

E-ISSN: 2618-0618 P-ISSN: 2618-060X © Agronomy

NAAS Rating (2025): 5.20 www.agronomyjournals.com

2025; 8(10): 495-500 Received: 12-08-2025 Accepted: 14-09-2025

#### Bhoomika PM

M.Sc. Scholar, Department of Agronomy, College of Agriculture, Raichur, University of Agricultural Sciences, Raichur, Karnataka, India

# Manjunatha N

Associate Professor, Department of Agronomy, College of Agriculture, Hagari, University of Agricultural Sciences, Raichur, Karnataka, India

# Umesh MR

Senior Scientist (Agronomy), AICRP on Sunflower, Main Agricultural Research Station, Raichur, University of Agricultural Sciences, Raichur, Karnataka, India

#### Shewtha BN

Senior Scientist (Agronomy), AICRP on Paddy, Department of Agronomy, College of Agriculture, Gangavathi, University of Agricultural Sciences, Raichur, Karnataka, India

#### Ravi S

Senior Scientist (Soil Science), Krishi Vigyan Kendra, Hagari, University of Agricultural Sciences, Raichur, Karnataka, India

#### **Mahammad Riyaz**

M.Sc. Scholar, Department of Agronomy, College of Agriculture, Raichur, University of Agricultural Sciences, Raichur, Karnataka, India

#### Corresponding Author: Bhoomika PM

M.Sc. Scholar, Department of Agronomy, College of Agriculture, Raichur, University of Agricultural Sciences, Raichur, Karnataka, India

# Effect of nano DAP on growth and yield of safflower (Carthamus tinctorius L.)

# Bhoomika PM, Manjunatha N, MR Umesh, Shwetha BN, Ravi S and Mahammad Riyaz

**DOI:** https://www.doi.org/10.33545/2618060X.2025.v8.i10g.4018

# Abstract

A field experiment was conducted at ICAR- Krishi Vigyan Kendra, Hagari during *rabi*, 2024 to study the effect of nano DAP on growth and yield of safflower. The experiment was laid in RCBD with nine treatments and replicated thrice. The results revealed that 100% RDF combined with foliar spray of nano DAP @ 2 ml 1<sup>-1</sup> at 30 and 45 DAS recorded significantly higher growth parameters *viz.*, plant height, number of leaves, number of primary branches, number of secondary branches, leaf area per plant, leaf area index, dry matter production and its accumulation in different plant parts, yield parameters *viz.*, number of capitulum plant<sup>-1</sup>, number of seeds capitulum<sup>-1</sup>, seed weight plant<sup>-1</sup>, seed yield (1675 kg ha<sup>-1</sup>), stover yield (3210 kg ha<sup>-1</sup>). Further, it was found on par with 75% RDF combined foliar spray of nano DAP @ 2 ml 1<sup>-1</sup> at 30 and 45 DAS. Whereas, lower growth and yield parameters were recorded with foliar spray of nano DAP @ 4 ml 1<sup>-1</sup> at 30 DAS.

Keywords: Safflower, nano DAP, growth, yield

#### Introduction

Safflower (*Carthamus tinctorius* L.) is an oilseed crop, a member of the Compositae or Asteraceae family. Safflower is considered to be ideal for cosmetics, paint and varnish, soap, alkyd resins, waterproof leather bucket, roghans to preserve leather, glass cement industry. Safflower oil meal is a good feed cake that has the potential to be used as a human food if the bitter principles are removed. Safflower oil is renowned for its high content of monounsaturated and polyunsaturated fatty acids, offering notable cardiovascular health benefits. It is also used in various industrial applications, including cosmetics and pharmaceuticals.

Nano fertilizers mark a revolutionary step forward in agriculture, bringing greater efficiency and sustainability to nutrient delivery. By leveraging nanotechnology, these fertilizers are engineered with particles at the nanometre scale, greatly enhancing their solubility and availability to plants. One of their key benefits is the ability to deliver nutrients precisely and release them in a controlled manner, which boosts nutrient absorption by crops while minimizing waste. As a result, nano fertilizers not only increase crop yields but also reduce the environmental footprint compared to traditional fertilizers.

