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Abstract 
Pollination is a critical process for crop production and ecological balance. However, the decline in natural 
pollinators, such as bees and other insects, due to habitat loss, pesticide use, climate change, and diseases, 
has raised concerns. To address these challenges, researchers are exploring the concept of artificial 
pollination, with a particular focus on drone-based technology. Effective autonomous pollination 
necessitates drones that can proficiently navigate their environment, detect target flowers, and transfer 
pollen without causing harm. This multifaceted approach involves various modules: environment sensing 
for obstacle detection and mission-critical data collection, flower perception for locating and mapping 
flowers, path planning to optimize pollination routes, flight control for precise drone maneuvering between 
waypoints, and specific pollination mechanisms tailored to different crops. Nano drones hold significant 
promise in revolutionizing precise pollination in agriculture by identifying flowers, navigating to them, 
pollinating, and even cooperating with other drones. To enhance their efficacy, the development of diverse 
end effectors customized for various flower types is essential. Nevertheless, practical deployment faces 
challenges, including payload limitations and sensitivity to adverse weather conditions. Overcoming these 
hurdles is imperative to advance this innovative technology towards broader and practical implementation, 
addressing pressing pollination issues in agriculture and ecosystems. 

 
Keywords: Pollination, artificial pollination, drone, nano drone, flower detection 

 

Introduction  
Pollination is the biological process which transfer of pollen from an anther the male part of the 
plant to the stigma, which is the female part of the plant, leading to fertilization and the 
formation of seeds. Pollination is crucial for the production of crops, plays a significant role in 
both agriculture and the ecosystem, contributing to the balance of our surroundings. This process 
directly impacts on crop production, resulting in higher yields, improved quality, and increased 
genetic diversity for enhanced resilience. Simultaneously, pollinators are essential for 
maintaining biodiversity, which contributes to ecosystem stability by ensuring the health and 
survival of plant communities, which provide habitat, food, and shelter to a multitude of animal 
species. This intricate web of interactions driven by pollination sustains the harmony of our 
surroundings, making it a key service vital for human well-being and sustains the delicate 
balance of natural ecosystems (Meeuse, 2023) [14].  
Unlike animals plants cannot move in search of the partner and rely on the help of external 
forces (wind, water, and insects) known as pollinators. The Food and Agriculture Organisation 
of the United Nations estimates that 90% of the world’s food is produced from 100 crop species, 
71 of which are pollinated by bees (Pinheiro et al., 2023) [17]. Insects constitute the majority of 
pollinating animals, with honey bees (Apis mellifera L.) being the principal pollinators of several 
crop species (Sluijs et al., 2016). However, this species’ foraging behaviour is distinctive 
because bees are sensitive to several factors. This behaviour is closely related to the bee colony 
and the environment. Unfortunately, over the past few years, there has been a growing concern 
about the global decrease in pollinators, especially bees. With increases in pesticide use, 
parasites, and other diseases, the declining bee population became a concern in 2006 with the 
onset of Colony Collapse Disorder (CCD), which caused a significant decrease in colonies.
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Source: Zattara and Aizen, 2021 

 

Fig 1: Worldwide decreasing trend of bee population 
 

To overcome this decline and ensure the continued pollination of 

plants, researchers have been exploring the concept of artificial 

pollination. Artificial pollination involves using innovative 

techniques, such as hand pollination by tools or hand held 

devices like brush, needle, electric brush, vehicle mounted 

devices like blowers, sprayers, drones equipped with pollen-

carrying devices, to mimic the natural pollination process. By 

supplementing the work of natural pollinators with these 

advanced technologies, artificial pollination could help maintain 

crop yields, preserve biodiversity, and support the health of our 

ecosystems in the face of declining pollinator populations. 

 

Pollination techniques 

Hand Pollination 

This is the simplest and most common form of artificial 

pollination. It involves physically transferring pollen from the 

stamen to the stigma with a paintbrush, stick, or pole tipped with 

a feather-brush (Pratap and Ya, 2012; Gianni and Vania, 2018) 

[5]. This method is tedious and labour- intensive. This cost can be 

sustained by some high-value crops, particularly when pollen 

does not need to be collected (e.g., tomato), the pollen is 

produced in abundance and collection costs are low (e.g., date), 

or the market value of the crop is very high (e.g., vanilla). 

Where mechanisation is available (even if only in the form of a 

vibratory wand), it is often more effective and economical than 

manual pollination (Peet and Welles, 2004; Sakamoto, 2009; 

Gianni and Vania, 2018) [5, 16, 20].  

 

Hand Held devices 

Hand-held devices have revolutionized artificial pollination, 

offering increased efficiency and cost savings compared to 

manual methods. Devices like blowers, sprayers, and vibratory 

wands enable precise pollen application. Directed broadcast of 

pollen using a handheld leaf blower has been estimated to 

deliver only 1% of pollen to stigmatic surfaces (Goodwin and 

McBrydie, 2013) [7]. Vibratory wands are ideal for indoor 

tomatoes, while pneumatic devices with brush tips suit orchard 

crops. Additionally, electrostatic hand spray methods have 

shown success in certain scenarios, but further research and 

development are necessary for practical integration into modern 

agricultural practices. Technical challenges, such as accurate 

targeting and potential flower damage, require attention for 

wider commercial adoption (Vera-Chang et al., 2016; Giles, 

2021; Lukose et al., 2022) [6, 13, 21]. 

