

E-ISSN: 2618-0618 P-ISSN: 2618-060X © Agronomy

NAAS Rating (2025): 5.20 www.agronomyjournals.com

2025; 8(10): 604-607 Received: 10-07-2025 Accepted: 13-08-2025

#### Rahul Meena

Master Scholar, Department of Agronomy, School of Agricultural Sciences, Jaipur National University, Jaipur, Rajasthan, India

#### Ajeet Singh

Assistant Professor, Department of Agronomy, School of Agricultural Sciences, Jaipur National University, Jaipur, Rajasthan, India

## Yasir Ajeej Tamboli

Assistant Professor, Department of Agronomy, School of Agricultural Sciences, Jaipur National University, Jaipur, Rajasthan, India

### Rajendra Kumar Bansal

Director & Professor, School of Agricultural Sciences, Jaipur National University, Jaipur, Rajasthan, India

## Mukesh Kumar Yadav

Assistant Professor, Department of Agricultural Economics, School of Agricultural Sciences, Jaipur National University, Jaipur, Rajasthan, India

## Corresponding Author: Ajeet Singh

Assistant Professor, Department of Agronomy, School of Agricultural Sciences, Jaipur National University, Jaipur, Rajasthan, India

# Impact of integrated nutrient management on growth and yield of barley (*Hordeum vulgare* L.)

Rahul Meena, Ajeet Singh, Yasir Ajeej Tamboli, Rajendra Kumar Bansal and Mukesh Kumar Yadav

**DOI:** https://www.doi.org/10.33545/2618060X.2025.v8.i10i.4033

#### Abstract

A field study entitled "Effect of Integrated Nutrient Management on the Productivity of Barley (*Hordeum vulgare* L.)" was conducted during the rabi season of 2024-25 at the Agricultural Research Farm, School of Agricultural Sciences, Jaipur National University, Jaipur (Rajasthan). The experiment was arranged in a Randomized Block Design (RBD) with three replications. The field trial consisted 10 treatments combinations *viz.*, (i) control, (ii) 40 kg N ha<sup>-1</sup>, (iii) 80 kg N ha<sup>-1</sup> and (iv) 100% RDF ha<sup>-1</sup>, (v) 75% RDF ha<sup>-1</sup>, (vi) 75% RDF + 30 kgZnSO<sub>4</sub> ha<sup>-1</sup>, (vii) 75% RDF+ 5t FYM ha<sup>-1</sup> + 30 kgZnSO<sub>4</sub> ha<sup>-1</sup> (viii) 50% RDF ha<sup>-1</sup>, (ix) 50% RDF+ 30 kgZnSO<sub>4</sub> ha<sup>-1</sup> and (x) 50% RDF+ 5t FYM ha<sup>-1</sup> + 30 kgZnSO<sub>4</sub> ha<sup>-1</sup>. The result showed that higher growth parameters *viz.*, plant height, number of tillers meter<sup>-1</sup> row length, DMA, CGR and RGR and maximum yield attributes and yield *viz.*, spike length (9.80), number of grains spike<sup>-1</sup> (44.50), test weight (42.80 g), grain yield (2490 kg ha<sup>-1</sup>) and straw yield (3520 kg ha<sup>-1</sup>) of barley recorded with the application of 100% RDF and found at par with the application of 75% RDF + 5 t FYM ha<sup>-1</sup> + 30 kg ZnSO<sub>4</sub> ha<sup>-1</sup>.

Keywords: Barley, integrated nutrient management, growth, yield attributes, yield

