

E-ISSN: 2618-0618 P-ISSN: 2618-060X © Agronomy

NAAS Rating (2025): 5.20 www.agronomyjournals.com

2025; 8(10): 617-622 Received: 28-07-2025 Accepted: 29-08-2025

Saumya

Ph.D. Scholar, Department of Soil Science and Agricultural Chemistry, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, India

Amreen Hasan

Assistant Professor, Department of Soil Science and Agricultural Chemistry, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, India

C John Wesley

Professor, Centre for Geo-spatial Technologies, Department of Soil Science and Agricultural Chemistry, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, India

Joy Dawson

Professor & Head, Department of Agronomy, Department of Soil Science and Agricultural Chemistry, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, India

Arun Alfred David

Professor & Head, Department of Soil Science and Agricultural Chemistry, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, India

Ram Bharose

Professor, Department of Soil Science and Agricultural Chemistry, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, India

Corresponding Author: Saumya

Ph.D. Scholar, Department of Soil Science and Agricultural Chemistry, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, India

Response of integrated nutrient management on growth and yield attributes of rice (*Oryza sativa* L.)

Saumya, Amreen Hasan, C John Wesley, Joy Dawson, Arun Alfred David and Ram Bharose

DOI: https://www.doi.org/10.33545/2618060X.2025.v8.i10i.4036

Abstract

The experiment entitled "Response of Integrated nutrient management on growth and yield attributes of Rice (*Oryza sativa* L.)" for the two consecutive years, beginning from kharif season 2023 and 2024 at CRF, Department of Soil Science and Agricultural Chemistry, SHUATS, Prayagraj-211007, UP. The trial was laid down in RBD with sixteen treatments of rice which replicated thrice. The application plot size is 2x2m. Transplanting was done with spacing row to row and plant to plant 15x15 with two plants per hill at depth of 5 cm. the value of growth, yield and yield attributes *viz.*, plant height (cm) (123.15), tillers (No.) (332.56m⁻²), dry weight plant⁻¹ (45.95 g), crop growth rate (26.32g/g/day), leaf area index (6.59 lai), rice leaf n content (45.38 spad value), net assimilation rate (3.89 g/day/m2), panicle plant⁻¹ No. (15.82), filled grain panicle⁻¹ No. (136.43), length of panicle (31.48cm), test weight (33.26g), grain yield q ha⁻¹ (61.09), straw yield q ha⁻¹ (96.05) & harvest index (38.88%) of rice were significantly higher in T₁₄RDF + V.C + Zn 100% SA.

Keywords: INM, zinc growth, yield and rice

Introduction

The leading cereal food crop in the world is Rice. It is cultivated in 114 countries, spanning an area of about 150 million hectares, which is nearly 11% of the world's agricultural land, resulting in an annual production of over 525 million tons. Yet, by the year 2025, a 40% surge in global rice demand is foreseen due to the rising population. Sahoo et al., (2019) [27]. It is grown during both the kharif and rabi seasons in India. In the kharif season, the area planted with rice increased from 38,919 thousand hectares in 2019 to 41,195.80 thousand hectares in 2023, experiencing some fluctuations in the interim. According to the MAFW, in India area in rice cultivation has increased from 43.8 million hectares in 2000-01 to 44.9 million hectares in 2020-21, while production improved from 93.8 to 118.9 million tonnes during the similar period. During the 2020-21 agricultural year, rice comprised 35.26 percent of the land area and 40.02 percent of the total food grain output in India Akancha et al., (2025) [1]. India is also a major exporter of rice exporting around 14.37 million tonnes of rice (2020-21), according to the APEDA. It has a good amount of protein (6–10%), carbohydrates (70–80%), minerals (1.22%), and vitamins (1.22%), and it is a good source of energy. (Vitamin E, thiamine, riboflavin, and niacin). Rice (Oryza sativa L.) is a member of the Poaceae family. One of the most significant cereal crops during the Kharif season is rice. It has a good amount of protein (6-10%), carbohydrates (70–80%), minerals (1.22%), and vitamins (1.22%), and it is a good source of energy. (Vitamin E, thiamine, riboflavin, and niacin) Kumar et al., (2023) [13]. INM focuses on the effective and prudent utilization of all primary sources of plant nutrients in a cohesive manner. Consequently, the synergistic application of organic manure and inorganic fertilizers contributes to the stability of yields by rectifying minor insufficiencies in minor and micronutrients, thereby improving the efficiency of the nutrients applied and ensuring constructive soil physical environments (Gill and Walia, 2014; Singh, 2017) [10, 37]. Organic materials provide nutrients during the optimal absorption phase, in addition to supplying micronutrients, altering the physical properties of soil, and enhancing the effectiveness of applied nutrients (Pandey et al., 2007) [20]. FYM serves as a primary source of organic fertilizer