 

Vehicle mounted devices 

Vehicle-mounted devices are employed in large-scale 

agricultural settings to expedite the pollination process over vast 

crop areas. Various types of equipment, such as sprayers, 

blowers, and fans, have been developed for this purpose. 

Compared to equivalent hand-held devices, these vehicle-

mounted options significantly reduce the need for labor, making 

the process more efficient. The devices are typically attached to 

tractors or other farm vehicles, enabling the dispersal of pollen 

over a wide area in an effective manner. However, a limitation 

of these systems is that they often require a larger quantity of 

pollen due to their non-targeted approach, potentially leading to 

increased pollen consumption (Bullock and Overley, 1949; 

Williams and Legge, 1979; Torres et al., 2021; Hi et al., 2003; 

Gan-Mor et al., 2003; Law, 2001; Whiting, 2019.) [1, 4, 12, 22, 23]. 

 

Vehicle mounted electrostatic device 
Non-targeted systems in artificial pollination can be inefficient, 

leading to wastage of pollen grains that settle on leaves, orchard 

structures, and branches without fertilizing the flower. A 

significant portion of pollen grains landing on petals may not be 

effectively redistributed by bees. To address this issue, 

researchers have explored directed broadcasts of electrostatically 

charged pollen. By directing the pollen into the canopy, the 

amount of pollen lost to the surrounding environment is reduced. 

Moreover, positively charging the pollen increases its attraction 

to pointed structures like styles, enhancing pollen deposition and 

improving overall pollination efficiency. This innovative 

approach aims to minimize pollen wastage and optimize 

pollination success in artificial pollination methods (GanMor et 

al., 2003; Law, 2001; Whiting, 2019) [4, 12, 23]. 

 

Challenges in Traditional Artificial pollination Over Drone 

Pollination: There are various challenges occurs during the 

pollination process and are need to be addressed with the proper 

solutions otherwise it leads to the reduction of crop yield. The 

major challenges were mentioned in the table. 

 
Table 1: Various challenges in traditional artificial pollination over drone pollination 

 

Sl. No. Challenges Description 

1 Labor-Intensive 

Traditional artificial pollination methods, such as hand pollination and hand-held devices are labour-

intensive and time-consuming. They require manual efforts from workers, which can increase costs and 

make them less practical for large-scale agricultural operations. 

2 Inefficient Pollen Transfer 
Some artificial pollination techniques may not achieve efficient pollen transfer compared to natural 

pollinators like bees. 

3 Limited Scale Certain artificial pollination methods, like hand pollination or hand-held devices, may not be feasible for 
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large-scale crops or vast agricultural fields due to the need for extensive labour and time. 

4 Environmental Impact 
Vehicle-mounted devices used in artificial pollination may have environmental impacts, such as soil 

compaction and greenhouse gas emissions, especially when applied on a large scale. 

5 Lack of Precision 
Some artificial pollination methods may lack precision in pollen delivery, leading to uneven pollination 

and potential fertilization issues. 

6 Pollen Storage and Viability 
Maintaining the viability of stored pollen for extended periods can be difficult. Pollen may lose its potency 

or become contaminated, affecting the success of artificial pollination efforts. 

7 Lack of Pollinator Behaviour 
Artificial pollination may not replicate the complex behavior and interactions of natural pollinators, which 

can have broader ecological implications beyond just fertilization, such as the conservation of biodiversity. 

 

To overcome all these challenges, researches started advanced 

method called pollination by drone technology. Drone based 

pollination technology has received considerable attention. The 

use of drones to pollinate crops is an attractive proposition both 

because drones have a good aesthetic fit for the job they are 

airborne pollinators, like bees and because drone technology has 

a lower barrier to entry than other forms of robotics. These 

devices are either directly controlled by a pilot, follow a set path 

defined by the layout of orchard rows, or utilise a 3 D model of 

the environment built from an earlier pass by scouting drones. 

Many drone pollinators are modifications of commercially 

available drones, particularly those designed for agrichemical 

sprays, but a number are also being custom designed for 

pollination. Several pollination modes are being explored, 

including aerial broadcast distribution of pollen, as well as 

utilising the drone’s air vortices for pollination directly for 

hybrid grain production and greenhouse grown self-compatible 

crops such as strawberry, tomato, pepper, and eggplant. 

 

Drone Pollination  

Drone pollination is a method of artificial pollination that 

involves using drones equipped with spray systems to disperse 

pollen over crops. Instead of relying on natural pollinators like 

bees or wind, drones are deployed to carry and release pollen, 

mimicking the action of pollinators to facilitate fertilization in 

plants. 

 

 
 

Fig 2: Scope of Drone for Pollination 

 
Table 2: Different scopes of drone pollination 

 

Sl. No. Scope Description 

1 Crop Diversity 
Drone pollination can facilitate the pollination of a wide range of crops, including those with complex flower 

structures or crops grown in challenging environments. 

2 Large-Scale Pollination 
Drones can cover large agricultural fields quickly and efficiently, making them suitable for large-scale 

pollination efforts in commercial farming. 

3 Precision and Efficiency 
Drone pollination can deliver pollen with high precision directly to targeted flowers, ensuring efficient use of 

pollen and minimizing wastage. 

4 
Remote and Inaccessible 

Areas 

Drones can reach remote or difficult-to-access areas, including steep terrains or areas where traditional 

pollination methods are not feasible. 