#### Introduction

Barley, commonly referred to as "Jau" in India, is primarily grown during the rabi season. The crop thrives at temperatures of approximately 12-15°C during its growing phase and requires around 30-32°C for proper maturation (Dahiya et al. 2019) [1]. Barley is more tolerant to dry heat compared to other small-grain crops. Globally, barley is produced on approximately 70 million hectares, yielding around 160 million tonnes. In India, it ranks second to wheat in terms of both area and production among rabi crops. The country cultivates barley on about 0.65 million hectares, producing roughly 0.17 million tonnes, with an average productivity of 2.4 tonnes hectare-1 (DES 2024) [2]. The major barely growing state in India is Rajasthan, U.P., M.P., Harvana, Puniab, H.P. and Uttarakhand, Raiasthan consistently ranks first in terms of barley acreage (0.29 m ha) in 2023-22, an acceptable reason that it shares higher production as well (52%). Dur ing the Rabi season, the average productivity in bar lev was highest in the case Punjab (3.7 t ha<sup>-1</sup>), followed by Haryana (3.6 t ha<sup>-1</sup>), U.P (2.9 t ha<sup>-1</sup>), and Rajasthan (2.8 t ha<sup>-1</sup>) (DES 2024) [2]. Barley ranks as the fourth most important cereal crop due to its high nutritional value, serving as an excellent source of protein and B vitamins. It plays a significant role in ensuring food security. Whole barley grains contain approximately 65-68% starch, 15-17% high-quality protein, 2-3% free lipids, 4-9% β-glucans, and 1.5-2.5% minerals. Its protein quality surpasses that of maize and beans, as it provides all eight essential amino acids (Mali et al. 2017) [3].

It is incorrect to assume that barley can grow well with little or no nitrogen (N). Barley is highly sensitive to nitrogen deficiency, which significantly affects its growth. Low nitrogen availability has been associated with reduced yield, poor grain formation, and lower grain quality, similar to the effects observed in other crops. This might worsen food insecurity (Devaraja *et al.* 2006) <sup>[4]</sup>. Among the many nutrients, barley is especially responsive to nitrogen, showing significant growth improvement when nitrogen fertilizer is applied. Nitrogen is a crucial element for barley, as it plays a central role in growth and metabolism. It forms the fundamental building blocks of

proteins and nucleic acids and is essential for both internal and external metabolic activities, as well as various physiological processes in the plant (Dubey *et al.* 2018) <sup>[5]</sup>. Phosphorus (P) is vital for plant growth and metabolic activities and is the second most common nutrient deficiency in cereal crops globally, following nitrogen deficiency. It also serves as a structural component of many metabolically active compounds within plants (Singh *et al.* 2020) <sup>[6]</sup>. However, phosphorus availability in soils is often low due to its reactive nature, making it a key nutrient that can limit plant growth. Soil phosphorus interactions significantly influence both crop development and the effectiveness of applied fertilizers.

The FYM supplies all major nutrients (N, P, K, Ca, Mg, S,) necessary for plant growth, as well as micronutrients (Fe, Mn, Cu and Zn). Hence, it acts as a mixed fertilizer. The FYM improves soil physical, chemical and biological properties and soil water-holding capacity (Bhawana et al., 2018) [7]. Incorporating farmyard manure (FYM) into the soil enhances both soil fertility and its physical properties, including waterholding capacity. While organic manures were once the primary source of plant nutrients in traditional agriculture, their importance declined with the widespread use of high-analysis chemical fertilizers (Singh et al., 2025) [8]. Although chemical fertilizers will remain the primary tool for accelerating agricultural production, recent research suggests that a balanced use of organic manures alongside chemical fertilizers can more effectively preserve long-term soil fertility and maintain high productivity levels (Malik, 2018)<sup>[9]</sup>.

Soil serves as the main source of micronutrients, which are vital for plant growth. Understanding the zinc status in soil is important for enhancing crop nutrition. Zinc plays a key role in various metabolic processes and is essential for the synthesis of chlorophyll and carbohydrates (Goswami and Pandey 2018) [10]. Zinc is essential, both directly and indirectly, for the activity of several enzymes, as well as for auxin and protein synthesis. It is thought to enhance RNA synthesis, which in turn is crucial for protein production. In many areas, crops fail to reach their normal yield despite proper application of NPK fertilizers, primarily due to zinc deficiency (Kumari, 2017) [11].

Integrated nutrient management plays a crucial role and must be carefully planned to achieve the maximum yield potential of barley. With this objective in mind, the present field experiment was conducted.