for field crops, as it delivers all necessary plant nutrients and promotes microbial activity in the soil (Sutaliya and Singh, 2005) [41]. Vermicompost also plays a role in disease prevention in plants (Rao et al., 2000) [25]. The nutrients found in vermicompost are readily accessible (Robinson et al., 1990) [26]. The application of vermicompost has a beneficial impact on the yield attributes and overall yield of various crops (Vasanthi and Kumarswamy, 2000; Das et al., 2002; Singh et al., 2005) [43, 6, 35]. Furthermore, vermicompost contributes to the enhancement and preservation of topsoil fertility, while also increasing productivity by 40% (Dussere et al., 1992) [7]. Zinc is a crucial micronutrient that is vital for the growth of plants, particularly rice cultivated in submerged conditions. Plants absorb zinc in the form of Zn2+; although it is classified as a micronutrient, it significantly contributes to the growth and metabolism of plants. Zinc serves as a crucial element and activator for various enzymes that play a role in metabolic processes. It is essential for the synthesis of proteins and the expression of genes in plants. (Cakmak, 2000) [4].

Materials and Methods

The experiment entitled "Response of Integrated nutrient management on growth and yield attributes of Rice (Oryza sativa L.)" for the two consecutive years, beginning from kharif season 2023 and 2024 at CRF, Department of Soil Science and Agricultural Chemistry, SHUATS, Prayagraj-211007, UP. The highest temperature recorded in this area can reach between 460°C and 480°C, while the lowest temperature varies from 40°C to 50°C. The relative humidity fluctuates between 20% and 94%. Annually, the average precipitation in this region is approximately 1100 mm. The experiment was laid down in RBD with sixteen treatments combination which replicated thrice. The INM treatments in the rice were included T₁:(Control), T₂:RDF @ 100%, T3:RDF @ 100%+ @ 50% Zn SA, T4:RDF @ 100%+ @ 100% Zn SA, T₅:RDF @ 50% + @ 0.5% Zn foliar application, T₆:RDF @ 100%+ @ 0.5% Zn foliar application, T_7 :RDF @100% + @ FYM 100%, T_8 : RDF @ 50% +@ 50% FYM + @ 50%Zn SA, T₉: RDF @ 100% + @ 100% FYM + @ 100% Zn SA, T_{10} : RDF @ 50% + @ 50% FYM + @ 0.5% Zn foliar application, T₁₁: RDF@100% +@100% FYM + @ 0.5% Zn foliar application, T₁₂: RDF @100% Vermicompost, T₁₃: RDF @50% + @50% Vermicompost + @ 50% Zn SA, T₁₄: RDF @100% + @100% Vermicompost + @ 100% Zn SA, T₁₅: RDF @ 50%+ @50% Vermicompost + @ 0.5% Zn foliar application and $T_{16}\!\!:$ RDF @100% $\stackrel{\centerdot}{+}$ @100% Vermicompost + @ 0.5% Zn foliar application. @ 25 kg ha⁻¹ Zinc as soil application and 0.5% Zinc as a foliar application at different days after transplanting. The Rice variety SHIATS DHA⁻¹ sowing on 20th June 2023 and 23 June 2024. The treatment plot size is 2x2m. Transplanting was done with spacing row to row 15 cm and plant to plant 15 cm with two plants per hill at depth of 5 cm. Transplanting was done on 23rd July 2023 and 27 July 2024. Observation on growth parameters at 30, 60 and 90 DAT and yield and yield attributes. The information collected regarding various characteristics underwent statistical analysis utilizing the analysis of variance (ANOVA) method as outlined by Gomez and Gomez.

Results and Discussion

The pooled data on growth parameter of rice as influenced by different INM are showed in table 1. The response of different integrated INM on plant height of rice was found to be significant in pooled mean analysis. The maximum plant height at 90 DAT (123.15) was recorded in treatment combination