Nano DAP (Liquid) is a source of nitrogen and phosphorus. Along with nitrogen, phosphorus is also an important plant nutrient. Phosphorus (P) is vital for plant growth and is found in every living plant cell. It is involved in several key plant functions, including energy transfer, photosynthesis, transformation of sugars and starches, nutrient movement within the plant and transfer of genetic characteristics from one generation to the next.

Nano DAP foliar spray represents a significant advancement in agricultural nutrition, offering enhanced benefits over conventional fertilizers. This innovation involves the application of nutrient particles at the nanoscale, which dramatically increases their solubility and bioavailability. The primary advantage of nano DAP foliar spray is its ability to deliver essential nutrients like nitrogen and phosphorus directly to the plant leaves. This targeted application ensures that nutrients are efficiently absorbed and utilized, leading to improved plant growth and development. Keeping these points in view, the present investigation is planned to carry out to study the with an objective to study the effect of nano DAP on growth and yield of safflower.

**Materials and Methods:** The experiment was conducted during *rabi*, 2024 at Krishi Vigyan Kendra, Hagari (UAS, Raichur) which is situated in Northern Dry Zone of Karnataka (Zone-III) at Latitude of 15° 13′ North, Longitude of 77° 05′ East with an Altitude of 414 meters above mean sea level. The soil sample of the experimental site was medium deep clay soil in texture.

The experiment was laid out in Randomized Complete Block Design (RCBD) with three replications and nine treatments. The treatments are T<sub>1</sub>: 100% RDF + foliar spray of 2ml l<sup>-1</sup> of nano DAP at 30 DAS and 45 DAS, T<sub>2</sub> 75% RDF + foliar spray of 2ml 1-1 of nano DAP at 30 DAS and 45 DAS, T<sub>3</sub>, 50% RDF + foliar spray of 2ml 1-1 of nano DAP at 30 DAS and 45 DAS, T<sub>4</sub>: 100% RDF + foliar spray of 4ml 1<sup>-1</sup> of nano DAP at 30 DAS. T<sub>5</sub> 75% RDF + foliar spray of 4ml 1<sup>-1</sup> of nano DAP at 30 DAS, T<sub>6</sub>: 50% RDF + foliar spray of 4ml l<sup>-1</sup> of nano DAP at 30 DAS, T<sub>7</sub>: 100% RDF,  $T_{8:}$  100% RDF + 2% DAP foliar spray at 30 DAS and T<sub>9</sub>. Foliar spray of 4ml 1<sup>-1</sup> of nano DAP at 30 DAS. The safflower variety used was ISF-764, It is a high-yielding, rainfed cultivar developed by the ICAR-Indian Institute of Oilseeds Research (IIOR), Hyderabad, released in 2019. This variety gives red and yellow flowers with more branching and with a spacing of 60 cm x 30 cm.

During the course of investigation, in order to know the effect of nano DAP on growth parameters of safflower, the observations were recorded at different stages of the crop growth.

# **Results and discussion**

**Growth Parameters: Plant height (cm):** The application of 100% RDF + foliar spray of nano DAP @ 2 ml l<sup>-1</sup> at 30 and 45 DAS (21.90, 45.90, 90.04 and 94.07 cm, respectively) resulted in the taller plants at all the stages of crop growth like 30 DAS, 60 DAS, 90 DAS and at harvest. It was found on par with 75% RDF + foliar spray of nano DAP @ 2 ml l<sup>-1</sup> at 30 and 45 DAS (19.50, 43.56, 89.23 and 93.13 cm, respectively) at 30 DAS, 60 DAS, 90 DAS and at harvest. Conversely, the foliar spray of nano DAP @ 4 ml l<sup>-1</sup> at 30 DAS (16.34, 24.85, 55.78 and 58.32 cm, respectively) exhibited the dwarf plants at all the stages of crop growth. (Table 1).