5 Reduced Labour Costs 
By automating pollination, drones can significantly reduce the need for manual labor, leading to cost savings 

for farmers. 

6 
Supplementing Natural 

Pollinators 

In regions facing declining bee populations or other natural pollinator challenges, drone pollination can serve 

as a valuable supplement to ensure sufficient pollination. 

7 Crop Yield and Quality 
Improved and consistent pollination through drone technology can lead to enhanced crop yields and improved 

fruit quality. 
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Drone spray pollination is considered a potential solution for 

large-scale pollination in agriculture, particularly in situations 

where natural pollinators are scarce or infeasible due to large 

fields, remote locations, or specific crop requirements. It offers 

advantages such as increased speed, efficiency, and reduced 

labor compared to manual pollination methods. However, drone 

spray pollination also comes with challenges and limitations 

such as: 

 
Table 3: Challenges in conventional drone pollination 

 

Sl. No. Challenge Description 

1 Non-Targeted Pollen Dispersion Drones may not precisely deliver pollen to specific flowers, leading to wastage and inefficiency. 

2 Inconsistent Pollen Distribution 
Environmental factors like wind or varying drone flight patterns can result in uneven pollen 

distribution. 

3 Risk of Cross-Contamination 
Pollen from one variety may contaminate other crops, affecting the genetic purity of seeds and 

harvest quality. 

4 Limited Precision 
The larger size and less agile nature of traditional drones may hinder precise targeting of flowers in 

dense crop canopies. 

5 Environmental Impact 
The use of pollen sprays may have unintended effects on non-target organisms and surrounding 

ecosystems. 

 

To address these challenges and optimize the pollination 

process, researchers and farmers are exploring nano drone 

pollination, where smaller and more agile drones can deliver 

pollen with higher precision, ensuring efficient and accurate 

pollination of targeted flowers while minimizing environmental 

impacts and maximizing crop yield potential. 

 

Nano-drone Pollination 

Unmanned Aerial Vehicles (UAVs) are often applied to diverse 

agriculture activities. Several classifications are used based on 

size, weight, speed, and altitude, among others. The class 

selected classifies UAVs according to their weight and wingspan 

(Hassanalian and Abdelkefi. 2017) [8]. The chosen class must be 

able to balance the weight that can be placed onboard and the 

size of the propellers (which cause the movement of pollen). The 

Nano drone class is the most suitable for the intended pollination 

functions, with a weight of 3 to 50 g and a wingspan of 2.5 to 15 

centimetres. However, Nano drones are still underutilised in this 

context, although they can perform tasks more precisely than 

conventional UAVs. 

 

 
 

Fig 3: Representation of Nano Drone in pollination (Source: AI-generated) 

 

The scope of nano drone pollination are: Nano drones are 

significantly smaller and lighter than traditional UAVs, reducing 

the risk of injury to people, animals, and property in the case of 

an accident or other malfunction. These characteristics make 

them more manoeuvrable and they can operate in tight spaces 

and near crops. Nano drones can fly closer to crops, which 

allows for more precise guidance and application such as 

fertiliser or pest control chemicals. Nano drones are typically 

quieter and cause fewer changes in their surroundings, which 

can be important in certain applications such as tree pollination. 

Nano drones equipped with advanced sensors and imaging 

technology can navigate through crop canopies more effectively, 

achieving uniform and consistent pollen distribution. 

 

Requirement of Nano drone for pollination 

To achieve effective autonomous pollination, a nano drone must 

be able to traverse and autonomously navigate its environment, 

detecting and targeting flowers to pollinate and transfer pollen 

between targeted flowers. It should localize itself relative to a 

home position and fly within a designated area using its onboard 

flight controller (Craigie et al., 2021) [2]. 

https://www.agronomyjournals.com/


International Journal of Research in Agronomy  https://www.agronomyjournals.com  

~ 555 ~ 

 
 

Fig 4: Requirement of Nano drone for pollination 

 

Communication 

The main aim of Nano drone is to capable of moving and 

pollinating autonomously. The crazy file 2.1 is the core 

component of communication module and this hardware 

provides low latency, long range radio communication and low 

energy Bluetooth.  

 

Localization 

The location of the nano drone can be determined using an 

approach based on Simultaneous Location and Mapping 

(SLAM). By placing a camera on the nano drone, it is possible 

to collect images of the environment. This information is 

transmitted to the ground station and used by SLAM to map the 

surrounding environment. The Robotic Operating System (ROS) 

is a framework for developing robotics algorithms. The 

computer vision algorithms required for SLAM are developed 

using the ROS tool (Esfahlani, 2019; Pinheiro et al., 2023) [3, 17]. 

 

Obstacle avoidance: Obstacle avoidance can be achieved using 

the localisation provided by SLAM. This approach maps the 

environment around the NAV, allowing the determination of the 

positions of the surrounding obstacles and, consequently, leads 

to obstacle avoidance (Esfahlani, 2019) [3]. 

 

Application: The nano drones were developed as per the 

application and requirement need to design the nano drone.  

 

Basic Components of Nano copter for Pollination 

The overall design of the nano drone relies on a flight controller 

to control and stabilize the drone, a primary computer 

(Raspberry Pi 3B running ROS Noetic) to manage higher-level 

decisions and communicate between the different parts of the 

drone system, a camera to detect flowers, a servo-driven end-

effector to make contact with the flowers to pollinate them, and 

a GPS for position estimation. 

