

E-ISSN: 2618-0618 P-ISSN: 2618-060X © Agronomy

NAAS Rating (2025): 5.20 www.agronomyjournals.com

2025; 8(10): 390-393 Received: 13-07-2025 Accepted: 17-08-2025

Isha Sharma

Himalayan Forest Research Institute, Conifer Campus, Panthaghati Shimla, Himachal Pradesh, India

Aakarsh Upadhyay

Himalayan Forest Research Institute, Conifer Campus, Panthaghati Shimla, Himachal Pradesh, India

Alok Kumar Singh

Rajiv Gandhi South Campus, Banaras Hindu University, Mirzapur, Uttar Pradesh, India

Alok Anand

Department of Forest Product and Utilization, Birsa Agricultural University, Ranchi, Jharkhand, India

Corresponding Author: Alok Kumar Singh Rajiv Gandhi South Campus, Banaras Hindu University, Mirzapur, Uttar Pradesh, India

A review on *Fraxinus xanthoxyloides* (Afghan ash): An important tree species with various uses

Isha Sharma, Aakarsh Upadhyay, Alok Kumar Singh and Alok Anand

DOI: https://www.doi.org/10.33545/2618060X.2025.v8.i10f.4002

Abstract

This comprehensive review synthesizes the ecological, traditional, phytochemical, and management significance of Fraxinus xanthoxyloides (Afghan ash), a large, deciduous shrub to medium-sized tree belonging to the Oleaceae family. The species, which encompasses varieties such as var. dimorpha and var. dumosa, is found in arid and semi-arid regions spanning North Africa, Afghanistan, Pakistan, and the dry, inner valleys of the Western Himalayas. Ecologically, it thrives in challenging environments, preferring rocky slopes, ravines, and trans-Indus regions at high altitudes. Historically, Afghan ash has been a keystone multi-functional resource for local communities. It provides essential timber (for poles, beams, and agricultural tools), firewood, and is a source of spices and dyes. Its leaves and seeds are widely utilized in traditional medicine to treat conditions like bone fractures, arthritis, pain, and inflammation. These medicinal properties are supported by phytochemical studies, which confirm the presence of potent bioactive compounds, including terpenoids, coumarins, and phenolic substances, linked to its antioxidant, antimicrobial, and analgesic activities. Crucially, F. xanthoxyloides serves as a vital source of nutritive fodder for small ruminants, particularly during the scarce foraging period of autumn. Traditional agropastoral management systems, like pollarding, shaping, and trunk anastomosis (known as Tahboucht in the Berber language), have been developed by local inhabitants to sustainably enhance the trees' longevity, vigor, and yield of resources over sophisticated nested cutting cycles. Despite its crucial role and effective traditional management, the species faces dramatic population decline due to indiscriminate harvesting and habitat degradation, highlighting the urgent need for enhanced conservation strategies.

Keywords: Fraxinus xanthoxyloides, Habitat degradation, Western Himalaya

Introduction

Fraxinus xanthoxyloides Wall. (Afghan ash), a significant species within the Oleaceae (Olive family), manifests as a resilient, often multi-stemmed deciduous shrub or a medium-sized tree that can attain heights of up to 8 meters. Its geographical range is uniquely fragmented, spanning vast arid and semi-arid territories from North Africa (Morocco, Algeria) to South and Central Asia (Afghanistan, Pakistan, and the dry, inner valleys of the Western Himalayas) (Negi and Sharma, 2015; Sarfraz *et al.*, 2017) [17, 19]. This xerophytic plant thrives in demanding, highaltitude environments, typically between 1,200 and 3,000 meters above sea level, tolerating extreme temperature fluctuations and preferring rocky slopes, ravines, and siliceous or limestone substrates in areas of high insolation (Rankou et al., 2017) [18]. The species encompasses distinct varieties, most notably F. xanthoxyloides var. dimorpha, a North African endemic known as 'Imts' in Berber, recognized for its dimorphic foliage that adapts to development stage and browsing, and F. xanthoxyloides var. dumosa, the generally dwarfed, shrubby form prevalent in the N.W. Himalayas and Afghanistan (www.treesandshrubsonline.org). Ecologically, the Afghan ash is crucial for stabilizing mountain ecosystems, often associating with Quercus and Juniperus species, yet its populations are often severely fragmented, highlighting its vulnerability. Ethnobotanically, F. xanthoxyloides is a keystone multi-functional resource; it supplies essential firewood and timber for construction (poles, beams) and agricultural tools, and its leaves are used for dyeing textiles. Critically, it provides a vital source of nutritive fodder for small ruminants during the sparse foraging period of autumn (Genin et al., 2016) [5]. Its leaves and seeds are extensively used in traditional medicine to treat conditions such as bone fractures, arthritis, pain, and inflammation (Younis et al., 2016) [24]. These medicinal applications are