The marked increase in plant height under higher levels of RDF combined with foliar application of nano DAP can be attributed to the balanced and timely supply of essential nutrients, especially nitrogen and phosphorus. Nano DAP, owing to its ultra-small particle size and larger surface area, enhances nutrient absorption through foliage and facilitates rapid translocation within plant tissues. Nitrogen supports the synthesis of amino acids and proteins, promoting cell division and elongation, which result in increased stem growth. Likewise, phosphorus improves root development and energy transfer, ensuring better water and nutrient uptake, which ultimately stimulates vegetative growth. The superior plant height recorded with combined RDF and nano DAP treatments aligns with findings reported by Rattan and Ruiqiang (2014), Drostkar *et al.* (2016) and Sannathimmappa *et al.* (2023) [4, 19, 20].

# Number of leaves per plant

The higher number of leaves was observed with the application of 100% RDF + foliar spray of nano DAP @ 2 ml l<sup>-1</sup> at 30 and 45 DAS (17.59, 65.89, 159.65 and 155.43, respectively), which was on par with 75% RDF + foliar spray of nano DAP @ 2 ml l<sup>-1</sup> at 30 and 45 DAS (16.86, 63.34, 155.78 and 152.90, respectively) at all the stages of crop growth like 30 DAS, 60 DAS, 90 DAS and at harvest. Conversely, the foliar spray of nano DAP @ 4 ml l<sup>-1</sup> at 30 DAS remained the least productive in terms of leaf count (10.91, 39.07, 100.23 and 96.45,

respectively). (Table 1).

The enhanced leaf production under higher RDF levels combined with foliar nano DAP can be attributed to improved nutrient availability, which promotes vigorous vegetative growth and node formation. Foliar application of nano DAP significantly increased the photosynthetic efficiency by providing readily available nitrogen and phosphorus, which are vital for chlorophyll synthesis and leaf expansion. Nanoparticles facilitate rapid nutrient uptake through leaf surfaces and enhance nutrient mobility within the plant system, resulting in higher biomass and leaf proliferation. This is in line with the results of Merghany *et al.* (2019), Gondi (2018), Gewaily *et al.* (2019), Mehta and Bharat (2019) and Naveen *et al.* (2022) in various crops [5, 6, 13, 14, 15].

# Leaf area (dm<sup>2</sup> plant<sup>-1</sup>)

The maximum leaf area was recorded in the treatment with 100% RDF + foliar spray of nano DAP @ 2 ml I<sup>-1</sup> at 30 and 45 DAS (13.93, 35.67, 44.96 and 41.66 dm<sup>2</sup> plant<sup>-1</sup>, respectively), which was statistically on par with 75% RDF + foliar spray of nano DAP @ 2 ml I<sup>-1</sup> at 30 and 45 DAS (12.88, 34.55, 43.22 and 40.90 dm<sup>2</sup> plant<sup>-1</sup>, respectively) at all the stages of crop growth like 30 DAS, 60 DAS, 90 DAS and at harvest. In contrast, the foliar spray of nano DAP @ 4 ml I<sup>-1</sup> at 30 DAS consistently recorded the lower leaf area (10.67, 22.01, 28.31 and 26.61 dm<sup>2</sup> plant<sup>-1</sup>, respectively) (Fig 1).

The significantly larger leaf area in treatments combining RDF with foliar spray of nano DAP is due to enhanced nitrogen and phosphorus availability during critical vegetative stages. Nano DAP supplies nitrogen in a highly available form, which supports chlorophyll synthesis and leaf expansion, while phosphorus aids energy transfer and cellular development. A higher leaf area improves light interception and photosynthetic rate, leading to robust growth and biomass accumulation. The improved nutrient use efficiency of nano formulations allows greater foliar absorption and targeted nutrient delivery, which reduces losses and promotes sustained leaf development. These results are in line with Rajesh *et al.* (2021), Vadlamudi *et al.* (2022), Manikandan and Subramanian (2016) and Torabian *et al.* (2017) [11, 18, 21, 22].

