- 14. Idnani LK, Kumar A. A relative efficiency of different irrigation schedules for conventional ridge and raised bed seeding of wheat. Indian J Agron. 2012;57(2):148-51.
- 15. Joy MM, Biplab M, Singha AKR. Growth and yield performances of wheat genotypes under restricted irrigation in Eastern Sub Himalayan Plains. Indian J Agric Res. 2021;55(4):505-508.
- Khoker B, Hussain I, Khokhar Z. Effect of different irrigation frequencies on growth and yield of different wheat genotypes in Sindh. Pak J Agric Res. 2010;23(4):108-112.
- 17. Kumar P, Pannu RK, Khokhar SK. Effect of organic sources of nutrition and irrigation levels on growth and yield of wheat. Int J Life Sci Bt Pharm Res. 2012;1(4):178-186.
- 18. Priya Kumari, Pathak SK, Seema. Effect of restricted irrigation on yield and yield attributes of different wheat (*Triticum aestivum* L.) varieties. Int J Curr Microbiol App Sci. 2020;9(10):3505-3509.
- 19. Youssef MA, Sayed MM, Sadek I. Impact of organic manure, bio-fertilizer and irrigation levels on wheat growth and grain yield. Am-Eurasian J Agric Environ Sci. 2013;13(11):1488-1496.