substantiated by phytochemical studies confirming the presence of potent bioactive compounds, including terpenoids, coumarins, and phenolic substances, which correlate with its demonstrable antioxidant, antimicrobial, anti-inflammatory, and analgesic activities (M'sou and Romane, 2017) [13]. Furthermore, communities have developed sophisticated indigenous traditional agropastoral management systems, such as precise pollarding and shaping within overlapping four-year cutting cycles, and even trunk anastomosis (known as Tahboucht), which are essential for sustainably regulating resource yield, enhancing tree vigor, and ensuring the longevity of these valuable stands (Genin et al., 2017) [6]. Despite the effectiveness of these traditional stewardship practices, the species is currently facing a dramatic population decline due to habitat degradation and indiscriminate harvesting, underscoring the immediate need for enhanced, formally recognized conservation strategies to safeguard this vital high-mountain ash

Morphology

The morphology of Fraxinus xanthoxyloides begins with its stature as a shrub or small tree, reaching a maximum height of approximately 25 feet (7.6 meters) in its natural habitat, characterized by bark that progresses from smooth and grey in younger specimens to darker and cracked with age, and further defined by its stiff branches (Negi and Sharma, 2015) [17]. Its leaves are pinnately compound, typically bearing 7 to 9 leaflets—though this number can vary widely from 3 to 13 with young growth, petioles, and the winged rachis being either downy or glabrous on the underside. The individual leaflets display size variability but are generally lanceolate or narrowelliptic, measuring 1.25 to 2.25 inches (3.2 to 5.7 cm) in length, with some occasionally reaching 4 inches (10 cm) in an ovate or broad-elliptic shape, usually featuring bluntly toothed margins and being scarcely stalked (www.treesandshrubsonline.org). The species' phenology involves the production of small, apetalous (lacking petals), wind-pollinated flowers in short, dense panicles emerging from leaf-scars of previous year's growth between February and March; these develop into linear-oblong or spathulate fruits that mature from July to September, ripening fully during October-November and often persisting on the tree until the following spring (Genin et al., 2016; Negi and Sharma, 2015) [5, 17]. Natural regeneration from seed is often challenging due to seed dormancy and environmental pressures, but controlled studies have demonstrated that seed germination can be significantly improved, showing a 54.34% increase over controls, by treating them with Gibberellic acid (GA3) at 1500 ppm for 24 hours, with the optimal seed collection period determined to be between the first fortnight of October and the first fortnight of November (Negi and Sharma, 2011, 2015) [16,

Phytochemical Composition and Pharmacological Validation

The phytochemical profile of F. xanthoxyloides is rich and diverse, providing a scientific basis for its extensive traditional use, with analyses revealing the presence of numerous bioactive compounds, notably coumarins, secoiridoids, phenylethanoids, lignans, flavonoids, and various simple phenolic substances (Kostova and Iossifova, 2007). Essential oils from the leaves, for instance, are credited with strong antioxidant and antimicrobial properties due to constituents like (E)-Nerolidol and eugenol, the latter demonstrating antifungal activity with minimum inhibitory concentrations (MICs) between 1.8 and 3.8 mg/mL (M'sou and Romane, 2017) [13]. Furthermore, crude methanol extracts of the leaves have been validated for potent anti-inflammatory and

analgesic effects, an activity strongly linked to a high content of terpenoids (26.61%), along with significant amounts of lactam, esters, phenols, and steroids (Younis *et al.*, 2016) ^[25]. The link between chemistry and bioactivity extends to other areas, with a robust correlation found between terpenoid content and antileishmanial activity, and a medium association between coumarins and insecticidal properties, alongside a demonstrated potential to mitigate cisplatin-induced testicular damage in animal models (Ijaz *et al.*, 2020) ^[10].