 $T_{14}RDF + V.C + Zn 100\% SA$. Where as the minimum plant height at 90 days after transplanting (81.06) was found in treatment T₁ Control. The increase in the height of rice plants can be linked to the application of FYM in conjunction with chemical fertilizers. Similar findings were documented by Asewar et al. (2000) [2] and Sudha and Chandini (2003) [39]. Nitrogen is widely acknowledged as a key factor in promoting vegetative growth. The enhanced availability of nitrogen from both organic and inorganic sources generally led to greater plant height during the periods of study. Organic manures serve as a slow-releasing nitrogen source and are beneficial during the later stages of crop development (Usman et al., 2003; Kumar et al., 2017) [42, 14]. The increase in plant height may be due to improved nourishment, which positively influences processes such as the rate of photosynthesis, assimilation, cell division, and overall vegetative growth. These findings align with the research conducted by Dutta and Chauhan (2010) [8] and Kumar et al. (2021) [15]. Zinc has been shown to play a crucial role in vegetative growth, particularly in low-temperature environments and rhizosphere conditions, with adequate zinc availability supporting the growth and development of young plants (Singh et al., 2012) [33]. The response of different integrated nutrient management treatments on number of tillers (m-2) of rice was found to be significant. The maximum number of tillers (m-2) at 90 days after transplanting (332.56) was recorded in treatment combination $T_{14}RDF + V.C + Zn 100\%$ SA. Where as the minimum number of tillers (m-2) at 90 days after transplanting (92.39) was found in treatment T₁ Control. The observed effects may be attributed to the improved availability of both macro and micro nutrients. Comparable research findings regarding the impact of Integrated Nutrient Management (INM) on growth characteristics have been documented by Satyanarayana et al. (2002) [28], Sudha and Chandini (2003) [39], Naing et al. (2010) [19], and Kumar et al. (2017) [14]. This can be explained by the notion that balanced nutrition increases the number of tillers. Dutta and Chauhan (2010) [8] and Singh et al. (2011) [38] have also reported similar outcomes. Additionally, the positive effects of FYM and vermicompost have been noted by Sharma and Sharma (2002) [31] and Kumar et al. (2021) [15]. Furthermore, the rising levels of zinc supplied to rice have been shown to enhance the total zinc content per plant at various growth stages, positively influencing tiller production (Impa et al., 2013) [12]. The response of different INM treatments on dry weight (g per plant) of rice was found to be significant. The maximum dry weight (g per plant) at 90 days after transplanting (45.95) was recorded in treatment combination T₁₄RDF + V.C + Zn 100% SA. Whereas the minimum dry weight (g per plant) at 90 days after transplanting (17.77) was found in treatment T₁ Control. The gradual, consistent, and enhanced availability of nutrients through the combined application of FYM and inorganic fertilizers led to an increased accumulation of dry matter, promoting superior growth and development of the crop. The rise in dry matter production per hill may be attributed to the cumulative effects of enhanced growth characteristics, such as plant height and the number of tillers. Similar enhancements in dry matter production have been documented by Asewar et al. (2000) [2], Senthivelu *et al.* (2009) [29], and Kumar *et al.* (2017) [14]. A continuous and balanced nutrient supply from the early growth stages fosters vigorous plant growth, which likely contributes to the increased accumulation of dry matter (Pooniya and Shivay, 2011) [21]. The response of different INM treatments on crop growth rate (g/g/day) of rice was found to be significant. The maximum crop growth rate (26.32) between the interval 60-90 DAT was recorded in the treatment combination T₁₄ RDF + V.C + Zn 100% SA. Whereas the minimum crop growth rate

(9.60) between the intervals 60-90 DAT was found in treatment T₁ Control. The application of INM must provide nutrients in a balanced and accessible form, which ultimately promotes an increase in growth rate. Similar findings were previously reported by Usman et al. (2003) [42] and Kumar et al. (2017) [14]. The response of different INM treatments on Leaf area index (LAI) of rice was found to be significant. The maximum leaf area index at 90 days after transplanting (6.59) was recorded in treatment combination $T_{14}RDF + V.C + Zn\ 100\%$ SA. Where as the minimum leaf area index at 90 days after transplanting (5.71) was found in treatment T₁ Control. The response of different integrated nutrient management treatments on Rice leaf N content (SPAD value) of rice was found to be significant. The maximum rice leaf N content (SPAD value) at 90 days after transplanting (45.38) was recorded in treatment combination $T_{14}RDF + V.C + Zn 100\%$ SA. Where as the minimum rice leaf N content (SPAD value) at 90 days after transplanting (29.14) was found in treatment T1 Control. The positive change in dry matter accumulation can be attributed to the modification of NPK levels, which likely led to an increase in both the quantity and efficiency of chlorophyll. This enhancement may have adversely affected photosynthetic efficiency and facilitated the synthesis of additional nitrogenous compounds such as amino acids, proteins, alkaloids, and protoplasm, ultimately resulting in an increase in plant height and contributing to greater dry matter accumulation. These conclusions are well-supported by the findings of Pradhan (2019) [22], Chowdhury (2015) [5], Pradhan et al. (2022) [23], and Kumar et al. (2018) [17]. The response of different INM treatments on Net assimilation rate (g/day/m2) of rice was found to be significant in table 2. The maximum Net assimilation rate (g/day/m2) (3.89) between the interval 60-90 DAT was recorded in the treatment combination T₁₄ RDF + V.C + Zn 100% SA. Whereas the minimum Net assimilation rate (g/day/m2) (1.26) between the intervals 60-90 DAT was found in treatment T1 Control. The pooled data on yield and yield attributes of rice as influenced by different INM are presented in table 2. The number of panicle plant-1 at harvest showed significant differences among various treatment. The number of panicle plant⁻¹ of rice was found to be maximum 15.82 was recorded in treatment T₁₄: RDF + V.C + Zn 100% SA and minimum number of panicle plant-1 11.76 in treatment T₁ Control. The provision of balanced nutrients via organic and inorganic fertilizers (RDF), along with FYM and vermicompost, may have enhanced nutrient uptake, potentially leading to increased vegetative growth. The advantageous production of growth-promoting compounds within the plant system, attributed to improved nutrient availability, may have resulted in a greater number of panicles per square meter. These findings align with the research conducted by Kumar et al. (2021). [15] The number of filled grain panicle-1 at harvest showed significant differences among various treatment. The number of filled grain panicle⁻¹ of rice was found to be maximum (136.43) was recorded in treatment T₁₄: RDF + V.C + Zn 100% SA and minimum number of filled grain panicle⁻¹ (112.61) in treatment T₁ Control. The rise in the quantity of filled grains per panicle may be attributed to more vigorous and lush vegetative growth, which was supported by a consistent supply of adequate nutrients. This, in turn, facilitated improved partitioning of assimilates from the source to the sink, ultimately resulting in a greater number of filled grains per panicle (Budhar and Palaniappan, 1997) [3]. Given that the number of spikelets (sink) was higher in the plot that received a combination of organic and inorganic fertilizers, it is likely that the carbohydrates from the source were sufficient to meet the demands of such plots compared to the absolute control. The findings of Usman et al.