# Total dry matter production (g plant<sup>-1</sup>)

Significantly higher total dry matter production was recorded in the treatment 100% RDF + foliar spray of nano DAP @ 2 ml 1<sup>-1</sup> at 30 and 45 DAS at 30 DAS, 60 DAS, 90 DAS and at harvest (11.63, 63.76, 89.76 and 146.84 g plant<sup>-1</sup>, respectively) compared to other treatments, except the treatment with 75% RDF + foliar application of nano DAP @ 2 ml 1<sup>-1</sup> at 30 and 45 DAS (10.82, 61.07, 87.77 and 143.15 g plant<sup>-1</sup>, respectively). The lowest dry matter accumulation was observed in the treatment which received only foliar spray of nano DAP @ 4 ml 1<sup>-1</sup> at 30 DAS (10.04, 31.52, 51.54 and 89.72 g plant<sup>-1</sup>, respectively) at all the stages of crop growth. (Fig 2).

The enhanced total dry matter production can be attributed to the ample availability of essential nutrients fostering vigorous plant growth and development. The foliar application of nano-sized nitrogen and phosphorus facilitated rapid nutrient absorption due to their increased surface area and reactivity, providing more active sites for metabolic processes within the plant system. This resulted in augmented photosynthetic efficiency, larger leaf area, and robust vegetative growth, ultimately increasing biomass and seed yield, and culminating in higher total dry matter accumulation. Similar findings were also reported by Korishettar (2016) and Luma and Ahmed (2021) [8, 9].

Table 1: Plant height and number of leaves per plant of safflower as influenced by different levels of RDF and foliar application of nano DAP

| Treatment      | Plant height (cm) |        |        |            | No. of leaves per plant |        |        |            |
|----------------|-------------------|--------|--------|------------|-------------------------|--------|--------|------------|
|                | 30 DAS            | 60 DAS | 90 DAS | At harvest | 30 DAS                  | 60 DAS | 90 DAS | At harvest |
| $T_1$          | 21.90             | 45.90  | 90.04  | 94.07      | 17.59                   | 65.89  | 159.65 | 155.43     |
| $T_2$          | 19.50             | 43.56  | 89.23  | 93.13      | 16.86                   | 63.34  | 155.78 | 152.90     |
| T <sub>3</sub> | 18.21             | 31.19  | 68.33  | 72.87      | 14.25                   | 46.11  | 124.89 | 122.04     |
| T <sub>4</sub> | 20.34             | 40.38  | 82.12  | 87.13      | 17.16                   | 58.58  | 147.12 | 145.22     |
| $T_5$          | 19.20             | 39.45  | 81.55  | 86.76      | 15.42                   | 57.39  | 143.66 | 140.65     |
| T <sub>6</sub> | 18.01             | 28.04  | 61.45  | 65.88      | 13.12                   | 41.76  | 116.43 | 114.39     |
| <b>T</b> 7     | 20.22             | 35.81  | 74.31  | 79.87      | 16.90                   | 50.12  | 133.07 | 130.17     |
| T <sub>8</sub> | 21.87             | 36.12  | 75.09  | 80.76      | 16.36                   | 52.25  | 135.89 | 132.56     |
| T9             | 16.34             | 24.85  | 55.78  | 58.32      | 10.91                   | 39.07  | 100.23 | 96.45      |
| S.Em. ±        | 1.14              | 0.98   | 1.94   | 1.97       | 0.55                    | 1.33   | 2.54   | 2.44       |
| C.D. (P=0.05)  | NS                | 2.93   | 5.80   | 5.90       | 1.64                    | 3.98   | 7.62   | 7.33       |

Note: RDF- Recommended doses of fertilizers (40: 40: 12.5 - N: P<sub>2</sub>O<sub>5</sub>: K<sub>2</sub>O kg ha<sup>-1</sup>), DAP- Di-ammonium Phosphate, DAS- Days after sowing

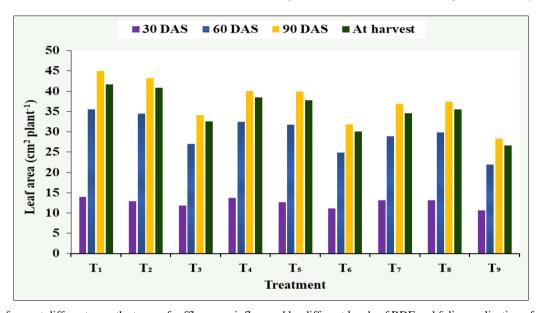



Fig 1: Leaf area at different growth stages of safflower as influenced by different levels of RDF and foliar application of nano DAP