Ethnobotanical Applications and Fodder Significance

The traditional uses of F. xanthoxyloides underscore its value as an agroforestry and livelihood species, particularly in the Moroccan High Atlas, where it serves multiple purposes, from providing firewood, timber (for poles, beams, and tool handles), and dye (from tannin-rich leaves) to offering culinary and medicinal resources (Bellakhdar, 1997; Genin et al., 2016) [2, 5]. Medicinally, its reported diuretic, laxative, and anti-rheumatic actions are utilized to treat human ailments like arthritis, dropsy, and cystitis, and it is widely employed in veterinary ethnopharmacology, where extracts of the wood, stem, or twigs are crucial for treating bone fractures and internal injuries in cattle (Sharma et al., 2016; Mukerji and Manoharachary, 2006) [, ^{14]}. The fruits and seeds are used as spices and for their aphrodisiac qualities, notably flavoring traditional Moroccan drinks like "Khodenjal" and coffee (M'Sou, 2013) [12]. Crucially, the tree provides a significant volume of nutritive fodder during the critical autumn season (August to November) when other range forage is scarce and nutritionally deficient, making it indispensable for low-input mountain livestock farming systems (Genin et al., 2016) [5]. Chemical analysis of the fodder confirms its utility, showing a relatively high fiber content and a crude protein (CP) level of 83.5 g/kg DM, which exceeds the minimum 75 g/kg DM required for livestock maintenance, a nutritional quality comparable to high-potential fodder alternatives like Morus alba (mulberry) leaves.

Sustainable Traditional Management Systems

enduring health and productivity of xanthoxyloides populations are not merely coincidental but are instead the direct result of sophisticated traditional agropastoral management techniques developed and meticulously practiced by local communities, particularly in the Moroccan High Atlas. These methods represent a nuanced, generational understanding of the species' ecology, creating a characteristic silvo-pastoral landscape where the trees continuously yield vital resources. This sustainable stewardship is anchored in complex, nested cutting cycles meticulously designed to optimize the output of various products. For instance, fodder leaves are regenerated through overlapping four-year cutting cycles, where only a quarter of the trees within a designated parkland are subjected to pollarding annually. This calculated, rotational harvesting ensures a persistent and manageable supply of leafy branches, which are then grazed directly by small ruminants like sheep and goats, securing essential nutrition during scarce foraging months (Genin et al., 2018) [6]. Beyond fodder, management extends to timber production: calibrated poles necessary for roofing (approximately 7 cm in diameter) require an eight-year growth cycle, while the strongest poles are intentionally retained for up to 30 years to eventually yield large construction beams. Crucially, these practices involve more than just harvesting; they include specialized horticultural techniques like shaping and trunk anastomosis, known locally as Tahboucht in Berber. This technique involves deliberately grafting or fusing branches and stems, which fundamentally enhances the tree's vigor, resource output, and overall longevity, ultimately leading to four distinct, visible tree morphologies in managed stands: large anastomosed trunk trees, multi-stemmed or coppice trees, single-stemmed trees, and naturally shrub-like trees. Despite the undeniable effectiveness and ecological merit of this indigenous forest management system, it often remains unrecognized and unsupported by formal Moroccan forest and agriculture authorities, leaving this crucial heritage system vulnerable to external pressures and decline.

Advanced Traditional Management and Conservation Imperatives for *Fraxinus xanthoxyloides*

The sustained productivity and ecological resilience of Fraxinus xanthoxyloides stands in the Berber regions of the High Atlas are intricately linked to a sophisticated and centuries-old traditional management practice known as Tahboucht. This term, deriving from the verb Habouch—meaning 'to educate' or 'to mother'—encapsulates a holistic, protective, and enhancing approach to agroforestry. The core practice involves the initial construction of stonewalls around young trees to shield them from intense browsing by sheep and goats until they reach an inaccessible height of approximately 1.5 to 2 meters. This protection allows the coppice shoots emerging from the tree's collar to grow unimpeded. Following this protective phase, a selective process is implemented: only the most vigorous and straightest sprouting stems—typically numbering between 3 and 12—are retained.

(Source: Genin *et al.*, 2016) [5]

These selected stems are repeatedly lopped, a form of pollarding, specifically to increase their diameter and overall strength. Crucially, these stems are then manually shifted and joined together as closely as possible. Over time, these stems fuse through a natural grafting process known as anastomosis, resulting in a unique, single large trunk composed of multiple interconnected stem compartments.