(2003) [42], Sudhakar (2011) [40], and Kumar et al. (2017) [14] also corroborate these results in the context of rice cultivation. The balanced supply of nutrients through organic and inorganic fertilizers (RDF), along with FYM and vermicompost, enhanced nutrient uptake, which likely contributed to increased vegetative The favorable synthesis of growth-promoting compounds within the plant system, due to improved nutrient availability, may have led to a higher number of grains per panicle. These results align with the findings of Shankar and Laware (2011) [30] and Kumar et al. (2021) [15]. The length of panicle (cm) at harvest showed significant differences among various treatment. The length of panicle (cm) of rice was found to be maximum (31.48) was recorded in treatment T₁₄: RDF + V.C + Zn 100% SA and minimum length of panicle (cm) (24.78) in treatment T₁ Control. Data in respect of test weight of rice as influenced by different treatment are presented in table 2. The result showed that the different treatments had significant influence on test weight in pooled mean analysis. The test weight (g) of rice was found to be maximum (33.26) was recorded in treatment T₁₄: RDF + V.C + Zn 100% SA and minimum test weight (g) (24.53) in treatment T₁ Control. Similar findings was also reported earlier by Gogoi (2008) and Kumar et al., (2017) [14]. Data in respect of grain yield (q ha⁻¹) of rice as influenced by different treatment are presented in table 2. The result showed that the different treatments had significant influence on grain yield (q ha-1) in pooled mean analysis. The grain yield (q ha⁻¹) of rice was found to be maximum (61.09) was recorded in treatment T₁₄: RDF + V.C + Zn 100% SA and minimum grain yield (q ha⁻¹) (28.48) in treatment T₁ Control in pooled mean analysis. The enhanced grain yield can also be attributed to the sufficient availability of NPK in the soil solution, which may lead to increased root development, consequently enhancing nutrient uptake. The higher yield resulting from the combined use of inorganic fertilizers and organic manures may be due to a sustained supply of nutrients and improved utilization of applied nutrients, facilitated by better microenvironmental conditions, particularly the activities of soil microorganisms involved in nutrient transformation and fixation. Satyanarayana et al. (2002) [28], Sudha and Chandini (2003) [39], Virdia and Mehta (2008) [44], Senthivelu et al. (2009) [29], Naing et al. (2010) [19], and Kumar et al. (2017) [14] have also reported similar findings regarding the increased grain yield associated with the integrated application of both organic and inorganic nutrient sources. Data in respect of straw yield (q ha⁻¹) of rice as influenced by different treatment are presented in table 2. The result showed that the different treatments had significant influence on straw yield (q ha-1) in pooled mean analysis. The straw yield (q ha⁻¹) of rice was found to be maximum (96.05) was recorded in treatment T₁₄: RDF + V.C + Zn 100% SA and minimum (80.87) in treatment T₁ Control. The rise in straw yield can be attributed to the enhanced availability of nitrogen (N), while the reduction of N loss led to improved growth from the tillering phase to the reproductive stage, ultimately resulting in a greater straw yield. This pattern closely mirrored that of grain yield, which was influenced by an increase in plant height, the total number of tillers per hill, dry matter production, the number of panicles per square meter, and, consequently, straw yield. These results align with those reported by Satyanarayana et al. (2002) [28], Sudha and Chandini (2003) [39], Virdia and Mehta (2008) [44], Senthivelu et al. (2009) [29], as well as Naing et al. (2010) [19] and Kumar et al. (2017) [14]. The enhancement of soil properties may have contributed to improved growth parameters and yield characteristics. The productivity of the crop is determined by the vigor of vegetative growth and yield attributes, which together lead to increased grain and straw yield. The rise in yield may be linked to more effective translocation of photosynthates from source to sink, facilitated by higher uptake of NPK, which are crucial for rapid and efficient translocation. Similar findings have also been documented by Kumar et al. (2000) [16], Singh et al. (2000) [32], and Kumar et al. (2021) [15]. Data in respect of harvest index of rice as influenced by different treatment are presented in table 2. The result showed that the different treatments had significant influence on harvest index in pooled mean analysis. The harvest index of rice was found to be maximum (96.05) was recorded in treatment T₁₄: RDF + V.C + Zn 100% SA and minimum harvest index (80.87) in treatment T₁ Control in pooled mean analysis. The findings of the current study align with those reported by Radha Madhav *et al.* (1996) [24], Singh (2001) [34], Singh *et al.* (2002) [36], and Kumar *et al.* (2017) [14]. Comparable results were also reported by Kundu (2012) [18], Chowdhury (2015) [5], and Pradhan (2019) [22], who indicated that the incorporation of various sources of plant nutrients (such as FYM, vermicompost, and crop residues) plays a beneficial role in all yield attributes in relation to the yield of rice, whether cultivated as a sole crop or as part of a cropping sequence involving three or four crops. This may be attributed to the fact that partially substituting chemical fertilizers with organic manures has proven to be a more effective option. This combined approach typically enhances the physical condition of the soil while progressively supplying nutrients to the plants in a consistent manner, along with the added benefit of the rapid, abundant, and efficient nutrient delivery capacity of chemical fertilizers to the crops, ultimately leading to increased yields, as noted by Pradhan et al. (2022) [23] and Kumar et al. (2018) [17]. This could be because zinc fertilization has a significant impact on the grain yield of rice, with the highest grain yield observed following zinc application, as reported by Hatwar et al. (2003) [11] and Fageria et al. (2011)^[9].