 
 

Fig 5: Components of nano drone for pollination 
 

The software system is organized into multiple subsections: end-

effector control, vision processing, flight control, and optical 

flow/altitude detection. These subsections all interact with the 

primary onboard computer, the Raspberry Pi 3B. End effector 

positioning is handled by an Arduino Nano. This microprocessor 

communicates to a Python node within primary computer’s ROS 

architecture. Target end effector angles are transmitted over a 

USB cable using UART communication and received directly 

by the Arduino, which commands a servo to move the end 

effector. Onboard vision processing is delegated to a camera. 

This camera runs a custom flower detection algorithm and 

returns the centroids of detected flowers. The Raspberry Pi 

communicates directly with the camera through UART protocol 

communicating over the Raspberry Pi’s dedicated RX and TX 

GPIO pins. These pins are accessed similarly to a standard serial 

bus port. This allows for lightweight signal cables to carry data 

transmission to the camera, lessening the physical load that 

would be placed on the servo actuator by a full USB cable.  

The Raspberry Pi communicates to the flight controller by 

sending MAVLink commands through a USB to UART adapter. 

The generated MAVLink commands converts the high-level 

ROS messages to the MAVLink control messages that the flight 

control understands. This MAVROS Bridge is used to receive 

positional data from the flight control which is used to generate 

the target position and velocity set points. The final subsection is 

handled by a second camera. This separate camera performs 

optical flow to calculate a body velocity estimate. The integrated 

microchip on the camera communicates with a time of flight 

sensor and IMU using I2C which is used to estimate flight 

altitude and attitude. The velocity, altitude, and attitude 

estimates are sent directly with the flight controller through a 

UART connection. 
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End effector design 

The end-effector refers to the dynamic platform that houses a 

camera and a pollen collector. It is designed to collect and 

deposit pollen and dynamically track flowers as they move 

within the end effector. The choice of end effector and its design 

parameters can significantly impact the success of pollination. 

The requirement of end effector was mentioned in the table 4. 

 
Table 4: Requirement of end effector 

 

Sl. No. Requirement Description 

1 Pollination Efficiency 
The end effector should be designed to mimic the natural pollination process, ensuring efficient transfer of 

pollen from one flower to another. It should maximize the probability of successful pollination. 

2 Gentle Handling 
The end effector should not damage the flowers during the pollination process. It should be gentle to 

prevent harm to the plants and flowers. 

3 Adaptability 
The end effector should be adaptable to various types of flowers and plants. Different flowers may require 

different approaches to pollination, so the end effector should be versatile. 

4 Pollen Collection 
The end effector should be able to collect and dispense pollen effectively. Efficient pollen collection and 

distribution are essential for successful pollination. 

5 Stability 
The end effector should be stable and able to maintain its position in windy conditions or while hovering 

over flowers. 

6 Precision 
Precision in terms of placement and timing is crucial. The end effector should accurately place pollen on 

the pistils of flowers and do so at the right moment in the flower's reproductive cycle. 

7 Payload Capacity 
The end effector should have a suitable payload capacity to carry an adequate amount of pollen for 

multiple pollination cycles before refilling. 

8 Power Efficiency 
It should be designed to consume minimal power to maximize flight time and reduce the need for frequent 

recharging. 

 

Design parameters of nano drone for pollination 

Designing an effective end effector for drone pollination 

involves a combination of engineering, robotics, and plant 

biology knowledge. It's essential to tailor the end effector to the 

specific plant species you intend to pollinate and consider the 

environmental conditions in which the drone will operate. 

Additionally, continuous testing and refinement of the end 

effector design are critical to achieving successful pollination 

outcomes. The design requirements were mentioned in table 5. 

 
Table 5: Design parameters of nano drone for pollination  

 

Sl. No. Design parameter Description 

1 Shape and Size The shape and size of the end effector should be optimized for the type of flowers intend to pollinate. 

2 Material 
The material used for the end effector should be lightweight yet durable. Materials like lightweight 

plastics or composites are often suitable. 

3 Pollen Storage 
Design the end effector to store and dispense pollen efficiently. This may involve the use of chambers, 

brushes, or other mechanisms to ensure controlled pollen release. 

4 Actuation Mechanism 
The end effector should have a reliable actuation mechanism, such as servo motors or pneumatic 

systems, to control the movement of the pollen dispensing mechanism. 

5 Sensors and Imaging 
Integrate sensors and imaging technology, such as cameras and proximity sensors, to detect flowers 

and accurately target the pistils for pollination. 

6 Control System 
Develop a robust control system that allows for precise control of the end effector's movements and 

pollen dispensing. 

7 Communication 
Ensure the end effector can communicate with the drone's flight controller to coordinate its actions and 

monitor pollen levels. 

8 Feedback Mechanisms 
Include feedback mechanisms to monitor the success of pollination efforts and make real-time 

adjustments as necessary. 