Ecological and Biogeochemical Benefits of Tahboucht

Local inhabitants firmly believe that this anastomosis technique, which some researchers term a form of 'semi-ontogenetic rejuvenation' (Ferrini, 2006), significantly enhances the tree's productivity and longevity (Genin *et al.*, 2018) ^[6]. Scientific studies have validated these traditional claims, demonstrating

that anastomosed trees exhibit markedly superior performance compared to their non-fused counterparts. For instance, research by Genin revealed that trunk anastomosis facilitates a remarkable 36 percent increase in leaf production following a four-year exploitation cycle, simultaneously boosting the trees' overall robustness and lifespan. The practice yields substantial belowground benefits as well, with anastomosed plants contributing to greater soil biological activity. The resulting increased biomass production enriches the soil significantly, indicated by phosphorus (P) levels six times greater and Total Organic Carbon (TOC) levels twice as high when compared to soil beneath non-anastomosed trees. Furthermore, the enhanced vitality leads to a 37 percent increase in the degree of mycorrhization, improving nutrient and water uptake. This demonstrates that the aerial enhancement achieved through Tahboucht is inextricably linked to crucial improvements in the species' belowground traits and surrounding soil quality.

Nested Cutting Cycles and Policy Implications

Tahboucht is not a standalone practice but is integrated into a larger, sophisticated system involving shaping and pollarding that defines the characteristic agropastoral parklands of the Moroccan High Atlas (Fakhech et al., 2020) [4]. This system utilizes nested cutting cycles that correspond to three distinct resource tiers or 'floors'-fodder, poles, and beams-which are collected sequentially. This meticulously planned exploitation method achieves several sustainable outcomes: 1) it guarantees a diverse supply of resources collected annually from living trees; 2) it ensures the production of 'calibrated' goods by actively shaping resprouts directly on the tree; and 3) it allows for a precise estimation of the forage available each year. This model reinforces the idea that pollarded trees are known to survive longer than unmanaged trees (Mansion, 2010). Given their technical and ecological efficiency, researchers like Genin et al. (2016) [5] strongly recommend that these traditional management approaches be formally included in policymaking. With the growing global interest in agroforestry systems (Bhagwat et al., 2008), these long-established indigenous methods can serve as a vital foundation for developing modern technological itineraries that successfully integrate sustainable agriculture, resource production, and ecological stewardship.

Conservation Challenges and Future Outlook

Despite the efficacy of traditional management in enhancing the tree's resilience, the overall population of the endangered Fraxinus xanthoxyloides has faced a dramatic decline in recent decades. This decline is attributed to a confluence of threats, including indiscriminate harvesting for domestic commercial purposes, intensive grazing pressure, large-scale deforestation, escalating human activities, and severe deterioration in habitat quality, all compounded by the adverse effects of climate change (Rankou et al., 2017) [18]. The principle that moderate levels of disturbance can boost biodiversity and ecological function is only sustainable when harvesting is controlled and habitats are protected. Therefore, the species urgently requires comprehensive protection and the integration of sustainable harvesting practices within formal forest management frameworks. Recognizing and supporting the Tahboucht system is not merely an act of cultural preservation; it is a vital, evidence-based conservation strategy necessary for the long-term survival and propagation of this multi-functional ash species.