# **Materials and Methods**

The field experiment was conducted during rabi seasons of 2024-25 at Agricultural Research Farm, School of Agricultural Sciences, Jaipur national University, Jaipur, Rajasthan. Soil of the experimental field was sandy in texture having pH 7.58, organic carbon (OC) (0.43%), available nutrient (N 217.30 kg ha<sup>-1</sup>; P 20.28 kg ha<sup>-1</sup> and K 219.20 kg ha<sup>-1</sup>). The experiment was laid out in randomized block design with three replications. The field trial consisted 10 treatments combinations viz., (i) control, (ii) 40 kg N ha<sup>-1</sup>, (iii) 80 kg N ha<sup>-1</sup> and (iv) 100% RDF ha<sup>-1</sup>, (v) 75% RDF ha<sup>-1</sup>, (vi) 75% RDF + 30 kgZnSO<sub>4</sub> ha<sup>-1</sup>, (vii) 75% RDF+ 5t FYM ha<sup>-1</sup> + 30 kgZnSO<sub>4</sub> ha<sup>-1</sup> (viii) 50% RDF ha<sup>-1</sup>, (ix) 50% RDF+  $30 \text{ kgZnSO}_4 \text{ ha}^{-1}$  and (x) 50% RDF+ 5t FYM  $\text{ha}^{-1}$  + 30 kgZnSO<sub>4</sub> ha<sup>-1</sup>. The barley variety 'RD 2508' was sown @ 100 kg seed ha<sup>-1</sup> with spacing of 22.5 cm x 5 cm. The two irrigations are applied. All agricultural practices were kept uniform in all the plots.

# Results and Discussion Growth Parameters

The integrated nutrient management significantly enhanced the growth parameters viz. plant height (cm), number of tillers meter-1 row length, DMA (g meter-1 row length) at 30, 60, 90 DAS, at harvest and CGR (g meter-1 row length day-1) at 30-60 DAS, 60-90 DAS, 90 DAS-at harvest of the barley (Table 1). The significantly maximum plant height (25.76 at 30 DAS; 70.50 at 60 DAS; 91.30 at 90 DAS and 94.05 at harvest) and number of tillers per meter row length (40.10 at 30 DAS: 75.20 at 60 DAS; 79.10 at 90 DAS and 76.90 at harvest) were recorded with the application of 100% RDF ha-1 and it was found statistically at par with 75% RDF + 5t FYM ha<sup>-1</sup> + 30 kg ZnSO<sub>4</sub>/ha<sup>-1</sup>. When a new plant emerges from the seed, its root system is not fully developed and it requires nutrients immediately, which are readily supplied by chemical fertilizers. In contrast, organic manures decompose slowly, so young plants may not receive nutrients quickly enough. This is a key reason why chemical fertilizers lead to higher nutrient levels in plants during the tillering stage. The increased availability of photosynthetic metabolites and nutrients to developing reproductive structures contributes to improvements in all yieldcontributing traits, ultimately enhancing overall crop yield. This effect is largely due to sufficient nitrogen availability, which promotes vigorous vegetative growth and supports cell division, cell elongation, and protein synthesis, thereby increasing the plant's photosynthetic capacity. These results were in agreement with the findings of Todarmal et al. (2014) [12], Kumar et al. (2018) [13], Parashar *et al.* (2020) [14]. Applying phosphorus fertilizer to the soil promotes the development of the plant's root system, enhancing nutrient uptake, particularly phosphorus. This, in turn, leads to improved growth parameters of the crop (Yadav et al., 2025) [15].

Moreover, the DMA (9.90 g meter-1 row length at 30 DAS; 58.60 g meter-1 row length at 60 DAS; 379.00 g meter-1 row length at 90 DAS and 384.50 g meter-1 row length at harvest) and CGR (1.62 g meter<sup>-1</sup> row length day<sup>-1</sup> at 30-60 DAS; 10.68 g meter<sup>-1</sup> row length day<sup>-1</sup> at 60-90 DAS and 0.183 g meter<sup>-1</sup> row length day<sup>-1</sup> at 90 DAS-at harvest) significantly higher with the application of 100% RDF ha<sup>-1</sup> and it was found statistically at par with 75% RDF + 5t FYM  $ha^{-1}$  + 30 kg ZnSO<sub>4</sub>  $ha^{-1}$  (Table 1). Nitrogen, as a key component of nucleic acids, chlorophyll, and enzymes, plays a direct and crucial role in the metabolic processes of plants, particularly during the vegetative phase. Higher dry matter accumulation was observed due to active tillering and the enhanced development of growth-contributing traits. These results are also in close agreement with the finding of Terefe et al. (2018) [16] and Zeidan et al. (2007) [17]. The beneficial impact of phosphorus fertilizer on plant growth may be attributed to its involvement in numerous enzymatic reactions throughout the plant. This enhances growth efficiency, including hormone regulation and protein synthesis, as well as the metabolism of photosynthetic products. Ali et al. (2020) [18] also obtained similar results.