Table 1: Response of integrated nutrient management on growth, yield and yield attributes of rice (Pooled data 2023 and 2024)

Treatment No.	Pooled data (2023 and 2024)																	
	Plant height (cm)			Number of tillers (m-2)			Dry weight (g per plant)			CGR (g/g/day)			Leaf area index (LAI)			Rice leaf N content (SPAD value)		
	SU DA I	OU DA I	90 DA I	SU DA I	OU DA I	90 DA I	SU DA I	OU DA I	DAT	DAT	DAT	DAT	DAT	DAT	DAT	DAT	DAT	
	T_1	30.40	60.32	81.06	98.20	115.93	92.39	5.28	11.28	17.77	7.82	8.90	9.60	2.26	5.86	5.71	34.19	30.51
T_2	43.12	78.35	107.93	212.90	289.85	278.65	9.02	19.81	31.82	13.36	15.99	17.79	3.48	6.79	6.32	46.69	38.91	37.98
T ₃	44.61	81.12	109.44	228.02	312.69	307.87	9.42	21.83	37.44	13.96	18.39	23.13	3.53	6.81	6.48	49.65	42.01	41.10
T ₄	40.90	74.40	101.42	195.00	262.28	256.22	8.10	17.70	27.69	12.01	14.21	14.81	3.29	6.24	5.95	44.34	34.90	34.17
T ₅	36.99	73.60	95.57	182.97	246.18	234.86	8.39	16.61	21.86	12.43	12.18	7.77	3.30	6.27	6.06	42.63	32.76	32.24
T_6	40.64	72.11	98.09	217.62	304.09	287.83	8.80	20.32	34.20	13.02	17.08	20.55	3.49	6.80	6.40	48.72	40.63	40.01
T ₇	41.63	67.63	100.39	193.24	260.54	249.77	8.82	19.16	24.92	13.07	15.31	8.54	3.41	6.52	6.10	44.28	33.97	33.40
T_8	46.70	83.20	112.08	233.26	320.09	312.14	9.68	22.97	38.27	14.34	19.69	22.67	3.57	6.89	6.53	49.92	43.28	42.18
T ₉	47.27	84.44	116.46	238.58	327.69	320.20	9.29	23.11	39.42	13.76	20.48	24.16	3.60	6.91	6.54	50.08	44.00	43.29
T_{10}	35.89	76.30	98.77	209.29	285.34	272.89	8.45	18.56	29.79	12.52	14.98	16.64	3.47	6.76	6.28	46.03	38.13	36.79
T_{11}	33.38	68.69	98.06	198.92	266.46	258.75	8.47	17.19	27.55	12.54	12.93	15.34	3.44	6.65	6.19	45.60	35.77	34.93
T ₁₂	34.77	76.61	101.78	222.42	307.89	302.36	9.11	20.36	35.35	13.50	16.65	22.22	3.50	6.78	6.47	48.99	40.90	39.92
T_{13}	49.65	87.97	120.50	243.60	332.45	328.02	9.52	26.42	43.30	14.11	25.03	25.01	3.62	6.94	6.56	50.78	45.31	43.81
T ₁₄	51.05	90.22	123.15	248.97	338.54	332.56	10.43	28.19	45.95	15.45	25.30	26.32	3.63	6.95	6.59	51.07	46.80	45.38
T ₁₅	38.04	69.20	104.67	202.81	274.11	267.12	8.66	17.39	29.12	12.83	12.93	17.38	3.45	6.73	6.26	45.75	36.75	35.94
T ₁₆	38.91	68.40	105.77	186.54	253.29	240.69	8.44	16.30	23.40	12.49	11.41	10.52	3.42	6.60	6.16	44.05	33.34	32.06
F-Test	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
S.Ed. (<u>+</u>)	0.83	0.95	1.47	1.04	1.42	1.80	0.18	0.39	0.77	0.14	0.75	0.77	0.009	0.0117	0.015	0.35	0.41	0.33
CD at 0.5%	1.69	1.95	3.00	2.13	2.91	3.68	0.37	0.80	1.57	0.29	1.54	1.58	0.018	0.0240	0.032	0.71	0.83	0.68