References

- 1. Anon. The Wealth of India: Raw Materials. Vol. IV: F-G. New Delhi: Publication and Information Directorate (CSIR); 1956. p. 61-63.
- 2. Bellakhdar J. La pharmacopée marocaine traditionnelle: Médecine arabe ancienne et savoirs populaires. Paris: Ibis Press; 1997.
- 3. Charco J. Guia de los árboles y arbustos del Norte de África: claves de determinación, descripciones, ilustraciones y mapas de distribución. Madrid: Agencia Española de Cooperación Internacional; 2001.
- 4. Fakhech A, Genin D, Ait-El-Mokhtar M, Outamamat EM, M'Sou S, Alifriqui M, Meddich A, Hafidi M. Traditional pollarding practices for dimorphic ash tree (*Fraxinus dimorpha*) support soil fertility in the Moroccan High Atlas. Land. 2020;9(9):334.
- 5. Genin D, Crochot C, M'Sou S, Araba A, Alifriqui M. Meadow up a tree: Feeding flocks with a native ash tree in the Moroccan mountains. Pastoralism. 2016;6(1):1-12.
- Genin D, M'Sou S, Ferradous A, Alifriqui M. Another vision of sound tree and forest management: Insights from traditional ash shaping in the Moroccan Berber mountains. For Ecol Manage. 2018;429:180-188.
- 7. Hadroug A. The phytochemical investigation of the Algerian medicinal plant *Fraxinus xanthoxyloides* [doctoral dissertation]. M'sila: Université de M'sila; 2018.
- 8. Hafidi MEM. Food habits and preferences of Barbary sheep (*Ammotragus lervia*) in the Eastern High Atlas National Park, Morocco; 1996.
- Hussain F, Shah SM, Sher H. Traditional source evaluation of some plants of Mastuj, District Chitral, Pakistan. Pak J Bot. 2007;39(2):339-354.
- 10. Ijaz MU, Khan MA, Yousaf S, Nasir S, Naz H, Anwar H, Younis T, Samad A. Methanolic extract of *Fraxinus xanthoxyloides* attenuates cisplatin-induced reproductive toxicity in male albino rats. Pak Vet J. 2020;40(4):489-493.
- 11. Kandylis K, Hadjigeorgiou I, Harizanis P. The nutritive value of mulberry leaves (*Morus alba*) as a feed supplement for sheep. Trop Anim Health Prod. 2009;41:17-24.
- M'Sou S. Frêne dimorphe (Fraxinus dimorpha Coss. et Dur. = F. xanthoxyloides Wall): Aspects fourragers et usages traditionnels dans des terroirs agro-forestiers du Haut Atlas Marocain. Cadi Ayyad University; 2013.
- 13. M'Sou S, Alifriqui M, Romane A. Phytochemical study and biological effects of the essential oil of *Fraxinus dimorpha* Coss. & Durieu. Nat Prod Res. 2017;31(23):2797-2800.
- 14. Mukerji KG, Manoharachary C. Current concepts in botany. New Delhi: I.K. International Pvt Ltd; 2006. p. 178.
- 15. Negi PS, Sandeep S. Polyembryony in *Fraxinus xanthoxyloides* (Wall. ex G. Don) DC. Indian For. 2010:136(5):697-700.
- 16. Negi PS, Sandeep S. Study on effect of gibberellic acid treatments on germination behaviour of *Fraxinus xanthoxyloides* (Wall. ex G. Don) DC. seeds. Indian J For. 2011;34(4):409-413.
- 17. Negi PS, Sharma S. Effect of time of fruit collection on seed germination of *Fraxinus xanthoxyloides* (Wall. ex G. Don) DC. Indian For. 2015;141(4):379-383.
- 18. Rankou H, M'Sou S, Alifriqui M, Martin G. *Fraxinus dimorpha*. The IUCN Red List of Threatened Species. 2017; e.T₁₀9366166A109366170.
- Sarfraz I, Rasul A, Jabeen F, Younis T, Zahoor MK, Arshad M, Ali M. *Fraxinus*: A plant with versatile pharmacological and biological activities. Evid Based Complement Alternat

- Med. 2017:2017:1-12.
- 20. Shah SM, Hussain F. Ethnomedicinal plant wealth of Mastuj valley, Hindukush range, District Chitral, Pakistan. J Med Plant Res. 2012;6:4328-4337.
- 21. Sharma PK, Sethi GS, Sharma SK, Sharma TK. Ethnomedicinal observations among the inhabitants of cold desert area of Himachal Pradesh. Indian J Tradit Knowl. 2006;5(3):358-361.
- 22. Singh KN. Traditional knowledge on ethnobotanical uses of plant biodiversity: a detailed study from the Indian Western Himalaya. Biodivers Res Conserv. 2012;28:63-77.
- 23. M'Sou S, Alifriqui M, Romane A. Phytochemical screening, chemical study and evaluation of antioxidant potential of *Fraxinus dimorpha* Coss. et Dur. = *F. xanthoxyloides* Wall. In: Abstracts of the Second Mediterranean Symposium on Medicinal and Aromatic Plants; 2015 Apr 22-25; Antalya, Turkey.
- 24. Younis T, Khan MR, Sajid M. Protective effects of *Fraxinus xanthoxyloides* (Wall.) leaves against CClainduced hepatic toxicity in rat. BMC Complement Altern Med. 2016;16(1):1-13.
- 25. Younis T, Khan MR, Sajid M, Majid M, Zahra Z, Shah NA. *Fraxinus xanthoxyloides* leaves reduced the level of inflammatory mediators during *in vitro* and *in vivo* studies. BMC Complement Altern Med. 2016;16(1):1-16.