# Yield attributes and yield

The different integrated nutrient management practices significantly enhanced the yield attributes *viz.* spike length (cm), number of grains spike<sup>-1</sup>, test weight (g) and yield *viz.* grain yield (kg ha<sup>-1</sup>), straw yield (kg ha<sup>-1</sup>) and HI (%) of the barley crop (Table 2). The maximum spike length (9.80), number of

grains spike<sup>-1</sup> (44.50), test weight (42.80 g), grain yield (2490 kg ha<sup>-1</sup>) and stover yield (3520 kg ha<sup>-1</sup>) were significantly recorded with the application of 100% RDF ha<sup>-1</sup> and it was found statistically at par with 75% RDF + 5 t FYM ha<sup>-1</sup> + 30 kg ZnSO<sub>4</sub> ha<sup>-1</sup>. However, the integrated nutrient management practices have non-significant effect on harvest index. The enhancement of these traits can be attributed to nitrogen application, which promoted vigorous growth during the early stages, resulting in increased plant height, a larger assimilating area, more tillers, and greater dry matter accumulation. The abundant tillering, combined with higher production and mobilization of photosynthates to reproductive organs, was primarily

responsible for the improved yield attributes of barley. Similar results were also reported by Patel and Meena (2018) [19] and Neelam *et al.* (2018) [20]. Furthermore, adequate phosphorus supply enhances yield attributes by promoting root proliferation, higher nutrient uptake, and accelerated cell division and elongation. This supports greater root branching, tiller formation, plant height, and dry matter accumulation, which collectively boost leaf photosynthetic activity. Additionally, increased phosphorus availability improves the translocation of assimilates, further contributing to better yield characteristics. Similar results were reported by Sharma *et al.* (2012) [21], Satish *et al.* (2017) [22] and Korde *et al.* (2024) [23].