Table 2: Response of integrated nutrient management on growth, yield and yield attributes of rice (Pooled data 2023 and 2024)

Treatment No.	Net assimilation	rate (g/day/m²)	Yield and yield attributes								
	30-60 DAT	60-90 DAT	Number of panicle/	Filled grain/	Length of	Test	Grain yield	Straw yield	Harvest		
NO.	30-00 DA1	00-90 DA1	per plant	panicle (No.)	panicle (cm)	weight (g)	(q ha ⁻¹)	(q ha ⁻¹)	index		
T_1	2.35	1.26	11.76	112.61	24.78	24.53	28.48	80.87	26.05		
T_2	3.23	2.72	14.36	126.28	28.81	28.76	40.58	85.06	32.30		
T ₃	3.68	3.48	14.97	128.97	30.33	30.04	41.53	85.99	32.57		
T ₄	3.09	2.43	13.65	122.91	27.05	27.91	43.57	86.91	33.39		
T ₅	2.64	1.66	13.20	118.97	25.95	25.69	41.39	85.77	32.45		
T ₆	3.44	3.11	14.49	126.68	29.30	28.97	43.34	86.22	33.45		
T 7	3.19	1.36	13.56	121.62	26.71	27.43	45.63	88.53	34.01		
T_8	3.90	3.38	15.22	130.91	30.93	30.51	51.47	91.32	36.05		
T ₉	4.04	3.60	15.53	132.79	31.04	30.89	57.62	94.29	37.93		
T_{10}	3.04	2.56	14.14	124.60	28.44	28.27	51.31	90.83	36.10		
T_{11}	2.66	2.39	13.90	123.15	27.19	27.96	55.45	93.72	37.17		
T_{12}	3.36	3.36	14.74	127.77	29.91	29.64	50.16	89.30	35.97		
T ₁₃	4.91	3.71	15.71	134.23	31.34	32.49	53.53	92.35	36.70		
T ₁₄	5.15	3.89	15.82	136.43	31.48	33.26	61.09	96.05	38.88		
T ₁₅	2.64	2.68	13.98	123.75	27.73	28.17	52.25	91.87	36.25		
T ₁₆	2.41	1.65	13.44	121.67	26.67	27.31	58.58	94.93	38.16		
F-Test	S	S	S	S	S	S	S	S	S		
S.Ed. (<u>+</u>)	0.130	0.160	0.13	0.36	0.42	0.10	0.115	0.29	0.10		
CD at 0.5%	0.265	0.327	0.26	0.73	0.87	0.20	0.234	0.60	0.21		

Conclusion

The study concludes that the treatment T_{14} : RDF @100%+ @100% Vermicompost + @ 100% Zn SA, produced the highest growth and yield parameters of rice under Prayagraj agroclimatic condition.