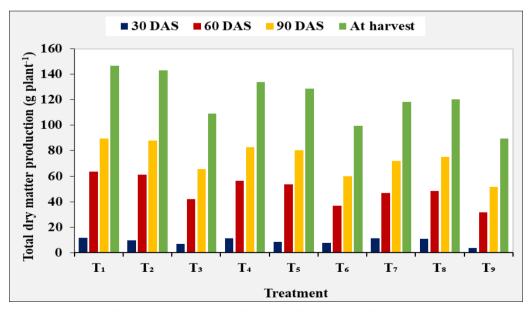



Fig 2: Total dry matter production at different growth stages of safflower as influenced by different levels of RDF and foliar application of nano DAP

# **Yield Parameters**

**Number of capitula per plant:** Showed significant variation among treatments due to different levels of RDF and foliar application of nano DAP. The treatment  $(T_1)$ , that received 100% RDF + foliar spray of nano DAP at 2 ml  $1^{-1}$  at 30 and 45

DAS recorded the highest number of capitula per plant (36.45) which was statistically on par with the treatment (T<sub>2</sub>), which received 75% RDF plus foliar spray nano DAP at 2 ml l<sup>-1</sup> at 30 and 45 DAS (34.28). In contrast, the lowest number of capitula per plant (16.90) was recorded in the treatment (T<sub>9</sub>), which

received only a foliar spray of nano DAP at 4 ml l<sup>-1</sup> at 30 DAS. (Table 2).

The increase in capitula per plant can be attributed to the foliar application of nano DAP, which improves photosynthetic efficiency and supports the movement of photosynthates from source to sink. This effect is strengthened by a consistent nitrogen supply that promotes capitulum initiation and development. Combining nano DAP with conventional fertilizers proved effective in boosting nutrient availability and uptake, resulting in more capitula per plant. Similar findings were reported by Prasad *et al.* (2012), Manjili *et al.* (2014) and Afify *et al.* (2019) [1, 12, 17].

# Number of seeds per capitulum

The number of seeds per capitulum showed significant variation among the different treatments, with different levels of RDF and foliar application of nano DAP (Table 2). The treatment ( $T_1$ ), that received 100% RDF + foliar spray of nano DAP @ 2 ml  $I^{-1}$  at 30 and 45 DAS recorded the highest number of seeds per capitulum (45.95), followed by the treatment with 75% RDF + foliar spray of nano DAP @ 2 ml  $I^{-1}$  at the same intervals (43.86). In contrast, the lowest number of seeds per capitulum (24.16) was observed in the treatment which received only a foliar spray of nano DAP @ 4 ml  $I^{-1}$  at 30 DAS.

**Seed weight per plant (g):** The application of 100% RDF as a basal dose combined with a foliar spray of nano DAP @ 2 ml 1<sup>-1</sup> at 30 and 45 DAS resulted in the significantly higher seed weight per plant (43.64 g), which was found statistically on par with the treatment that received 75% RDF plus foliar spray of nano DAP @ 2 ml 1<sup>-1</sup> at the same intervals (42.22 g). In contrast, the lowest seed weight per plant (22.14 g) was recorded in the treatment which received only a foliar spray of nano DAP @ 4 ml 1<sup>-1</sup> at 30 and 45 DAS. (Table 2).

Foliar application of nano DAP helps to increase nutrient efficiency on a nanometer scale in the form of nanoparticles. The particle size of liquid nano fertilizer is smaller than 30 nanometers. Due to its super tiny size and surface qualities, it has around 10,000 times more surface area to volume size, allowing for easier penetration into leaves and conversion into photosynthates, resulting in increased yield contributing characteristics and yield. The present study results agree with the findings of Chaudhary *et al.* (2021) and Pandao *et al.* (2021) [3, 16]

# Yield

# Seed yield (kg ha-1)

The treatment that received 100% RDF + foliar spray of nano DAP at 2 ml  $1^{-1}$  at 30 and 45 DAS produced the highest seed

yield (1675 kg ha<sup>-1</sup>) as compared to other treatments and recorded 18.63% increase in yield as compared to treatment that received only RDF. These results were statistically comparable to the treatment with 75% RDF + nano DAP at the same rate and intervals (1589 kg ha<sup>-1</sup>). In contrast, the lowest seed yield (595 kg ha<sup>-1</sup>) was recorded in the treatment that received only a foliar spray of nano DAP at 4 ml l<sup>-1</sup> at 30 DAS. (Table 3).