**Table 1:** Effect of integrated nutrient management on growth parameters of barley

| Treatments                                                                    | Plant height (cm) |       |       | Number of tillers<br>meter <sup>-1</sup> row length |       |       |       | DMA (g meter <sup>-1</sup><br>row length) |      |       |        | CGR (g meter <sup>-1</sup><br>row length day <sup>-1</sup> ) |       |       |            |
|-------------------------------------------------------------------------------|-------------------|-------|-------|-----------------------------------------------------|-------|-------|-------|-------------------------------------------|------|-------|--------|--------------------------------------------------------------|-------|-------|------------|
|                                                                               | 30                | 60    | 90    | At                                                  | 30    | 60    | 90    | At                                        | 30   | 60    | 90     | At                                                           | 30-60 | 60-90 | 90 DAS -   |
|                                                                               | DAS               | DAS   | DAS   | harvest                                             | DAS   | DAS   | DAS   | harvest                                   | DAS  | DAS   | DAS    | harvest                                                      | DAS   | DAS   | At harvest |
| Control                                                                       | 16.76             | 45.87 | 59.40 | 61.19                                               | 26.09 | 48.93 | 51.46 | 50.03                                     | 6.44 | 38.13 | 246.58 | 250.16                                                       | 1.06  | 6.95  | 0.119      |
| 40 kg N ha <sup>-1</sup>                                                      | 17.90             | 48.98 | 63.43 | 65.34                                               | 27.86 | 52.25 | 54.96 | 53.43                                     | 6.88 | 40.71 | 263.32 | 267.14                                                       | 1.13  | 7.42  | 0.127      |
| 80 kg N ha <sup>-1</sup>                                                      | 19.14             | 52.38 | 67.83 | 69.88                                               | 29.79 | 55.87 | 58.77 | 57.13                                     | 7.36 | 43.54 | 281.59 | 285.67                                                       | 1.21  | 7.93  | 0.136      |
| 100% RDF ha <sup>-1</sup>                                                     | 25.76             | 70.50 | 91.30 | 94.05                                               | 40.10 | 75.20 | 79.10 | 76.90                                     | 9.90 | 58.60 | 379.00 | 384.50                                                       | 1.62  | 10.68 | 0.183      |
| 75% RDF ha <sup>-1</sup>                                                      | 22.21             | 60.78 | 78.71 | 81.08                                               | 34.57 | 64.83 | 68.19 | 66.29                                     | 8.53 | 50.52 | 326.72 | 331.46                                                       | 1.40  | 9.21  | 0.158      |
| 75% RDF + 30 kg ZnSO <sub>4</sub><br>ha <sup>-1</sup>                         | 23.79             | 65.12 | 84.33 | 86.87                                               | 37.04 | 69.46 | 73.06 | 71.03                                     | 9.14 | 54.13 | 350.08 | 355.16                                                       | 1.50  | 9.87  | 0.169      |
| 75% RDF + 5 t FYM ha <sup>-1</sup> + 30 kg ZnSO <sub>4</sub> ha <sup>-1</sup> | 25.66             | 70.22 | 90.93 | 93.67                                               | 39.94 | 74.90 | 78.78 | 76.59                                     | 9.86 | 58.36 | 377.48 | 382.96                                                       | 1.62  | 10.64 | 0.183      |
| 50% RDF ha <sup>-1</sup>                                                      | 20.38             | 55.78 | 72.23 | 74.41                                               | 31.73 | 59.50 | 62.58 | 60.84                                     | 7.83 | 46.36 | 299.85 | 304.20                                                       | 1.28  | 8.45  | 0.145      |
| 50% RDF + 30 kg ZnSO <sub>4</sub><br>ha <sup>-1</sup>                         | 21.41             | 58.61 | 75.90 | 78.19                                               | 33.34 | 62.52 | 65.76 | 63.93                                     | 8.23 | 48.72 | 315.07 | 319.64                                                       | 1.35  | 8.88  | 0.152      |
| 50% RDF + 5 t FYM ha <sup>-1</sup> + 30 kg ZnSO <sub>4</sub> ha <sup>-1</sup> | 22.82             | 62.45 | 80.87 | 83.31                                               | 35.52 | 66.61 | 70.07 | 68.12                                     | 8.77 | 51.91 | 335.72 | 340.59                                                       | 1.44  | 9.46  | 0.162      |
| S.Em±                                                                         | 0.29              | 0.80  | 1.03  | 1.06                                                | 0.45  | 0.85  | 0.89  | 0.87                                      | 0.11 | 0.66  | 4.28   | 4.34                                                         | 0.02  | 0.12  | 0.002      |
| CD ( <i>p</i> =0.05)                                                          | 0.86              | 2.37  | 3.06  | 3.16                                                | 1.35  | 2.52  | 2.65  | 2.58                                      | 0.33 | 1.97  | 12.72  | 12.90                                                        | 0.05  | 0.36  | 0.006      |

Table 2: Effect of integrated nutrient management on yield attributes and yield of barley