 

Craigie et al., 2021 [2] designed an end effector using an eye 

shadow brush as the pollen collector, aligning the camera's 

optical axis parallel to the collector. This configuration 

simplifies path computation for the drone, as there's a constant 

offset between the camera and brush. To ensure a consistent 

horizontal position during flight, they added a hard stop behind 

the rotating plate, enabling compensation for servo errors. This 

design minimizes gravitational effects on the servo and 

maintains the drone's center of mass stability. 
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Fig 6: End effector design (Craigie et al., 2021) [2] 

 

End effector tracking  

A proportional controller is used to track the end-effector to 

track a flower for pollination. The effectiveness of this flower 

tracking algorithm was evaluated by placing a flower within the 

view of the camera and moving it up and down, which tested the 

end-effector’s ability to track the flower as it moved. This test 

found that the end-effector can successfully track flowers 

between 0 and 90 degrees before hitting the physical limitations 

of the end-effector. This test proved that a proportional control 

could be used to accurately track a flower moving relative to the 

camera frame to properly align the pollen collector with the 

center of the flower (Craigie et al., 2021) [2]. 

 

Nano copter for Pollination  

Pollination by nano drone will be complex. The system will 

need to identify flowers, fly to them, pollinate, cooperate with 

other drones, etc. These steps are best described in a series of 

modules, the chief of which are environment sensing, flower 

perception, path planning, flight control, and pollination 

mechanisms. 

 

  
 

Fig 7: End effector tracking   Fig 8: Flow chart of Nano copter pollination (Source: Rice et al., 2022 

 

The artificial pollination by nano drone modules are broadly 

defined as follows. Environment sensing involves the system 

sensing its environment, searching for obstacles and other 

mission critical information. Flower perception, following from 

environment sensing, requires the system to detect and locate the 

flowers in the environment and then describes these flowers’ 

locations as waypoints in a map. Path planning refers to finding 

the optimal path or sequence of waypoints (flowers or flower 

clusters) in which to pollinate. Flight control refers to the 

maneuvering of the nano drone from one waypoint to the next in 

a closed-loop manner. Finally, the pollination mechanism is 

used to physically pollinate the flower. The pollination 

mechanism will vary depending on the crop being pollinated 

(Rice et al., 2022) [18]. 

Flower Perception 

Since the nano drone goal is pollination, it must be able to 

recognise flowers and execute commands to approach them. 

Identification is possible using perception algorithms to process 

the images a camera acquires (Pinherio et al., 2023). Flower 

perception provides the input to the path planning module, 

which in turn provides the input to the flight control module 

(Rice et al., 2022) [18]. For this purpose, it is necessary to 

develop a Deep Learning Neural Network (DLNN) for flower 

recognition and implement an algorithm that defines the 

command to be executed by the nano drone based on the 

position of the flower detected in the frame.  

From data collection to autonomous flower detection, includes 

three steps (Pinherio et al., 2023). Data collection: Collecting 
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and storing images to build the input dataset; Dataset generation: 

Annotating images by drawing bounding boxes around the 

flowers. Each annotation contained a bounding box around each 

object, representing its area, position, and class. Next, the 

dataset needs to duplicate by converting the images from RGB 

to grayscale. Further, after generating the flower detection 

dataset it needs to divide into three sets like 60% for training, 

20% for validation, and 20% for test. Model training: The final 

step is the training the DL models to be deployed in the nano 

drone for real-time flower detection. 

 

 
 

Fig 9: Flower Perception steps (Pinherio et al., 2023) 

 

In 2023, Pinheiro et al. [17] collected 103 flower images using an 

iPhone X, generated a flower dataset with Computer Vision 

Annotation Tool (CVAT), and identified 499 flowers. They 

augmented the dataset by converting images to grayscale (320 × 

240 pixels). The dataset included 206 images (RGB and 

grayscale), split into training (60%), and validation (20%), and 

test (20%) sets. YOLO models (YOLOv5, YOLOv7, and 

YOLOR) were trained on this dataset for 300 epochs, with a 

batch size of 64 images and an input resolution of 320 × 320 

pixels. 

Since the precise steering the drone has to perform, processing 

of the video feed should happen on-board such that the delay 

between receiving images and correcting the drone’s position is 

minimal. This implies the need for a small and light-weight 

processing board capable of performing real-time image 

processing. The camera feed is directly read by the processor 

and communicates with the drone via microcontroller. In 

addition to the camera, a depth sensor is required to measure the 

distance from the flower in the final approach (Huelns et al., 

2022). 

 

Algorithm for flower detection 

The algorithm analyses each frame and acts according to the 

information it has collected so far. To begin with, the algorithm 

checks the detections in each frame. If there are flower 

detections, the algorithm must calculate the centre of each 

detection and its distance to the centre of the frame. After 

performing the calculations for all detections, the algorithm 

determines the area that is closest to the centre of the image. 

Finally, the command that the nano drone should follow is 

determined (Pinheiro et al., 2023) [17]. Flow chart for the flower 

detection is shown below in Fig.10. 

 

 
 

Fig 10: Flowchart of flower detection (Pinheiro et al., 2023) [17] 
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Search Pattern: After proper initialization, the drone's main 

node enters the search pattern generation state. Here, it 

commands the Search Region node to generate a list of target set 

points for flower detection. The drone remains idle until 

switched into off-board mode by the user, initiated by the off-

board switch on the radio controller. Upon entering off-board 

mode, the drone follows the generated search set points at a 

fixed frequency while constantly scanning for flowers using its 

onboard vision system. If a flower is detected, the drone 

switches to the stabilization state, using a local body velocity 

controller to center itself over the flower. Once stabilized and 

centered, the drone descends to the flower's set altitude, marking 

the completion of pollination. After pollination, the camera 

briefly halts its search to prevent repeated detection of the same 

flower. This cycle of searching, detecting, centering, and 

lowering continues until all set points are covered. The system 

autonomously lands when the search pattern is completed, or the 

user can manually intervene for landing (Craigie et al., 2021) [2]. 