The higher yield with 100% RDF plus nano DAP is attributed to the combined effect of soil-applied nutrients with foliar-applied nano nitrogen and phosphorus, which together enhanced nutrient uptake and use efficiency. The timely application of nano nutrients during key growth stages ensured a steady supply of nitrogen and phosphorus, which supported leaf development, photosynthetic activity and dry matter accumulation. In addition, the foliar spray of nano DAP extended the photosynthetic period by maintaining healthy leaves and delaying senescence. These combined effects led to a higher overall yield. Similar results were reported by Drostkar *et al.* (2016), Korishettar (2016), Mahdieh *et al.* (2018), and Gondi (2018) [4, 6, 8, 10].

# Stover yield (kg ha<sup>-1</sup>)

The application of 100% RDF + foliar spray of nano DAP at 2 ml  $1^{-1}$  at 30 and 45 DAS resulted in a significantly higher stover yield (3210 kg ha<sup>-1</sup>) compared to other treatments except for the treatment (T<sub>2</sub>), with 75% RDF + foliar spray of nano DAP at the same rate and timings which produced a comparable yield (3145 kg ha<sup>-1</sup>). The lowest stover yield (1585 kg ha<sup>-1</sup>) was recorded in the treatment which received only a foliar spray of nano DAP at 4 ml  $1^{-1}$  at 30 DAS. (Table 3).

The increased stover yield with RDF plus nano DAP is mainly due to the improved supply of nitrogen and phosphorus, which enhanced vegetative growth and photosynthetic activity, resulting in greater dry matter production. Using nano-scale nitrogen and phosphorus offers clear advantages over conventional fertilizers because the smaller particles and larger surface area improve nutrient absorption efficiency. Better nutrient uptake supports stronger vegetative growth and higher biomass production. Similar results were reported by Akshay (2021), Hena *et al.* (2022) and Naveen *et al.* (2022) [2,7,15].

### Harvest index (%)

There was no significant effect on harvest index as influenced by different levels of RDF and foliar application of nano DAP. However, the treatment with 100% RDF as a basal dose combined with a foliar spray of nano DAP at 2 ml l<sup>-1</sup> at 30 and 45 DAS recorded the highest harvest index (34.28%), while the lowest (27.29%) was observed in the treatment that received only a foliar spray of nano DAP at 2 ml l<sup>-1</sup> at 30 DAS. (Table 3).

Table 2: Yield parameters of safflower as influenced by different levels RDF and foliar application of nano DAP

| Treatment      | Number of capitulum per plant | Number of seeds per capitulum | Seed weight per plant (g) |
|----------------|-------------------------------|-------------------------------|---------------------------|
| $T_1$          | 36.45                         | 45.95                         | 43.64                     |
| $T_2$          | 34.28                         | 43.86                         | 42.22                     |
| T <sub>3</sub> | 24.67                         | 32.02                         | 30.50                     |
| T <sub>4</sub> | 31.45                         | 40.56                         | 39.10                     |
| T <sub>5</sub> | 30.43                         | 39.68                         | 38.10                     |
| T <sub>6</sub> | 21.90                         | 28.75                         | 27.02                     |
| T <sub>7</sub> | 27.12                         | 35.60                         | 34.52                     |
| $T_8$          | 28.00                         | 36.00                         | 35.00                     |
| T9             | 16.90                         | 24.16                         | 22.14                     |
| S.Em. ±        | 0.79                          | 1.04                          | 1.01                      |
| C.D. (P=0.05)  | 2.37                          | 3.10                          | 3.03                      |

Note: RDF- Recommended doses of fertilizers (40: 40: 12.5 - N: P<sub>2</sub>O<sub>5</sub>: K<sub>2</sub>O kg ha<sup>-1</sup>), DAP- Di-ammonium Phosphate, DAS- Days after sowing