|                                                                               |                   | Yield attributes                 | Yie             | Harvest                               |                                       |               |  |
|-------------------------------------------------------------------------------|-------------------|----------------------------------|-----------------|---------------------------------------|---------------------------------------|---------------|--|
| Treatments                                                                    | Spike length (cm) | No. of grainsspike <sup>-1</sup> | Test weight (g) | Grain yield<br>(kg ha <sup>-1</sup> ) | Straw yield<br>(kg ha <sup>-1</sup> ) | eld index (%) |  |
| Control                                                                       | 6.38              | 28.95                            | 27.85           | 1620                                  | 2467                                  | 39.64         |  |
| 40 kg N ha <sup>-1</sup>                                                      | 6.81              | 30.92                            | 29.74           | 1730                                  | 2633                                  | 39.65         |  |
| 80 kg N ha <sup>-1</sup>                                                      | 7.28              | 33.06                            | 31.80           | 1850                                  | 2893                                  | 39.01         |  |
| 100% RDF ha <sup>-1</sup>                                                     | 9.80              | 44.50                            | 42.80           | 2490                                  | 3520                                  | 41.43         |  |
| 75% RDF ha <sup>-1</sup>                                                      | 8.45              | 38.36                            | 36.90           | 2147                                  | 3220                                  | 40.00         |  |
| 75% RDF + 30 kg ZnSO <sub>4</sub> ha <sup>-1</sup>                            | 9.05              | 41.10                            | 39.53           | 2300                                  | 3390                                  | 40.42         |  |
| 75% RDF + 5 t FYM ha <sup>-1</sup> + 30 kg ZnSO <sub>4</sub> ha <sup>-1</sup> | 9.76              | 44.32                            | 42.63           | 2480                                  | 3494                                  | 41.51         |  |
| 50% RDF ha <sup>-1</sup>                                                      | 7.75              | 35.21                            | 33.86           | 1970                                  | 2997                                  | 39.66         |  |
| 50% RDF + 30 kg ZnSO <sub>4</sub> ha <sup>-1</sup>                            | 8.15              | 36.99                            | 35.58           | 2070                                  | 3113                                  | 39.93         |  |
| 50% RDF + 5 t FYM ha <sup>-1</sup> + 30 kg ZnSO <sub>4</sub> ha <sup>-1</sup> | 8.68              | 39.42                            | 37.91           | 2206                                  | 3277                                  | 40.23         |  |
| SEm±                                                                          | 0.11              | 0.50                             | 0.48            | 28.12                                 | 31.60                                 | 0.36          |  |
| CD ( <i>p</i> =0.05)                                                          | 0.33              | 1.49                             | 1.44            | 83.54                                 | 93.89                                 | NS            |  |

## Conclusion

Based on a one-year field study on barley, it can be concluded that applying 100% RDF ha $^{\!-1}$  produced the highest growth parameters, yield attributes, and overall yield. This performance was statistically comparable to the treatment combining 75% RDF + 5 t FYM ha $^{\!-1}$  + 30 kg ZnSO4 ha $^{\!-1}$ .

## Acknowledgement

The authors sincerely thank the School of Agricultural Sciences, Jaipur National University, Jaipur, and the Rajasthan Agricultural Research Institute, Durgapura, Jaipur, for their assistance in conducting the field experiments and for providing the meteorological data.

#### References

- 1. Ali A, Asif M, Adnan M, Aziz A, Hayyat MS, Saleem MW, *et al.* Effect of different levels of phosphorus on growth, yield and quality of wheat (*Triticum aestivum* L.). Int J Bot Stud. 2020;5:64-8.
- 2. Bhawana S, Yadav RS, Verma JK, Bijarnia AL. Effect of different nutrient management treatments on growth and yield of wheat (*Triticum aestivum* L.) and pearl millet (*Pennisetum glaucum* L.) cropping system. Int J Agric Sci. 2018;10(12):6381-4.
- 3. Dahiya S, Singh J, Singh B, Khedwal RS. Yield and quality of malt barley (*Hordeum distichum* L.) as influenced by seed rate, row spacing and nitrogen levels. Appl Biol Res.