 

 
 

Fig 11: Visual Depiction of State Objectives (Craigie et al., 2021) [2] 

 

Flower Detection and targeting  

The flower detection process consists of two stages (Fig. 11). In 

the first stage, a CNN is employed for flower pose estimation, 

determining the flower's position, size (indicative of distance), 

and orientation. This model guides the drone to approach a 

position approximately 80 cm from the flower, directly facing it. 

This stage comprises three steps: (i) forward movement until the 

drone reaches the correct distance from the flower, (ii) altitude 

adjustment to match the flower's height, and (iii) circular motion 

around the flower until the drone is facing it directly. 

In the second stage, an image-based visual servoing network is 

used in an end-to-end approach, directly providing steering 

commands toward the sunflower's position. This model is 

applied during the final approach, leading to pollination 

touchdown (Hulens et al., 2022) [10]. 

 

 
 

Fig 12: Visual servoing approach for flower detection (Hulens et al., 2022) [10] 

 

Detection stage  

During this stage, which covers distances ranging from 8 meters 

to 0.8 meters, the primary objective is to train the detector using 

a custom flower dataset. This training enables the drone to 

effectively track and approach the flower. The flower's position 

information is crucial in this phase, as it guides the drone to keep 

the flower consistently at the center of its field of view. 

Additionally, the size of the detected flower serves as a valuable 

distance measurement metric. Figure 12 provides an illustrative 

representation of the flower properties detected by the detector, 
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along with their associated steering dimensions (Hulens et al., 

2022) [10].  

Furthermore, a significant enhancement has been made to the 

Convolutional Neural Network (CNN) architecture, enabling it 

to predict the horizontal angle of the flower (as depicted in Fig. 

16). This predicted angle plays a pivotal role in directing the 

drone to maintain a 0° angle relative to the flower. As the drone 

approaches the flower and the flower's size grows beyond 60% 

of the frame-height, making it challenging to reliably detect, the 

system seamlessly transitions to the second stage of visual 

servoing. 

 

 
 

Fig 13: The four properties that the detection model perceives of the flower and their related steering dimension (Hulens et al., 2022) [10]. 

 

 
 

Fig 14: Horizontal angle detection of the flower (Hulens et al., 2022) [10]. 

 

When the drone approached the flower close enough for the 

final descent, detection model of the previous phase does not 

work anymore. That is because the flower’s size exceeds the 

field-of-view of the camera. In this stage, we needs to train the 

architecture d for classification that directly outputs steering 

commands (up, down, left, right or center). This network is 

trained on zoomed-in images of a flower (fig.18). During the 

final approach to the flower, a distance sensor measures the 

distance between the drone and the flower with high accuracy. 

The pollination rod in front of the flower measures required 

distance (8 cm). When the distance becomes smaller than 8 cm 

we assume the rod touched the flower and the pollination took 

place (Hulens et al., 2022) [10]. 

 

 
 

Fig 15: Example images from the direct visual servoing image dataset and the proposed direct visual servoing approach. (Hulens et al., 2022) [10]. 

 

Evaluation of Flower Detection  

The selection of appropriate metrics to evaluate deep learning 

models depends on the specific problem at hand. Metrics offer 

distinct perspectives on the performance of a deep learning 

model and are often used in combination to gain a 

comprehensive understanding of its behaviour. The metrics 

listed below are commonly used to evaluate the outcomes of 

object detection and classification (Pinheiro et al., 2023) [17]. To 

determine the type of detection, it is necessary to understand the 

differences between a “correct detection” and an “incorrect 

detection”. One way is to use the intersection over union (IoU). 

Intersection over Union (IoU) is based on the Jaccard Index, 

which measures the similarity coefficient for two datasets. Here, 

the IoU is used to measure the area of overlap between two 
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bounding boxes using the ground-truth and predicted bounding 

boxes.  

The classification of a detection as valid or invalid by comparing 

the IoU with a given threshold t. If the IoU ≥ t, the detection is 

considered valid and if the IoU < t, it is considered invalid. The 

type of detection is determined by following concepts:  

 True Positive (TP): A valid detection of a ground-truth 

bounding box, i.e., IoU ≥ t;  

 False Positive (FP): An invalid detection (incorrect 

detection of a non-existent object or incorrect detection of a 

ground-truth bounding box), i.e., IoU < t;  

 False Negative (FN): An invalid detection of a ground-truth 

bounding box;  

 True Negative (TN): Not applicable in object detection.  

 

There is no need to find infinite bounding boxes in each image 

during object detection. The evaluation of the object detection 

methods mainly involved the concepts of precision and recall: 

Accuracy calculates the ratio of the number of correct 

predictions to the total number of predictions: 

 

 
 

Precision measures the ability of the model to identify only the 

relevant objects, i.e., the percentage of valid detections out of all 

detections and is calculated by 

 

 
 

Recall measures the ability of the model to find all ground-truth 

bounding boxes, i.e., the percentage of valid detections out of all 

ground truths and is calculated by:  

 

 
 

F1 score represents the harmonic mean between precision and 

recall and is used to evaluate performance; it is calculated by 

 
 

The precision × recall curve is a way to evaluate the 

performance of an object detector. This procedure plots a curve 

as confidence changes for each object class. 