Table 3: Seed yield, Stover yield and Harvest index of safflower as influenced by different levels of RDF and foliar application of nano DAP

| Treatments     | Seed yield (kg ha <sup>-1</sup> ) | Stover yield (kg ha <sup>-1</sup> ) | Harvest index (%) |
|----------------|-----------------------------------|-------------------------------------|-------------------|
| $T_1$          | 1675                              | 3210                                | 34.28             |
| $T_2$          | 1589                              | 3145                                | 33.57             |
| $T_3$          | 887                               | 2116                                | 29.54             |
| $T_4$          | 1470                              | 2919                                | 33.49             |
| T <sub>5</sub> | 1455                              | 2899                                | 33.42             |
| $T_6$          | 758                               | 1855                                | 29.01             |
| T <sub>7</sub> | 1412                              | 2784                                | 33.65             |
| $T_8$          | 1432                              | 2774                                | 34.05             |
| T9             | 595                               | 1585                                | 27.29             |
| S.Em. ±        | 30.17                             | 65.35                               | 1.82              |
| C.D. (P=0.05)  | 90.46                             | 195.94                              | NS                |

Note: RDF- Recommended doses of fertilizers (40: 40: 12.5 - N: P<sub>2</sub>O<sub>5</sub>: K<sub>2</sub>O kg ha<sup>-1</sup>), DAP- Di-ammonium Phosphate, DAS- Days after sowing

#### Conclusion

Application of 100% RDF + foliar spray of nano DAP @ 2 ml l<sup>-1</sup> at 30 and 45 DAS was recorded higher growth parameters and yield parameters, in safflower which was on par with the treatment that received 75% RDF + foliar spray of nano DAP @ 2 ml l<sup>-1</sup> at 30 and 45 DAS. Further, lower growth parameters, seed yield and stover yield was recorded in the treatment which received only a foliar spray of nano DAP at 4 ml l<sup>-1</sup> at 30 DAS.

#### Acknowledgement

This research was a part of M. Sc. thesis and the author greatly appreciate research facilities and support provided from the College of Agriculture, Raichur for conducting this research study. The author is grateful to members of the advisory committee, major advisor, Dr. Manjunatha, N, Associate Professor, Department of Agronomy, College of Agriculture, Hagari and members Umesh, M, R, Senior Scientist (Agronomy), AICRP on Sunflower, MARS, Raichur, Dr. Shwetha, B, N, Senior Scientist (Agronomy), AICRP on Paddy, College of Agriculture, Gangavathi and Dr. Ravi, S, Senior Scientist (Soil Science), KVK, Hagari, Mahadev swamy sir and entire SC ST cell for their engrossing guidance, incessant encouragement, constructive suggestions propitious assistance, keen and sustained interest, kind and gracious patronage during the entire course of investigation and preparation of this manuscript.

# References

- 1. Afify RR, El-Nwehy SS, Bakry AB, Abd El-Aziz ME. Response of peanut (*Arachis hypogaea* L.) crop grown on newly reclaimed sandy soil to foliar application of potassium nano fertilizer. Middle East J Appl Sci. 2019;9(1):78-85.
- 2. Akshay KK. Synthesis and characterization of nano iron from green biomass and evaluation of its effect on aerobic rice (*Oryza sativa* L.) [M.Sc. (Agri.) Thesis]. Bengaluru: University of Agricultural Sciences; 2021.
- 3. Chaudhary S, Shukla A, Kumar R, Negi MS, Malik N, Srivastava PC. Performance of Indian mustard (*Brassica juncea* L.) as influenced by application of nano sized gypsum. Pharma Innov Int J. 2021;10(4):650-652.
- 4. Drostkar E, Talebi R, Kanouni H. Foliar application of Fe, Zn and NPK nano fertilizers on seed yield and morphological traits in chickpea under rainfed condition. J Res Eco. 2016;4(2):221-228.
- 5. Gewaily EE, Ghoneim AM, Khattab EA. Nano-silicon and nitrogen foliar spray affects the growth, yield and nutrient content of rice. World J Agric Sci. 2019;15(6):367-375.
- 6. Gondi M. Effect of nano nutrients on growth, seed yield and