- 2019;21(1):35-40.
- 4. DES. Directorate of Economics and Statistics, Ministry of Agriculture. 2024. Available from: www.agri.com.
- 5. Devaraja M, Hedge R. Yield attributes of malt barley (*Hordeum vulgare* L.) as influenced by nitrogen, phosphorus, potassium and their correlation and regression with yield. Agric Sci Dig. 2006;26(1):48-50.
- 6. Dubey SN, Tiwari A, Pandey VK, Singh V, Singh G. Effects of nitrogen levels and its application on growth parameters of barley (*Hordeum vulgare* L.). J Pharmacogn Phytochem. 2018;7(1):333-8.
- 7. Goswami RK, Pandey M. Effect of integrated use of nutrients and FYM on yield, quality and uptake of nutrients by barley (*Hordeum vulgare*). Ann Plant Soil Res. 2018;20(4):422-7.
- 8. Korde R, Singh AK, Maskey V. Impact of phosphorus levels on barley (*Hordeum vulgare* L.) crop productivity and nutrition under Satna conditions. Int J Adv Biochem Res. 2024;8(2):286-8.
- 9. Kumar R, Yadav S, Nand V, Verma SK, Yadav N, Kumari A. Effect of different nitrogen levels and varieties on yield of barley (*Hordeum vulgare* L.) under sodic soil. Multilogic Sci. 2018;8:242-5.
- 10. Kumari K. Yield, quality and nutrient uptake of rabi fodder crops in response to zinc. Ann Plant Soil Res. 2017;19(2):219-22.
- 11. Mali H, Choudhary J, Kumar A, Singh A, Chopra R. Growth, quality, and yield of barley (*Hordeum vulgare* L.) as influenced by varieties and precision nutrient management practices. J Pharmacogn Phytochem. 2017;6:35-41.
- 12. Malik P. Response of barley to fertilizer levels and different combinations of biofertilizers [Ph.D. Thesis]. Department of Agronomy, CCSHAU, Hisar; 2018.
- 13. Neelam, Singh B, Khippal A, Mukesh, Satpal. Effect of different Nitrogen levels and Bio fertilizers on yield and economics of feed barley. J Cereal Res. 2018;10(3):214-8.
- 14. Parashar A, Sharma S, Dogra P, Parashar K, Tyagi BS. Response of malt barley (*Hordeum vulgare* L.) varieties to different levels of nitrogen and sulphur application under agro-climatic zone IIIa (Semi-arid eastern plain zone) of Rajasthan. Int J Chem Stud. 2020;8(4):2059-62.
- 15. Patel NA, Meena M. Relative performance of barley (*Hordeum vulgare*) cultivars under saline water condition. Int J Curr Microbiol Appl Sci. 2018;7(10):1724-33.
- 16. Satish M, Ali A, Singh AK, Singh G, Singh RR. Response of late sown wheat to phosphorus and zinc nutrition in eastern Uttar Pradesh. Ann Plant Soil Res. 2017;19(1):23-8.
- 17. Sharma YK, Singh H, Mandal N. Effect of phosphorus and copper levels on yield and nutrients uptake by wheat. Ann Plant Soil Res. 2012;14(2):136-8.
- 18. Singh R, Mishra S, Chaturvedi PK, Mishra CK, Singh V, Gautam B, *et al.* Effect of integrated nutrient management on performance, productivity and economic feasibility of barley (*Hordeum vulgare* L.) in Easter Uttar Pradesh. Int J Res Agron. 2025;8(3):44-7.
- 19. Singh R, Reddy MD, Pandey G, Kumar A. Effect of different levels of phosphorus on performance of barley (*Hordeum vulgare* L.). J Pharmacogn Phytochem. 2020;9(3):363-6.
- 20. Terefe D, Desalegn T, Ashagre H. Effect of nitrogen fertilizer levels on grain yield and quality of malt barley (*Hordeum vulgare* L.) varieties at Wolmera district, central highland of Ethiopia. Int J Res Studies Agric Sci.

- 2018;4(4):29-43.
- 21. Todarmal, Phogat SB, Kumar S, Singh B. Effect of nitrogen on yield and quality of barley (*Hordeum vulgare*) genotypes. Indian J Agron. 2014;59(1):171-4.
- 22. Yadav RL, Singh A, Tamboli YA, Bansal RK, Chaudhary GR, Yadav MK. Influence of Fertility Levels on Growth and Yield attributes of Different Wheat (*Triticum aestivum* L.) Varieties under Semi-Arid Conditions of Rajasthan. Int J Res Agron. 2025;8(10):171-4.
- 23. Zeidan MS. Response of some barley cultivars to nitrogen sources and rates grown in alkaline sandy soil. Res J Agric Biol Sci. 2007;3(6):934-8.