 A good object detector maintains high precision as recall 

increases. In other words, by varying the confidence 

threshold, precision and recall should remain high.  

 A poor object detector for recovering all ground-truth 

objects (increasing recall) needs to increase the number of 

detected objects (increasing FP, which implies decreasing 

precision) to retrieve all ground truth objects (high recall).  

 Therefore, an optimal detector identifies only the relevant 

objects (FP = 0, indicating high precision) while finding all 

ground-truth objects (FN = 0, implying high recall). 

 The Average Precision (AP) is another way to evaluate the 

quality of the object detector. AP compares the performance 

of object detectors to calculate the area under the precision 

× recall curve. AP is the average precision of all recall 

values between 0 and 1. Therefore, a high area represents 

both high precision and recall.  

 The mean Average Precision (mAP) is a metric used to 

measure the accuracy of object detectors across all classes. 

The mAP is the average AP across all classes  

 
Table 6: Confidence threshold value that optimized the F1 score for 

each YOLO (Pinheiro et al., 2023) [17]. 
 

Model Confidence Threshold  F1 Score  

YOLOv5 71% 94% 

YOLOv7 70% 96% 

YOLOR 69% 97% 

 

The confidence threshold values presented led to the best 

balance between precision and recall, which maximised the 

number of true positives and minimised the number of false 

positives and false negatives. All three models had similar 

confidence threshold values and similar confidence in their 

predictions. Table 6 shows the confidence threshold value that 

maximised the F1 score for each model in the validation set 

(Pinheiro et al., 2023) [17]. 

 

Table 7: Detection results of the testing set obtained from the Flower Detection data set (Pinheiro et al., 2023) [17] 
 

Model Confidence threshold, % Accuracy % Precession % Recall% F1 score, % mAP, % Time per image, ms 

YOLOv5 
>0 

>71 

25 

92 

25 

97 

99 

95 

40 

96 

71 

69 

1.9 

2.0 

YOLOv7 
>0 

>70 

15 

97 

15 

98 

100 

99 

26 

98 

81 

80 

3.4 

2.3 

YOLOR 
>0 

>69 

44 

97 

44 

98 

99 

99 

61 

98 

82 

81 

4. 6 

2.7 

 

Table 7 shows the results of the test set. The inference was 

performed for a 0% confidence threshold and the confidence 

threshold value that maximised the F1 scores in the validation 

set. The inference was performed with a batch size of 8 and an 

IoU threshold of 50%. In the test set, a batch size of 8 was used, 

as the processing capacity was smaller. 

Lower confidence rates typically lead to an increase in false 

positives and a decrease in false negatives. As a result, precision 

decreases due to the increase in false positives and recall 

increases due to the decrease in false negatives. The results show 

that limiting the confidence threshold of the models resulted in a 

considerable increase in accuracy, precision, and F1 score at the 

cost of a slight decrease in recall and mAP. When the 

confidence threshold is set to maximise accuracy, precision and 

F1 score remain in the range of 90% to 99%. 

Figure 18, shows two images (grayscale and RGB) from the test 

set and the ability of the models to detect flowers, (a-c) RGB 

example and (d-f) grayscale example. Orange bounding boxes 

present ground truth. Light green bounding boxes present the 

predictions from YOLOv5. Dark green bounding boxes present 

the predictions from YOLOv7. Blue bounding boxes present the 

predictions from YOLOR. 
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Fig 16: Detection of flowers in sample images from the test set of the Flower Detection Dataset (Pinheiro et al., 2023) [17]. 

 

Flower stabilization/Centering 

Once the camera detects a flower, the drone breaks free from the 

search routine and enters the flower stabilization state. This state 

implements a PD velocity controller that sends a velocity 

message to the flight controller. Because MAVROS sends 

velocity set points in the ENU frame, system transforms target 

velocities from the local body to the global ENU frame. To do 

this, we need to rotate the local body velocity vector by the 

current heading of the drone’s compass. To center over the 

flower, the controller takes the centroid of the detected flower as 

input. Since the frame size of the camera is known, the desired 

center-point can be established. This allows the controller to 

calculate the error between the flower’s current centroid and the 

desired center-point of the camera. The proportional and 

derivative terms of the controller are used to calculate the 

desired velocities based on this error. Once the error is smaller 

than a defined threshold, the drone begins to lower over the 

centered flower while running the PD controller (Craigie et al., 

2021) [2]. 

 

Flight control system  

The drone employs a flight controller, typically a Pixhawk, to 

manage its position, heading, and velocity during flight within a 

designated region for flower search. This flight controller 

firmware offers various features, including data logging, an 

Extended Kalman Filter for sensor-based position estimation, 

and a MAVLink interface for onboard computer control and 

high-level decision-making, which is facilitated by a Raspberry 

Pi. The Raspberry Pi interfaces with the end effector and the 

flight controller, utilizing its multiple UART ports for this 

purpose (Craigie et al., 2021) [2]. 

Drone flight control methods can be categorized into two main 

approaches: learning-based and model-based. Learning-based 

methods use flight data to train the flight controller, including 

fuzzy logic, human-based learning, and neural networks. These 

methods require data from pilot flights or previous system trials. 

Model-based flight control relies on an aircraft model to derive 

control inputs. Examples include feedback linearization, 

proportional integral derivative (PID), and model predictive 

control (MPC). Feedback linearization transforms nonlinear 

dynamics into a linear coordinate system for control problem 

solving before converting the solution back to the true 

coordinate frame. PID control operates in a closed-loop manner, 

applying controls based on the error between the actual and 

desired states. MPC formulates optimal control over a future 

horizon and applies the resulting controls (Kendoul, 2012) [11]. 