References

- 1. Akancha, Minz N, Bhambri MC, Thakur S, Porte C. Growth and yield attributes of kharif rice as influenced by various rice based cropping systems under irrigated condition of Chhattisgarh plains. Int J Res Agron. 2025;SP-8(4):104-10.
- 2. Asewar BV, Dahiphale VV, Chavan GV, Katare NB, Sontakke JS. Effect of ferrous sulphate on grain yield of Upland Basmati Rice. J Maharashtra Agric Univ. 2000;25(2):209-10.
- 3. Budhar MN, Palaniappan SP. Integrated Nutrient Management in rice in lowland rice (*Oryza sativa*). Indian J Agron. 1997;42(2):269-71.
- 4. Cakmak I. Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol. 2000;146:185-205.
- Chowdhury Md R. Nutrient management through combined use of organic, inorganic and biological sources under riceonion-greengram crop sequence. Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal; 2015.
- 6. Das PK, Jen MK, Sahoo KC. Effect of integrated application of vermicompost and chemical fertilizer on growth and yield of paddy in red soil of South Eastern Ghat Zone of Orissa. Environ Ecol. 2002;20(1):13-5.
- 7. Dussere C. On the effect of earthworm on the chemical condition of soil. Landbow J B Schwiez. 1992;16:75-8.
- 8. Dutta M, Chauhan BS. Effect of nutrient management practice on the performance of upland rice in a newly developed terraced land. Indian Agric. 2010;54(2):13-21.
- Fageria NK, Santos DAB, Cobucci T. Zinc nutrition of lowland rice. Common Soil Sci Plant Ann. 2011;42:1719-27
- Gill JS, Walia SS. Influence of FYM, brown manuring and nitrogen levels on direct seeded and transplanted rice (*Oryza sativa* L.). A review. Res J Agric Environ Manage. 2014;3(9):417-26.
- 11. Hatwar GP, Gondane SM, Urkade SM, Ahukar V. Effect of micronutrients on growth and yield of chilli. Soils Crops. 2003;13(1):123-5.
- 12. Impa SM, Morete MJ, Ismail AM, Schulin R, Johnson-Beebout SE. Zn uptake, translocation, and grain Zn loading in rice (*Oryza sativa* L.) genotypes selected for Zn deficiency tolerance and high grain Zn. J Exp Bot. 2013;64:2739–51.
- 13. Kumar Amit Patel, Sanodiya KL, Singh NS, Ashish P, Vipin P, Mohd R, *et al.* Influence of integrated nutrient management on growth and yield of rice (*Oryza sativa* L.). Pharma Innov J. 2023;12(9):691-3.
- 14. Kumar Amit, Dhyani BP, Rai A, Kumar V. Residual Effect of Applied Vermicompost and NPK to Rice on Growth and Yield of Succeeding Wheat and Chemical Properties of Soil. Int J Curr Microbiol App Sci. 2017;6(11):1087-98.
- 15. Kumar Dharmendra Yadav, Yadav S, Kumar A, Rao A, Srivastava A, Dev A, *et al.* Studies on the effect of integrated nutrient management practices (INM) on yield and economics of aromatic rice (*Oryza sativa* L.). Pharma Innov J. 2021;10(4):600-3.
- 16. Kumar R, Singh G, Walia SS. Long term effect of manures and fertilizers on rice yield and soil fertility status in rice-