- quality in cowpea (Vigna unguiculata L. Walp.) [Ph.D. Thesis]. Bengaluru: University of Agricultural Sciences; 2018
- 7. Hena RD, Chandrakar T, Srivastava LK, Nag NK, Singh DP, Akash T. Effect of nano-DAP on yield, nutrient uptake and nutrient use efficiency by rice under Bastar plateau. Pharma Innov J. 2022;11(9):1463-1465.
- 8. Korishettar P, Vasudevan SN, Shakuntala NM, Doddagoudar SR, Hiregoudar S, Kisan B. Seed polymer coating with Zn and Fe nanoparticles: An innovative seed quality enhancement technique in pigeonpea. J Appl Nat Sci. 2016;8(1):445-450.
- 9. Luma S, Ahmed M. The effect of humic acid, vermicompost and nano-phosphorus on growth and yield characteristics of maize (Zea mays L.). IOP Conf Ser: Earth Environ Sci. 2021;923.
- Mahdieh M, Sangi MR, Bamdad F, Ghanem A. Effect of seed and foliar application of nano-zinc oxide, zinc chelate and zinc sulphate rates on yield and growth of pinto bean (Phaseolus vulgaris) cultivars. J Plant Nutr. 2018;41(18):2401-2412.
- 11. Manikandan A, Subramanian K. Evaluation of zeolite based nitrogen nano-fertilizers on maize growth, yield and quality on inceptisols and alfisols. Int J Plant Soil Sci. 2016;9(4):1-9.
- 12. Manjili MJ, Bidarigh S, Amiri E. Study on effect of foliar application of nano chelate molybdenum fertilizer on yield and yield components of peanut. Egypt Acad J Biolog Sci. 2014;5(1):67-71.
- 13. Mehta S, Bharat R. Effect of integrated use of nano and non-nano fertilizers on yield and yield attributes of wheat (*Triticum aestivum* L.). Int J Curr Microbiol App Sci. 2019;8(12):598-606.
- 14. Merghany M, Shahein MM, Sliem MA, Abdelgawad KF, Radwan AF. Effect of nano-fertilizers on cucumber plant growth, fruit yield and its quality. Plant Arch. 2019;19(2):165-172.
- 15. Naveen K, Sandeep M, Narender KSA, Pardeep K, Anil K, Tarun S. Effect of application of nano-DAP and conventional fertilizers on rice yield. Indian Ecol Soc Int Con. 2022;5(373):957440-957447.
- 16. Pandao MR, Sajid M, Katore JR, Patil SS, Nirgulkar MB. Effect of nano zinc oxide on growth, yield and uptake of nutrient by linseed. Int J Chem Stud. 2021;9(1):176-179.
- 17. Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Raja Reddy K, *et al.* Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr. 2012;35(6):905-927.
- 18. Rajesh H, Yadahalli GS, Chittapur BM, Halepyati AS,

- Hiregoudar S. Growth, yield and economics of sweet corn (*Zea mays* L. saccharata) as influenced by foliar sprays of nano fertilisers. J Farm Sci. 2021;34(4):381-385.
- 19. Rattan L, Ruiqiang L. Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (*Glycine max* L.). Sci Rep. 2014;4:5686.
- 20. Sannathimmappa HG, Patil M, Rudragouda, Channagouda F, Patil C. Effect of nano nitrogen and nano zinc nutrition on growth and yield of irrigated maize in southern transition zone of Karnataka. J Pharm Innov. 2023;12(1):1706-1709.
- 21. Torabian S, Zahedi M, Khoshgoftar AH. Effects of foliar spray of nano-particles of FeSO4 on the growth and iron content of sunflower under saline condition. J Plant Nutr. 2017;40(5):615-623.
- 22. Vadlamudi JS, Anitha G, Gajanan L, Sawargaonkar, Prameela P. Effect of combined application of non-nano and nano fertilizers on growth, yield and oil content of sunflower under semi-arid conditions. Int J Plant Soil Sci. 2022;34(24):1102-1111.