The pollination algorithm for the nano drone is a multi-step 

process to guide the drone accurately to a flower for pollination. 

It begins by analysing each captured frame for flower detections. 

For each detected flower, it calculates the center and distance to 

the frame center. The algorithm then selects the closest flower to 

the frame center as the target. Next, it determines the appropriate 

command for the drone based on the target's position, both 

vertically and horizontally. The goal is to center the flower in 

the frame and bring the drone closer to it for pollination when in 

proximity. This systematic approach ensures precise flower 

targeting and efficient pollination (Pinheiro et al., 2023) [17]. 

 

Evaluation of nano drone for pollination  

Craigie et al. (2021) [2] conducted an experiment to evaluate the 

effectiveness of their drone design for pollination. The 

experiment, conducted outdoors, involved placing three plastic 

sunflowers within a five-meter radius of the drone. This setup 

allowed them to assess the drone's performance while navigating 

in a flower-free region and pollinating. To avoid interference 

from drone propellers, the sunflowers were attached to fixed-

height metal rods. 

The experiment activated the drone's autonomous pollination 

routine, which involved searching for and attempting to pollinate 

every detected flower. Successful pollination was determined by 

checking for colored powder on flowers, representing pollen 

transfer. The team conducted this experiment 14 times over two 

days. Results showed that the drone could detect an average of 

2.14 flowers per test and attempted to pollinate 96% of all 

detected flowers. The survival rate of tested flowers was 93%. 

However, the drone did not achieve successful pollination due to 

challenges in sensing the distance between the pollen collector 

and the flower's surface. 

In summary, the drone system demonstrated the ability to detect 

and approach flowers reliably but faced difficulties in achieving 

successful pollination. The drone's flower survival rate was high, 

but it was unable to confirm pollination success due to technical 

challenges (Craigie et al., 2021) [2]. 
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Table 8: Evaluation of nano drone for pollination (Craigie et al., 2021) [2]. 
 

Time stamp Flower survival Flower detections  Attempted Pollinations  Successful pollination  Cut shorts  

4/24,00:11 TRUE 1 1 0 ** 

4/24,00:17 TRUE 1 1 0 ** 

4/24,00:24 TRUE 1 1 0 ** 

4/24,01:19 TRUE 2 2 0 
 

4/24,01:24 TRUE 1 1 0 
 

4/24,01:32 TRUE 1 1 0 
 

4/24,01:39 FALSE 2 2 0 
 

4/24,01:53 TRUE 2 2 0 
 

4/24,02:05 TRUE 3 3 0 
 

4/24,02:41 TRUE 3 3 0 
 

4/24,13:30 TRUE 3 3 0 
 

4/24,13:33 TRUE 5* 5* 0 
 

4/24,13:41 TRUE 2 2 0 
 

4/24,13:54 TRUE 1 1 0 
 

4/24,13:56 TRUE 1 1 0 ** 

4/24,14:04 TRUE 2 2 0 
 

4/24,14:10 TRUE 2 2 0 
 

4/24,14:13 TRUE 1 1 0 
 

Avg. including test cut short ** Attempted pollination given a flower detected (%) 

1.89 1.83 97.1 

Avg. excluding test cut short ** Attempted pollination given a flower detected (%) 

2.14 2.07 96.7 

 

Limitation of Nano Drone for Pollination: Nano drones for pollination are subject to limitations due to their strict size and weight 

restrictions, typically falling within 3 to 50 grams in weight and 2.5 to 15 centimeters in wingspan. These constraints give rise to 

several challenges given in table 9:

 
Table 9: Limitations of nano drone for pollination 

 

Sl. No. Limitations Description 

1 
Limited Flight 

Endurance 

Nano drones have small batteries, resulting in short flight times. This limits their ability to cover large areas or 

perform extended pollination missions before requiring recharging or battery replacement. 

2 
Aerodynamic 

Vulnerability 

Their small size makes nano drones highly susceptible to aerodynamic factors like air currents, drift, and turbulence. 

Minor air disturbances can destabilize them, hindering their precise navigation within agricultural fields. 

3 Flight Irregularities 
Nano drones may exhibit asymmetries and inconsistencies in flight performance due to their delicate and miniature 

design. These irregularities can affect their maneuverability and overall effectiveness in pollination tasks. 

4 Fragile Components 

Nano drones often incorporate fragile and safety-critical components due to their size and weight constraints. 

Damage to these components can lead to system failures or malfunctions, reducing their reliability and durability for 

pollination operations. 

5   

 

Conclusion 

Nano drones hold significant promise for revolutionizing precise 

pollination in agriculture. These miniature aerial vehicles offer 

the potential to enhance crop production by efficiently 

identifying flowers, navigating to them, and conducting 

pollination while also facilitating cooperation among multiple 

drones. To optimize pollination success, the development of 

diverse end effectors customized for different flower types is 

essential. However, it's vital to address limitations such as 

payload capacity constraints and weather sensitivity to ensure 

practical deployment and integration into mainstream 

agricultural practices. In summary, nano drone pollination 

represents a cutting-edge approach with the potential to 

significantly improve agricultural productivity and contribute to 

ecosystem preservation. 
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