- wheat system. Environ Eco. 2000;18(3):546-9.
- 17. Kumar Vinod Prajapati, Swaroop N, Masih A, Lakra R. Effect of different dose of NPK and vermicompost on growth and yield attributes of maize [*Zea Mays* (L.)] Cv. MM2255. J Pharmacogn Phytochem. 2018;7(1):2830-2.
- Kundu R. Nutrient management through organic and inorganic sources in sunflower-fodder cowpea-rice- spinach beet cropping sequence. Bidhan Chandra KrishiViswavidyalaya, Mohanpur, Nadia, West Bengal; 2012
- 19. Naing A, Banterng P, Polthanee A, Trelo-Ges V. The effect of different fertilizers management strategies on growth and yield of upland black glutinous rice and soil property. Asian J Plant Sci. 2010;9(7):414-22.
- 20. Pandey N, Verma AK, Anurag, Tripathi RS. Integrated nutrient management in transplanted hybrid rice (*Oryza sativa*). Indian J Agron. 2007;52(1):40-2.
- 21. Pooniya V, Shivay YS. Effect of green manuring and zinc fertilization on productivity and nutrient uptake in 'Basmati rice' (*Oryza sativa* L.), Wheat (*Triticum aestivum* L.) cropping system. Indian J Agron. 2011;56(1):28-34.
- 22. Pradhan A. Nitrogen economy in rice (*Oryza sativa*) through integrated approach [M.Sc. (Ag) thesis]. Siksha 'O' anusandhan. Bhubaneswar, Odisha; 2019.
- 23. Pradhan SR, Dash S, Chowdhury MR, Das SP, Sar K, Moharana S. Impact of Integrated Vermicompost and Chemical Fertilizer Use on Productivity, Nutrient uptake and Economics of Rice. Biol Forum An Int J. 2022;14(2a):89-95.
- 24. Radha Madhav M, Ravikumar A, Venkateswarlu B. Effect of different sources of nitrogen on growth, yield and nutrient uptake. Andhra Agric J. 1996;43(3-4):119-22.
- 25. Rao KR, Rao PA, Rao KT. Influence of organic manure and fertilizers on the incidence of groundnut leafminer. Approacrema., Modicella Dev. Ann Plant Prot Sci. 2000;9(1):12-5.
- 26. Robinson CH, Inceson P, Pierce TG, Rowland AP. Nitrogen mobilization by earthworm in limed peat soils under *Piceasitchensis*. J Appl Ecol. 1992;29:226-37.
- 27. Sahoo Sudeshnamayee, Sar K, Mohapatra AK, Gulati JML. Effect of Nutrient Management in Growth, Development and Productivity of Late Transplanted Rice (*Oryza sativa* L.). Int J Curr Microbiol App Sci. 2019;8(12):685-92.
- 28. Satyanarayana V, Prasad VPV, Murthy VRK, Boote KJ. Influence of integrated use of farm yard manure and inorganic fertilizers on yield and yield compositions of irrigated lowland rice. J Plant Nutr. 2002;25(10):2081-90.
- 29. Senthivelu M, Padian BJ, Surya Prabha ACS. Dry matter production and nutrient removal in wet seeded rice-cotton cropping sequence under integrated nutrient management practices. Oryza. 2009;46(4):279-89.
- 30. Shankar Laware L. Effect of organic fertilizer on growth and yield components in rice (*Oryza sativa* L.). J Agric Sci. 2011;3(3):217-24.
- 31. Sharma SK, Sharma SN. Integrated nutrient management for sustainability of rice (*Oryza sativa* L.)-wheat (*Triticum aesitivum* L.) cropping system. Indian J Agril Sci. 2002;72(10):573-6.
- 32. Singh AP, Tripathi RS, Mitra BN. Effect of integrated use of organic and chemical sources of nitrogen in rice and wheat cropping system. Int J Plant Sci. 2000;37(3):205-8.
- 33. Singh AK, Manibhushan, Meena MK, Upadhyaya A. Effect of sulphur and zinc on rice performance and nutrient dynamics in plants and soil of Indo Gangetic plains. 2012.

- 34. Singh M, Singh VP, Reddy KS. Effect of integrated use of fertilizer nitrogen and farmyard manure or green manure on transformation of N, K and S and productivity of rice-wheat system on a Vertisol. J Indian Soc Soil Sci. 2001;49(3):430-5.
- 35. Singh RK, Athokpam HS, Zaliana C, Singh NG. Integrated management of *Azolla*, vermicompost and urea on yield of and nutrient uptake by rice and soil fertility. J Indian Soc Soil Sci. 2005;53(1):107-10.
- 36. Singh SK, Verma SC, Singh RP. Integrated nutrient management in rice and its residual effect on lentil. Indian J Agric Res. 2002;39(4):286-9.
- 37. Singh SP. Productivity, quality and uptake of nutrients in wheat (*Triticum aestivum*) as influenced by integrated nutrient management. Ann Plant Soil Res. 2017;19(1):12-6.
- 38. Singh YV, Dhar DW, Agarwal B. Influence of organic nutrient management on Basmati rice (*Oryza sativa* L.)-Wheat (*Triticum aestivum*)-greengram (*Vigna radiata*) cropping system. Indian J Agron. 2011;56(3):169-75.
- 39. Sudha B, Chandini S. Vermicompost-a potential organic manure for rice. Intensive Agric. 2003;40:1-2.
- 40. Sudhakar C. Integrated nutrient management in rice-maize cropping system. Acharya N. G. Ranga Agricultural University, Hyderabad; 2011.
- 41. Sutaliya R, Singh RN. Effect of planting time, fertility level and phosphatesolubilizing bacteria on growth, yield and yield attributes of winter maize (*Zea mays*) under rice (*Oryza sativa*)- maize cropping system. Indian J Agron. 2005;50(3):173-5.
- 42. Usman M, Ullah E, Warriach EA, Farooq M, Liaqat A. Effect of organic and inorganic manures on growth and yield of rice variety "Basmati-2000". Int J Agric Biol. 2003;5(4):481-3.
- 43. Vasanthi D, Kumarswamy K. Efficacy of vermicompost to improve soil fertility and rice yield. Indian J Soc Soil Sci. 2000;47(2):268-72.
- 44. Virdia HM, Mehta HD. Integrated nutrient management in transplanted rice. J Rice Res. 2008;2(2):99-104.